JP2004262846A - Method for producing 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride - Google Patents

Method for producing 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride Download PDF

Info

Publication number
JP2004262846A
JP2004262846A JP2003055055A JP2003055055A JP2004262846A JP 2004262846 A JP2004262846 A JP 2004262846A JP 2003055055 A JP2003055055 A JP 2003055055A JP 2003055055 A JP2003055055 A JP 2003055055A JP 2004262846 A JP2004262846 A JP 2004262846A
Authority
JP
Japan
Prior art keywords
cyclohexane
chloroformyl
dicarboxylic anhydride
reaction
chlorinating agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003055055A
Other languages
Japanese (ja)
Inventor
Kazuhiro Hattori
和弘 服部
Hiroshi Masami
博司 真見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Chemical Co Ltd
Original Assignee
New Japan Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Chemical Co Ltd filed Critical New Japan Chemical Co Ltd
Priority to JP2003055055A priority Critical patent/JP2004262846A/en
Publication of JP2004262846A publication Critical patent/JP2004262846A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furan Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently producing a highly reactive 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride. <P>SOLUTION: The method comprises reacting chlorinating agent(s) with cyclohexane-1,2,4-tricarboxylic acid. In this method, the chlorinating agent is at least one selected from the group consisting of phosphorus trichloride, phosphorus pentachloride, phosphoryl chloride, phosgene, trichloromethyl chloroformate, thionyl chloride and benzotrichloride. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、4−クロロホルミル−シクロヘキサン−1,2−ジカルボン酸無水物の新規な製造方法に関する。
【0002】
【従来の技術】
従来、樹脂原料としてシクロヘキサン−1,2,4−トリカルボン酸が知られているが、ジアミン類やジオール類との反応性に乏しいため、重縮合反応に長時間を要したり、得られる樹脂の分子量が低い等の問題点がある。このため、工業的に利用するに際して更に反応性に優れた化合物が強く望まれている。
【0003】
4−クロロホルミル−シクロヘキサン−1,2−ジカルボン酸無水物は、文献未記載の新規な化合物であり、これまで該化合物の製造方法を記載した文献は見当たらない。
【0004】
【発明が解決しようとする課題】
本発明は、反応性に優れた4−クロロホルミル−シクロヘキサン−1,2−ジカルボン酸無水物を効率よく製造する方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討した結果、シクロヘキサン−1,2,4−トリカルボン酸を、無水酢酸で処理して4−カルボキシ−1,2−ジカルボン酸無水物を得、次いで、得られた4−カルボキシ−1,2−ジカルボン酸無水物に塩素化剤を反応させることにより4−クロロホルミル−シクロヘキサン−1,2−ジカルボン酸無水物が製造できることを見出した。しかしながら、上記技術の酸無水物化工程において無水酢酸等の多量の無水化剤を必要とするため、経済的には不利となる上、反応後の後処理が煩雑である等の問題点があった。
【0006】
そのため、本発明者らは、さらに検討を重ねた結果、シクロヘキサン−1,2,4−トリカルボン酸に塩素化剤を反応させることにより、無水酢酸等による酸無水物化工程が不要となり、一段階で4−クロロホルミル−シクロヘキサン−1,2−ジカルボン酸無水物が得られることを見いだし、かかる知見に基づいて本発明を完成するに至った。
【0007】
即ち、本発明は、以下の4−クロロホルミル−シクロヘキサン−1,2−ジカルボン酸無水物の製造方法を提供するものである。
【0008】
[1] シクロヘキサン−1,2,4−トリカルボン酸無水物に塩素化剤を反応させることを特徴とする4−クロロホルミル−シクロヘキサン−1,2−ジカルボン酸無水物の製造方法。
【0009】
[2] 塩素化剤が、三塩化リン、五塩化リン、塩化ホスホリル、ホスゲン、トリクロロメチルクロロホルメート、塩化チオニル、ベンゾトリクロリドからなる群から選ばれる少なくとも一種である1項に記載の4−クロロホルミル−シクロヘキサン−1,2−ジカルボン酸無水物の製造方法。
【0010】
【発明の実施の形態】
本発明に係るシクロヘキサン−1,2,4−トリカルボン酸(以下、「シクロヘキサントリカルボン酸」と称する。)は、公知の方法(例えば、特開平8−325201号公報、特開平8−325202号公報に記載の方法等)に従って、ベンゼン−1,2,4−トリカルボン酸誘導体を核水素化することにより容易に得ることができる化合物である。
【0011】
本発明に使用する塩素化剤としては、有機酸を酸クロリドとすることができる化合物であれば特に制限されないが、具体的には、三塩化リン、五塩化リン、塩化ホスホリル、ホスゲン、トリクロロメチルクロロホルメート、塩化チオニル、ベンゾトリクロリド等が例示される。これらの塩素化剤は、通常の市販の工業製品を使用でき、単独で又は2種以上組み合わせて使用することもできる。
【0012】
使用する塩素化剤の量としては、シクロヘキサントリカルボン酸のカルボキシル基3モルに対して、2モル当量以上の塩素化剤が必要であり、通常2〜40モル当量、好ましくは2〜20モル当量の範囲である。
【0013】
反応温度としては、使用する塩素化剤又は溶媒によって異なるが、通常10℃〜使用する塩素化剤又は溶媒の沸点温度の範囲が好ましく、特に、40〜100℃が好ましい。反応温度が低すぎると反応の進行が遅く、高くなると副生物の生成量が増大する。
【0014】
反応時間としては、使用する塩素化剤又は反応温度により異なるが、適宜決定すればよく、通常、0.5〜30時間程度、好ましくは1〜10時間程度である。
【0015】
本発明の反応は、均一溶液又は懸濁状態で行うため、溶媒を用いて反応を行うのが好ましいが、三塩化リン、塩化スルホリル、塩化チオニル又はベンゾトリクロリドを塩素化剤に用いた場合には無溶媒でも実施可能である。
【0016】
使用できる溶媒としては、反応に不活性な溶媒であれば特に制限されないが、具体的には、ヘキサン、ヘプタン、シクロヘキサン、ベンゼン、トルエン、キシレン等の脂肪族及び芳香族炭化水素系溶媒;クロロホルム、塩化メチレン、1,2−ジクロロエタン、クロルベンゼン等のハロゲン化炭化水素系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;ジエチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン等のエーテル系溶媒、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等の非プロトン性極性溶媒、ピリジン、ピコリン等の有機塩基類などが例示される。また、これらの溶媒を混合して反応溶媒として用いることも可能である。通常、溶媒量としては、シクロヘキサントリカルボン酸に対して、0.1〜50倍重量が好ましく、特に0.5〜20倍重量使用するのが好ましい。
【0017】
また、本反応を促進させる目的のため、使用する塩素化剤に応じて、適宜有機系又は無機系触媒を反応溶液中に添加して実施することもできる。
【0018】
有機系触媒としては、ピリジン、トリエチルアミン、トリブチルアミン、4−ジメチルアミノピリジン等の三級アミン、N,N−ジ置換ホルムアミド、テトラアルキル尿素、第三級ホスフィン、第4級アンモニウム塩、第4級ホスホニウム塩等が例示できる。これらの触媒の使用量としては、特に限定されないが、シクロヘキサントリカルボン酸1モルに対して、0.001〜5モル、好ましくは0.01〜3モルである。
【0019】
また、無機系触媒としては、マグネシウム、カルシウム、バリウム、アルミニウム、チタン、鉄、銅、銀、錫、亜鉛等の金属ハロゲン化物又は金属酸化物等が例示できる。かかる無機系触媒としては、具体的には、塩化マグネシウム、塩化銅、塩化第二錫、塩化バリウム、塩化第一鉄、塩化第二鉄、酸化第一鉄、酸化第二鉄等が例示できる。これらの触媒の使用量としては、シクロヘキサントリカルボン酸1モルに対して、0.001〜0.1モルの範囲が推奨される。
【0020】
上記反応は、窒素、アルゴン等の不活性ガス雰囲気下で実施することが好ましい。また、必要に応じて上記不活性ガスを塩化カルシウム、シリカゲル等により乾燥して用いることもできる。
【0021】
本発明の反応は、通常常圧下で行われるが、加圧下で行うこともできる。
【0022】
反応終了後、反応溶液から溶媒、過剰の塩素化剤及び/又は副生成物をデカンテーション、蒸留、濾過、遠心分離等で除去することにより4−クロロホルミル−シクロヘキサン−1,2−ジカルボン酸無水物が高純度、高収率で得ることができる。更に必要に応じて蒸留等の慣用方法を用いて精製することもできる。
【0023】
本発明によって得られる4−クロロホルミル−シクロヘキサン−1,2−ジカルボン酸無水物は、ポリエステルイミド樹脂、ポリアミドイミド樹脂等の樹脂原料、エポキシ樹脂、ポリウレタン樹脂等の硬化剤原料、レジスト材料の原料などとして有用な化合物である。
【0024】
【実施例】
以下、実施例により本発明を詳細に説明するが、本発明はこれらの範囲に限定されるものではない。
【0025】
製造例1
500mlの電磁攪拌機付きオートクレーブにベンゼン−1,2,4−トリカルボン酸無水物30g及びメタノール70gを仕込み、温度220℃で1時間エステル化を行った。この溶液に活性炭に5重量%ルテニウムを担持させた触媒1gを添加し、水素圧力12MPa、温度120℃で水素化を行った。反応時間2.5時間で水素の吸収が停止し、その時の水素吸収量は理論水素吸収量の99.1%であった。次いで、反応液中の活性炭担持ルテニウム触媒を濾別し、反応物を紫外分光分析計で測定したところ、ベンゼン核の吸収は見られず、水素化反応が完結していることを確認した。また、ガスクロマトグラフ分析の結果、シクロヘキサン−1,2,4−トリカルボン酸トリメチルエステルの純度は97.2%であった。
【0026】
得られたシクロヘキサン−1,2,4−トリカルボン酸トリメチルエステルを滴下管、留出デカンタ、温度計及び攪拌装置を備えた4つ口フラスコに移し、加温して脱溶媒を行った。次いで、スルホラン30gを加えてシクロヘキサン−1,2,4−トリカルボン酸トリメチルエステルを溶解させ、水30gと硫酸7gを加え、130℃に加温し加水分解を行った。水を10g/hの速度で滴下し、留出する水中のメタノールの量を分析し、加水分解反応を追跡した。加水分解が進行するに従って結晶が析出する。メタノールの留出は3時間で停止し、加水分解反応が完結していることを確認した。次いで、濾別した後、得られた結晶を3回水洗し、圧力4kPa、温度80℃で乾燥し、シクロヘキサン−1,2,4−トリカルボン酸28.5g(収率84.4%)を得た。
【0027】
実施例1
滴下ロート、冷却管、温度計及び攪拌装置を備えた500ml4つ口フラスコに、シクロヘキサン−1,2,4−トリカルボン酸32.43g(0.15モル)と1,2−ジクロロエタン350mlを仕込み、撹拌しながら60℃に温度を保持して、三塩化リン20.60g(0.15モル)を2時間かけて滴下した。滴下終了後、更に2時間撹拌を続けた。反応終了後、冷却静置し、下層の副生した亜リン酸を分離除去し、得られた反応粗物を、減圧蒸留することにより、4−クロロホルミル−シクロヘキサン−1,2―ジカルボン酸無水物30.25g(収率93.1%)を得た。
【0028】
実施例2
冷却管、温度計及び攪拌装置を備えた100ml4つ口フラスコにシクロヘキサン−1,2,4−トリカルボン酸6.49g(0.03モル)、五塩化リン16.66g(0.08モル)とクロルベンゼン80mlとを仕込み、撹拌しながら、50℃で5時間反応させた。反応終了後、減圧下でクロルベンゼンと副生した塩化ホスホリルを留去し、4−クロロホルミル−シクロヘキサン−1,2―ジカルボン酸無水物6.35g(収率97.6%)を得た。
【0029】
実施例3
冷却管、温度計及び攪拌装置を備えた100ml4つ口フラスコにシクロヘキサン−1,2,4−トリカルボン酸6.49g(0.03モル)と塩化チオニル50g(0.42モル)とを仕込み、撹拌しながら、2時間還流させた。反応終了後、減圧下で過剰の塩化チオニルを留去し、4−クロロホルミル−シクロヘキサン−1,2―ジカルボン酸無水物6.38g(収率98.1%)を得た。
【0030】
実施例4
ガス吹き込み口、冷却管、温度計及び攪拌装置を備えた100ml4つ口フラスコに、シクロヘキサン−1,2,4−トリカルボン酸6.49g(0.03モル)とテトラヒドロフラン80mlを仕込み、撹拌しながら60℃に温度を保持して、乾燥窒素で希釈したホスゲンを200ml/時間の流量で12時間吹き込んだ(ホスゲン:0.30モル)。反応終了後、冷却しながら乾燥窒素を吹き込んで、未反応ホスゲン及び塩化水素を除去した。その後、減圧下でテトラヒドロフランを留去し、4−クロロホルミル−シクロヘキサン−1,2―ジカルボン酸無水物6.36g(収率97.8%)を得た。
【0031】
実施例5
滴下ロート、冷却管、温度計及び攪拌装置を備えた100ml4つ口フラスコに、シクロヘキサン−1,2,4−トリカルボン酸6.49g(0.03モル)とクロロホルム80mlを仕込み、撹拌しながら60℃に温度を保持して、トリクロロメチルクロロホルメート19.78g(0.10モル)を10時間かけて滴下した。滴下終了後、更に2時間撹拌を続けた。反応終了後、減圧下でクロロホルムを留去し、4−クロロホルミル−シクロヘキサン−1,2―ジカルボン酸無水物6.31g(収率97.0%)を得た。
【0032】
実施例6
滴下ロート、冷却管、温度計及び攪拌装置を備えた500ml4つ口フラスコに、ベンゾトリクロリド78.19g(0.40モル)、塩化第二錫0.068g(0.0003モル)とジエチレングリコールジメチルエーテル100mlを仕込み、撹拌しながら100℃に温度を保持して、シクロヘキサン−1,2,4−トリカルボン酸32.43g(0.15モル)を溶解したジエチレングリコールジメチルエーテル溶液300mlを6時間かけて滴下した。滴下終了後、更に2時間撹拌を続けた。反応終了後、減圧蒸留により、4−クロロホルミル−シクロヘキサン−1,2―ジカルボン酸無水物30.10g(収率92.6%)を得た。
【0033】
【発明の効果】
本発明により樹脂原料、樹脂改質剤、樹脂硬化剤中間体等として反応性に優れ、且つ、有用な5−クロロホルミル−シクロヘキサン−1,2−ジカルボン酸無水物を効率よく、しかも高収率、高純度で製造できる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel method for producing 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride.
[0002]
[Prior art]
Conventionally, cyclohexane-1,2,4-tricarboxylic acid has been known as a resin raw material. However, since it has poor reactivity with diamines and diols, it takes a long time for the polycondensation reaction, and There are problems such as low molecular weight. For this reason, compounds that are more reactive when used industrially are strongly desired.
[0003]
4-Chloroformyl-cyclohexane-1,2-dicarboxylic anhydride is a novel compound not described in any literature, and no literature describing a method for producing the compound has been found so far.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for efficiently producing 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride having excellent reactivity.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, cyclohexane-1,2,4-tricarboxylic acid was treated with acetic anhydride to obtain 4-carboxy-1,2-dicarboxylic anhydride, Next, it has been found that 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride can be produced by reacting the obtained 4-carboxy-1,2-dicarboxylic anhydride with a chlorinating agent. However, a large amount of an anhydrous agent such as acetic anhydride is required in the acid anhydride conversion step of the above technique, which is economically disadvantageous and has problems such as complicated post-treatment after the reaction. .
[0006]
Therefore, as a result of further studies, the present inventors have found that by reacting cyclohexane-1,2,4-tricarboxylic acid with a chlorinating agent, an acid anhydride conversion step with acetic anhydride or the like becomes unnecessary, and in one step. It has been found that 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride can be obtained, and the present invention has been completed based on such findings.
[0007]
That is, the present invention provides the following method for producing 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride.
[0008]
[1] A process for producing 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride, comprising reacting cyclohexane-1,2,4-tricarboxylic anhydride with a chlorinating agent.
[0009]
[2] The method according to item 1, wherein the chlorinating agent is at least one selected from the group consisting of phosphorus trichloride, phosphorus pentachloride, phosphoryl chloride, phosgene, trichloromethyl chloroformate, thionyl chloride, and benzotrichloride. A method for producing chloroformyl-cyclohexane-1,2-dicarboxylic anhydride.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The cyclohexane-1,2,4-tricarboxylic acid (hereinafter referred to as "cyclohexanetricarboxylic acid") according to the present invention can be prepared by a known method (for example, see JP-A-8-325201 and JP-A-8-325202). The compounds can be easily obtained by subjecting a benzene-1,2,4-tricarboxylic acid derivative to nuclear hydrogenation according to the described method or the like).
[0011]
The chlorinating agent used in the present invention is not particularly limited as long as it is a compound capable of converting an organic acid into an acid chloride, and specific examples thereof include phosphorus trichloride, phosphorus pentachloride, phosphoryl chloride, phosgene, and trichloromethyl. Examples include chloroformate, thionyl chloride, benzotrichloride and the like. As these chlorinating agents, ordinary commercial industrial products can be used, and they can be used alone or in combination of two or more.
[0012]
As the amount of the chlorinating agent to be used, 2 molar equivalents or more of the chlorinating agent is required based on 3 mols of the carboxyl group of cyclohexanetricarboxylic acid, and usually 2 to 40 molar equivalents, preferably 2 to 20 molar equivalents. Range.
[0013]
The reaction temperature varies depending on the chlorinating agent or solvent used, but is usually in the range of 10 ° C to the boiling point of the chlorinating agent or solvent used, and particularly preferably 40 to 100 ° C. If the reaction temperature is too low, the progress of the reaction is slow, and if it is too high, the amount of by-products increases.
[0014]
The reaction time varies depending on the chlorinating agent used and the reaction temperature, but may be appropriately determined, and is usually about 0.5 to 30 hours, preferably about 1 to 10 hours.
[0015]
Since the reaction of the present invention is performed in a homogeneous solution or suspension, it is preferable to perform the reaction using a solvent.However, when phosphorus trichloride, sulfolyl chloride, thionyl chloride or benzotrichloride is used as the chlorinating agent, Can be carried out without a solvent.
[0016]
The solvent that can be used is not particularly limited as long as it is a solvent inert to the reaction, and specifically, hexane, heptane, cyclohexane, benzene, toluene, xylene and other aliphatic and aromatic hydrocarbon solvents; chloroform, Halogenated hydrocarbon solvents such as methylene chloride, 1,2-dichloroethane and chlorobenzene; ketone solvents such as acetone and methyl ethyl ketone; ether solvents such as diethyl ether, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether and tetrahydrofuran; Examples include aprotic polar solvents such as dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone, and organic bases such as pyridine and picoline. Further, these solvents can be mixed and used as a reaction solvent. Usually, the amount of the solvent is preferably 0.1 to 50 times, more preferably 0.5 to 20 times the weight of cyclohexanetricarboxylic acid.
[0017]
In addition, for the purpose of accelerating the reaction, an organic or inorganic catalyst can be appropriately added to the reaction solution depending on the chlorinating agent to be used.
[0018]
Examples of the organic catalyst include tertiary amines such as pyridine, triethylamine, tributylamine and 4-dimethylaminopyridine, N, N-disubstituted formamide, tetraalkylurea, tertiary phosphine, quaternary ammonium salts, and quaternary. Examples thereof include a phosphonium salt. The use amount of these catalysts is not particularly limited, but is 0.001 to 5 mol, preferably 0.01 to 3 mol, per 1 mol of cyclohexanetricarboxylic acid.
[0019]
Examples of the inorganic catalyst include metal halides or metal oxides such as magnesium, calcium, barium, aluminum, titanium, iron, copper, silver, tin, and zinc. Specific examples of such inorganic catalysts include magnesium chloride, copper chloride, stannic chloride, barium chloride, ferrous chloride, ferric chloride, ferrous oxide, and ferric oxide. The use amount of these catalysts is preferably in the range of 0.001 to 0.1 mol per 1 mol of cyclohexanetricarboxylic acid.
[0020]
The above reaction is preferably performed in an atmosphere of an inert gas such as nitrogen or argon. If necessary, the above inert gas can be dried with calcium chloride, silica gel or the like before use.
[0021]
The reaction of the present invention is usually performed under normal pressure, but can also be performed under pressure.
[0022]
After completion of the reaction, the solvent, excess chlorinating agent and / or by-products are removed from the reaction solution by decantation, distillation, filtration, centrifugation or the like, whereby 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride is obtained. Can be obtained with high purity and high yield. Further, if necessary, it can be purified by a conventional method such as distillation.
[0023]
The 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride obtained according to the present invention includes resin materials such as polyesterimide resin and polyamideimide resin, hardener materials such as epoxy resin and polyurethane resin, and raw materials for resist material. Are useful compounds.
[0024]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to these ranges.
[0025]
Production Example 1
A 500 ml autoclave equipped with a magnetic stirrer was charged with 30 g of benzene-1,2,4-tricarboxylic anhydride and 70 g of methanol, and subjected to esterification at a temperature of 220 ° C. for 1 hour. To this solution was added 1 g of a catalyst in which 5% by weight of ruthenium was supported on activated carbon, and hydrogenation was performed at a hydrogen pressure of 12 MPa and a temperature of 120 ° C. The absorption of hydrogen was stopped after a reaction time of 2.5 hours, and the amount of hydrogen absorbed at that time was 99.1% of the theoretical amount of hydrogen absorbed. Next, the activated carbon-supported ruthenium catalyst in the reaction solution was filtered off, and the reaction product was measured with an ultraviolet spectrophotometer. As a result, no absorption of benzene nuclei was observed, and it was confirmed that the hydrogenation reaction was completed. As a result of gas chromatographic analysis, the purity of cyclohexane-1,2,4-tricarboxylic acid trimethyl ester was 97.2%.
[0026]
The obtained cyclohexane-1,2,4-tricarboxylic acid trimethyl ester was transferred to a four-necked flask equipped with a dropping tube, a distilling decanter, a thermometer and a stirrer, and heated to remove the solvent. Next, 30 g of sulfolane was added to dissolve cyclohexane-1,2,4-tricarboxylic acid trimethyl ester, 30 g of water and 7 g of sulfuric acid were added, and the mixture was heated to 130 ° C. to perform hydrolysis. Water was added dropwise at a rate of 10 g / h, the amount of methanol in the distilled water was analyzed, and the hydrolysis reaction was followed. Crystals are precipitated as the hydrolysis proceeds. Distillation of methanol was stopped in 3 hours, and it was confirmed that the hydrolysis reaction was completed. Next, after filtering off, the obtained crystal was washed three times with water and dried at a pressure of 4 kPa and a temperature of 80 ° C. to obtain 28.5 g of cyclohexane-1,2,4-tricarboxylic acid (yield: 84.4%). Was.
[0027]
Example 1
In a 500 ml four-necked flask equipped with a dropping funnel, a condenser, a thermometer and a stirrer, 32.43 g (0.15 mol) of cyclohexane-1,2,4-tricarboxylic acid and 350 ml of 1,2-dichloroethane were charged and stirred. While maintaining the temperature at 60 ° C., 20.60 g (0.15 mol) of phosphorus trichloride was added dropwise over 2 hours. After completion of the dropwise addition, stirring was continued for another 2 hours. After completion of the reaction, the mixture was allowed to cool and stand still, and the by-product phosphorous acid as a lower layer was separated and removed, and the obtained reaction crude product was distilled under reduced pressure to obtain 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride. 30.25 g (yield 93.1%) was obtained.
[0028]
Example 2
6.49 g (0.03 mol) of cyclohexane-1,2,4-tricarboxylic acid, 16.66 g (0.08 mol) of phosphorus pentachloride and chlorinated in a 100 ml four-necked flask equipped with a condenser, a thermometer and a stirrer. 80 ml of benzene was charged and reacted at 50 ° C. for 5 hours while stirring. After completion of the reaction, chlorobenzene and phosphoryl chloride by-produced were distilled off under reduced pressure to obtain 6.35 g (yield 97.6%) of 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride.
[0029]
Example 3
6.49 g (0.03 mol) of cyclohexane-1,2,4-tricarboxylic acid and 50 g (0.42 mol) of thionyl chloride were charged into a 100 ml four-necked flask equipped with a condenser, a thermometer and a stirrer, and stirred. While refluxing for 2 hours. After completion of the reaction, excess thionyl chloride was distilled off under reduced pressure to obtain 6.38 g (yield 98.1%) of 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride.
[0030]
Example 4
6.49 g (0.03 mol) of cyclohexane-1,2,4-tricarboxylic acid and 80 ml of tetrahydrofuran were charged into a 100 ml four-necked flask equipped with a gas inlet, a condenser, a thermometer and a stirrer, and stirred with stirring. While maintaining the temperature at ° C., phosgene diluted with dry nitrogen was blown in at a flow rate of 200 ml / hour for 12 hours (phosgene: 0.30 mol). After the completion of the reaction, dry nitrogen was blown while cooling to remove unreacted phosgene and hydrogen chloride. Thereafter, tetrahydrofuran was distilled off under reduced pressure to obtain 6.36 g (yield 97.8%) of 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride.
[0031]
Example 5
6.49 g (0.03 mol) of cyclohexane-1,2,4-tricarboxylic acid and 80 ml of chloroform were charged into a 100 ml four-necked flask equipped with a dropping funnel, a condenser, a thermometer and a stirrer, and stirred at 60 ° C. With the temperature maintained at, 19.78 g (0.10 mol) of trichloromethyl chloroformate was added dropwise over 10 hours. After completion of the dropwise addition, stirring was continued for another 2 hours. After completion of the reaction, chloroform was distilled off under reduced pressure to obtain 6.31 g (yield 97.0%) of 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride.
[0032]
Example 6
In a 500 ml four-necked flask equipped with a dropping funnel, a cooling tube, a thermometer and a stirrer, 78.19 g (0.40 mol) of benzotrichloride, 0.068 g (0.0003 mol) of stannic chloride and 100 ml of diethylene glycol dimethyl ether The mixture was charged, and while maintaining the temperature at 100 ° C. while stirring, 300 ml of a diethylene glycol dimethyl ether solution in which 32.43 g (0.15 mol) of cyclohexane-1,2,4-tricarboxylic acid was dissolved was added dropwise over 6 hours. After completion of the dropwise addition, stirring was continued for another 2 hours. After completion of the reaction, 30.10 g (yield 92.6%) of 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride was obtained by distillation under reduced pressure.
[0033]
【The invention's effect】
According to the present invention, a useful 5-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride having excellent reactivity as a resin raw material, a resin modifier, a resin curing agent intermediate and the like can be efficiently produced at a high yield. , Can be manufactured with high purity.

Claims (2)

シクロヘキサン−1,2,4−トリカルボン酸に塩素化剤を反応させることを特徴とする4−クロロホルミル−シクロヘキサン−1,2−ジカルボン酸無水物の製造方法。A method for producing 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride, comprising reacting cyclohexane-1,2,4-tricarboxylic acid with a chlorinating agent. 塩素化剤が、三塩化リン、五塩化リン、塩化ホスホリル、ホスゲン、トリクロロメチルクロロホルメート、塩化チオニル、ベンゾトリクロリドからなる群から選ばれる少なくとも1種である請求項1に記載の4−クロロホルミル−シクロヘキサン−1,2−ジカルボン酸無水物の製造方法。The 4-chloro according to claim 1, wherein the chlorinating agent is at least one selected from the group consisting of phosphorus trichloride, phosphorus pentachloride, phosphoryl chloride, phosgene, trichloromethyl chloroformate, thionyl chloride, and benzotrichloride. A method for producing formyl-cyclohexane-1,2-dicarboxylic anhydride.
JP2003055055A 2003-03-03 2003-03-03 Method for producing 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride Pending JP2004262846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055055A JP2004262846A (en) 2003-03-03 2003-03-03 Method for producing 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055055A JP2004262846A (en) 2003-03-03 2003-03-03 Method for producing 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride

Publications (1)

Publication Number Publication Date
JP2004262846A true JP2004262846A (en) 2004-09-24

Family

ID=33119172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055055A Pending JP2004262846A (en) 2003-03-03 2003-03-03 Method for producing 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride

Country Status (1)

Country Link
JP (1) JP2004262846A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245193A (en) * 1988-06-21 1990-02-15 Ciba Geigy Ag Maintenance card
JPH02174771A (en) * 1988-12-27 1990-07-06 Japan Synthetic Rubber Co Ltd Aromatic tetracarboxylic acid anhydride
US5412108A (en) * 1994-01-05 1995-05-02 Amoco Corporation Method for preparing 1,2,4-cyclohexanetricarboxylic acid and anhydride
JPH07138247A (en) * 1993-11-19 1995-05-30 Toray Ind Inc Production of o,o'-diacyltartaric acid anhydride
JPH08325196A (en) * 1995-05-31 1996-12-10 New Japan Chem Co Ltd Production of alicyclic polycarboxylic acid and its acid anhydride

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0245193A (en) * 1988-06-21 1990-02-15 Ciba Geigy Ag Maintenance card
JPH02174771A (en) * 1988-12-27 1990-07-06 Japan Synthetic Rubber Co Ltd Aromatic tetracarboxylic acid anhydride
JPH07138247A (en) * 1993-11-19 1995-05-30 Toray Ind Inc Production of o,o'-diacyltartaric acid anhydride
US5412108A (en) * 1994-01-05 1995-05-02 Amoco Corporation Method for preparing 1,2,4-cyclohexanetricarboxylic acid and anhydride
JPH08325196A (en) * 1995-05-31 1996-12-10 New Japan Chem Co Ltd Production of alicyclic polycarboxylic acid and its acid anhydride

Similar Documents

Publication Publication Date Title
JP5485890B2 (en) Method for producing phthalic anhydride derivative
JP2006347931A (en) Dialkylcyclobutanoic acid dianhydride and method for producing the same
JP4852206B2 (en) Method for producing cyclobutanetetracarboxylic dianhydride compound
JP2004262846A (en) Method for producing 4-chloroformyl-cyclohexane-1,2-dicarboxylic anhydride
JP4913962B2 (en) Process for producing phenylethynylphthalic anhydride derivative
EP0741127B1 (en) Synthesis of cyanoacrylate esters by oxidation of aromatic selenyl cyanopropionates
JPS63275541A (en) Diacetylene compound
JP2004203792A (en) 4-chloroformylcyclohexane-1, 2-dicarboxylic anhydride and method for producing the same
JP4535233B2 (en) Alicyclic tetracarboxylic dianhydride, process for producing the same, and polyimide
JPH08119939A (en) Production of highly pure ether type bismaleimide
JP4622233B2 (en) Method for producing diphenylsulfonetetracarboxylic dianhydride
JP3543585B2 (en) Method for producing 2,2 &#39;, 5,5&#39;, 6,6&#39;-hexafluorobiphenyl-3,3 &#39;, 4,4&#39;-tetracarboxylic acid precursor
JP3490407B2 (en) Method for producing halogen-containing aromatic carboxylic acid compound
JPH07118230A (en) Production of bismaleimide
KR20160108331A (en) Method for producing high purity 1,3-dialkyl cyclobutane-1,2,3,4-tetracarboxylic acid-1,2:3,4-di-anhydride
JPS5822113B2 (en) Method for producing bismaleimide
JP3812371B2 (en) Method for producing 3,4-dihydroxybenzonitrile
JP2006169177A (en) Tetraadamantane derivative and method for producing the same
JP4868104B2 (en) (Meth) acrylate compound of cyclobutanetetracarboxylic acid and process for producing the same
JPH0517400A (en) Production of high-purity carboxylic phenyl esters
WO2013015203A1 (en) Isopropyl 3-chloro-4-methylbenzoate and method for producing same
JPH0469132B2 (en)
CN112789261A (en) Aromatic tetracarboxylic acid compound
JPH0672950A (en) Fluoro-p-terphenyl derivative and its production
JPH04330035A (en) 4,4&#39;-bis(4-chlorobenzoyl)benzophenone and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A131 Notification of reasons for refusal

Effective date: 20090929

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20091124

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20091124

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20100615

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20101102

Free format text: JAPANESE INTERMEDIATE CODE: A02