JP2004262823A - Water-soluble n-oxyl compound, oxidation catalyst, and production method of oxide using the catalyst - Google Patents

Water-soluble n-oxyl compound, oxidation catalyst, and production method of oxide using the catalyst Download PDF

Info

Publication number
JP2004262823A
JP2004262823A JP2003054347A JP2003054347A JP2004262823A JP 2004262823 A JP2004262823 A JP 2004262823A JP 2003054347 A JP2003054347 A JP 2003054347A JP 2003054347 A JP2003054347 A JP 2003054347A JP 2004262823 A JP2004262823 A JP 2004262823A
Authority
JP
Japan
Prior art keywords
compound
alcohol
water
oxyl
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003054347A
Other languages
Japanese (ja)
Other versions
JP4566519B2 (en
Inventor
Hideo Tanaka
秀雄 田中
Yutaka Kameyama
豊 亀山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Original Assignee
Otsuka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP2003054347A priority Critical patent/JP4566519B2/en
Publication of JP2004262823A publication Critical patent/JP2004262823A/en
Application granted granted Critical
Publication of JP4566519B2 publication Critical patent/JP4566519B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a generally useful method capable of producing a higher order oxide than an alcohol in a high yield and high efficiency by conducting an oxidation reaction of the alcohol compound. <P>SOLUTION: The higher order oxide than the alcohol compound can be obtained by oxidizing the alcohol compound using an oxidizing agent in the presence of a water soluble N-oxyl compound or its reduced form compound. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、新規な水溶性N−オキシル化合物、酸化触媒およびそれを用いるアルコールの酸化方法に関する。本発明の方法によれば、アルコールを酸化することにより種々の有機化合物、例えば、アルデヒド化合物、ケトン化合物、ラクトン化合物等のアルコールより高次な酸化物を効率良く、高収率で製造することができる。
【0002】
【従来の技術】
アルコール化合物の酸化反応は有機合成分野では一般に利用範囲が広く数多くの方法が開発されている。
特に酸化触媒を用いる酸化反応は、その種類も豊富で数多くの有機合成に利用されている有用な官能基変換方法である。中でもN−オキシル化合物を酸化触媒とする方法はアルコールの選択的官能基変換方法として優れた方法であり、各種アルコールの酸化反応に利用されている。
従来、N−オキシル触媒を用いるアルコールの酸化反応は、有機溶媒又は含水有機溶媒中にて実施されている(例えば非特許文献1〜3参照)
〔非特許文献1〕有機合成協会誌1993年発行51巻48〜58頁
〔非特許文献2〕J.Organic Chemistry,1989,54,2970−2972
〔非特許文献3〕Tetrahedron Letters,1990,31,2177−2180
【0003】
【発明が解決しようとする課題】
しかしながら、これらの方法においては、塩化メチレン等の有害な有機溶媒を多量に用いることが不可欠であり、環境保全の面から好ましくない。しかも、目的物の収率も十分満足できるものではない。
また、水と有機溶媒との混合溶媒中、N−オキシル化合物の存在下、次亜塩素酸塩、次亜臭素酸塩等の次亜ハロゲン酸塩を用いてアルコールを酸化する方法も公知である(例えば特許文献1〜2参照)。しかしながら、この方法でも有機溶媒の使用は必須であり、環境保護の面からの根本的な改良が加えられているわけではない。加えて、有機溶媒に対する溶解が乏しい次亜塩素酸ナトリウム等の次亜ハロゲン酸塩を用いると、原料であるアルコールの種類によっては酸化反応が起こり難くなり、目的物の収率が著しく低下することがある。
また電解酸化反応は電気化学的に酸化反応を行うためクリーンな酸化反応として注目を集め、そのいくつかの反応が工業的スケールで行われている。
〔特許文献1〕特開平5−25078号公報
〔特許文献2〕特開平6−211827号公報
【0004】
従来アルコールの電解酸化法としては、有機溶媒若しくは含水有機溶媒中にて直接電解酸化法若しくはメディエーター(電子キャリヤー)を用いる間接電解酸化法(例えば非特許文献4参照)、水と水に混合しない有機溶媒との2層系での電解酸化法(例えば非特許文献5参照)等が一般的に行われている。
〔非特許文献4〕「有機電解合成」(鳥居滋著、1981年発行、第262〜273頁、講談社刊)
〔非特許文献5〕J.Org.Chem.,1991,56,2416−2421
これらの電解酸化法の多くの反応系では、電流を流し難い有機溶媒を用いるため、例えば溶媒にN,N−ジメチルホルムアミドを使用する場合には10〜50重量%の支持電解質を必要とするといったように、多量の支持電解質を用いなければならない。また、このように多量の支持電解質を使用するため、コストや廃棄物の問題のみならず、生成物の単離精製においても煩雑な操作が必要となってくる。また、メディエーターとして種々の金属触媒を利用する方法も知られているが、これらは、金属化合物のコストや後処理の問題が大きく、工業的に利用できるものは限られている。
【0005】
N−オキシル化合物はアルコール化合物の電解酸化反応の触媒として優れていることが報告されている(例えば非特許文献5参照)。しかしながら、文献中で紹介されている反応は何れも塩化メチレン/水の2層系酸化反応であり、環境上の問題より塩化メチレンが工業的に使用し難い今日ではこの反応を用いることは不可能である。
また、水溶媒中シリカゲルやポリマーに担時させたN−オキシル化合物を用いる酸化反応も報告されている(例えば特許文献3参照)。しかし、いずれの場合もあらかじめアルコールを当該担体に担時させる必要があり煩雑な操作を要求された。
〔特許文献3〕WO 01/66495
【0006】
本発明の課題は、新規な水溶性N−オキシル化合物、これを含有する酸化触媒を提供することにある。
また本発明の課題は、従来の製造方法に見られる欠点を克服し、高収率、高効率でアルコール化合物の酸化反応を行い、目的とするアルコールより高次な酸化物を製造し得る汎用的な製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、以下の発明に係る。
1.新規な水溶性N−オキシル化合物又はその還元型化合物。
2.新規な末端にアンモニウムイオンを有する水溶性N−オキシル化合物又はその還元型化合物。
3.水溶性N−オキシル化合物又はその還元型化合物からなる酸化触媒。
4.末端にアンモニウムイオンを有する水溶性N−オキシル化合物又はその還元型化合物からなる酸化触媒。
5.水溶性N−オキシル化合物又はその還元型化合物の存在下、アルコール化合物を酸化剤を用いて酸化してアルコールよりも高次な酸化物を得ることを特徴とする酸化物の製造方法。
6.水溶性N−オキシル化合物又はその還元型化合物の存在下、アルコール化合物を電解酸化してアルコールよりも高次な酸化物を得ることを特徴とする酸化物の製造方法。
【0008】
即ち本発明は、上記課題を解決するために、水溶媒中での酸化反応において高効率で作用しうる水溶性N−オキシル型酸化触媒を見いだすと同時に水溶性N−オキシル型酸化触媒を用いて水溶液中でアルコール化合物の酸化を行うという全く新しい酸化物の製法を開発した。
すなわち、電解酸化においては、電流効率の高い水溶液中で有機化合物の電解酸化反応を上記酸化触媒を用いて行うことにより、支持電解質の使用量の減少にとどまらず、目的物単離後の水溶液は、特に後処理を必要とすることなく再度触媒含有水溶液としてそのまま使用することが可能となる。
このように、有機化合物の酸化反応系で有機溶媒を使用せず水溶性N−オキシル型酸化触媒を用いアルコールを酸化することにより、目的とするアルデヒド、ケトン、ラクトン化合物等を高収率、高効率で製造しうるという全く新しい事実を見い出し、本発明を完成するに至った。勿論、実質的に問題とならない量の有機溶媒を使用することは差し支えない。
【0009】
【発明の実施の形態】
アルコールより高次な酸化物としては例えばアルデヒド、ケトン、ラクトン、カルボン酸エステル、カルボン酸化合物等を例示することができる。
アルコールの具体例としては、例えば、n−ブチルアルコール、n−ペンチルアルコール、2−クロロ−n−ペンチルアルコール、3−アセトキシ−n−ペンチルアルコール、2−ブチルアルコール、2−ペンチルアルコール、2−フェニル−1−エタノール、1−フェニル−1−エタノール等の置換基を有することのあるアルキルアルコール、ベンジルアルコール等のアラルキルアルコール、シクロヘキシルアルコール、シクロペンチルアルコール、4−メトキシシクロヘキシルアルコール等の置換基を有することのあるシクロアルコール、エチレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、3−メチルヘキサンジオール、3−アセトキシペンタンジオール、3−クロロ−2−メチルヘキサンジオール等のアルキルジオール、シクロヘキサン−1,2−ジエタノール等のシクロジオール等を挙げることができる。更に、トリオール類や4つ以上の水酸基を持つ化合物でも支障なく使用できる。これらのアルコールには、例えば、ハロゲン原子、ニトロ基、シアノ基、アリール基、低級アルキル基、アミノ基、モノ低級アルキルアミノ基、ジ低級アルキルアミノ基、メルカプト基、低級アルキルチオ基、アリールチオ基、ホルミルオキシ基、式RCOO−(Rは低級アルキル基又はアリール基を示す。)で表わされるアシルオキシ基、ホルミル基、式RCO−(Rは前記に同じ。)で表わされるアシル基、低級アルキルオキシ基、アリールオキシ基、カルボキシル基、低級アルキルオキシカルボニル基、アリールオキシカルボニル基等の1種又は2種以上が置換していても良い。ここで低級アルキル基としては炭素数1〜6のアルキル基、アリール基としてはフェニル、トリル、キシリル、ナフチル等を例示できる。これらのアルコールの中でも、アルキルアルコールやアルキルジオールが好ましく、炭素数4以上のアルキルアルコールやアルキルジオールが特に好ましい。
本発明において用いた原料アルコールより高次な酸化物とは、例えば原料アルコールとしてn−ブチルアルコールを使用した場合は、n−ブタナール又はn−ブタン酸n−ブチルエステルが得られ、1−フェニルエタノールを使用した場合は、アセトフェノンが得られ、1,4−ブタンジオールを使用した場合は、テトラヒドロ−2−フラノンが得られ、1,2−ビス(ヒドロキシメチル)シクロヘキサンを使用した場合は8−オキサビシクロ[4.3.0]ノナン−7−オン等が得られる。
【0010】
水溶性N−オキシル化合物としては、例えば下記の化合物(1)を例示することができる。
【0011】
【化1】

Figure 2004262823
【0012】
AはC−C15の直鎖もしくは分岐状アルキレン基で、それぞれC−C20のアルコキシ、アルコキシカルボニル、アルキルカルボニルオキシ、アシル基等の置換基を有していても良い。R、Rは水素原子、C−Cのアルキル基、RはO又はOH、Xは塩素、臭素、ヨウ素等のハロゲン原子を示す。nは5〜8の整数を示す。Qは3級アミン化合物又は含窒素複素環式化合物を示す。
【0013】
このN−オキシル化合物の製造方法としては種々の合成方法が考えられるが例えば、ω−4級アンモニウムアルキルカルボン酸とアミノ基を有するN−オキシル化合物との脱水縮合により製造できる。これらの原料は市販品を用いることも可能であるし、目的に応じて別途合成することも可能である。使用できるω−4級アンモニウムアルキルカルボン酸としては、カルボン酸基とω−アンモニウム基との間が直鎖もしくは分岐状のアルキレン基であるものが望ましい。またこのアルキレン基に適当な置換基を有していても良い。直鎖もしくは分岐状アルキレン基としては特に制限は無いが直鎖分の長さがC−C15程度が望ましく、C−C程度が特に好ましい。アミノ基を有するN−オキシル化合物としては、4−アミノ−2,2,6,6−テトラメチルピペリジン−N−オキシル等のアミノピペリジン−N−オキシル化合物、3−アミノ−2,2,5,5−テトラメチルピロリジン−N−オキシル等のピロリジン−N−オキシル化合物等が例示できるが、これ以外の7員環、8員環等中および大環状構造のN−オキシル化合物に付いてももちろん使用可能である。ω−4級アンモニウムアルキルカルボン酸とアミノ基を有するN−オキシル化合物との脱水縮合の際の縮合剤としては、一般に用いられる縮合剤はすべて使用可能であるが、ジシクロヘキシルカルボジイミド等のイミド系脱水縮合剤が使用しやすい。また、ペプチド合成の際使用されるHBTU,TBTU,PY−BOPの様な脱水縮合剤ももちろん使用可能である。
【0014】
また、ω−ハロゲノアルキルカルボン酸とアミノ基を有するN−オキシル化合物との脱水縮合により製造できる末端にハロゲン原子を有するN−オキシル化合物を予め合成し、その末端ハロゲン原子を3級アミン化合物あるいは含窒素複素環式化合物等で置換することにより得られる。これらの原料は市販品を用いることも可能であるし、目的に応じて別途合成することも可能である。アミノ基を有するN−オキシル化合物としては、前出のアミノ基を有するN−オキシル化合物を何れも使用できる。ω−ハロゲノアルキルカルボン酸としては塩素、臭素、ヨウ素化合物の何れも使用が可能であり、カルボン酸基とω−ハロゲンとの間が直鎖もしくは分岐状のアルキレン基であるものが望ましい。またこのアルキレン基に適当な置換基を有していても良い。直鎖もしくは分岐状アルキレン基としては特に制限は無いが直鎖分の長さがC−C15程度が望ましく、C−C程度が特に好ましい。ハロゲンと置換させる3級アミン化合物としてはトリメチルアミン、トリエチルアミン、ジエチルドデシルアミン等のトリアルキルアミン類(アルキル基はC−C20)、N−メチルピロリジン、N−メチルピペリジン、N−メチルモルホリン等のN−アルキル環状アミン類、N,N−ジメチルアニリン等のジアルキルアリールアミン類等が例示できる。ハロゲンと置換させる含窒素複素環式化合物としてはピリジン、ピコリン、ルチジン、キノリン等の含窒素芳香族化合物類、N−メチルイミダゾール、4−メチル−1,2,4−トリアゾール等の含窒素不飽和複素環式化合物を例示できる。
【0015】
酸化用触媒の使用量は各種反応条件等に応じて広い範囲から適宜選択できるが、通常水に難溶性のアルコール化合物に対し0.01〜50モル%、好ましくは1〜25モル%、さらに好ましくは3〜15モル%とすればよい。また、水溶性N−オキシル型酸化触媒は酸化反応系内でその還元体が酸化触媒に容易に転換出来るため、相当する還元体を使用することも可能である。水溶性N−オキシル型酸化触媒の還元型化合物はN−オキシルがN−ヒドロキシに変換された化合物であり、水溶性N−オキシル型酸化触媒を還元剤で還元するか、あるいは、電解還元することによって容易に得られる。このようにして得られた水溶性N−オキシル型酸化触媒あるいはその還元型化合物は水溶液中で酸化反応に供せられる。
【0016】
本発明において、酸化剤を用いたアルコールの酸化は、通常溶媒である水に、アルコールと無機系酸化剤を加えることにより行われる。
反応溶媒としては水を使用する。水の使用量は、アルコールやN−オキシル化合物の種類や使用量等に応じて広い範囲から適宜選択できるが、通常、アルコール1kg当たり、通常2〜2000リットル程度、好ましくは5〜100リットル程度とすればよい。水はそのまま中性域のものを使用できるが、適当なアルカリ剤を加えて、アルカリ性にして反応を行っても良い。該アルカリ剤としては、水溶液がアルカリ性を示すものであれば特に制限されないが、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウム等の炭酸アルカリ金属塩、炭酸ベリリウム、炭酸マグネシウム、炭酸カルシウム等の炭酸アルカリ土類金属塩、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム等の炭酸水素アルカリ金属塩、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、水酸化マグネシウム、水酸化カルシウム等の水酸化アルカリ土類金属塩等のアルカリ性無機塩等を挙げることができる。アルカリ剤は1種を単独で使用でき又は2種以上を併用できる。アルカリ剤の使用量は特に制限はなく、通常水に対し0.01重量%〜飽和量、好ましくは0.1重量%〜飽和量程度とするのがよい。なお、反応に悪影響を及ぼさない範囲で、水と混合可能な有機溶媒を併用することもできる。該有機溶媒としては、例えば、メタノール、エタノール、n−プロパノール、iso−プロパノール等の低級アルキルアルコール類、テトラヒドロフラン、ジオキサン、ジオキソラン等の環状エーテル類、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド等のアミド類、N−メチルピロリジノン等の環状アミド類、ジメチルスルホキシド等を挙げることができる。有機溶媒の使用量は、有機溶媒そのものの種類、使用量等に応じて適宜選択すれば良いが、通常水と有機溶媒との合計量の30重量%以下とするのがよい。
【0017】
酸化剤としては特に制限されず、N−オキシル化合物の還元体を酸化できる能力を有する公知の化合物をいずれも使用できるが、溶媒である水をアルカリ性域に調整した場合の溶解度や反応速度等を考慮すると、例えば、次亜塩素酸リチウム、次亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜臭素酸リチウム、次亜臭素酸ナトリウム、次亜臭素酸カリウム、次亜ヨウ素酸リチウム、次亜ヨウ素酸ナトリウム、次亜ヨウ素酸カリウム等の次亜ハロゲン酸アルカリ金属塩、次亜塩素酸カルシウム、次亜臭素酸カルシウム、次亜ヨウ素酸カルシウム等の次亜ハロゲン酸アルカリ土類金属塩、亜塩素酸リチウム、亜塩素酸ナトリウム、亜塩素酸カリウム、亜臭素酸リチウム、亜臭素酸ナトリウム、亜臭素酸カリウム等の亜ハロゲン酸アルカリ金属塩、亜塩素酸カルシウム、亜臭素酸カルシウム、亜ヨウ素酸カルシウム等の亜ハロゲン酸アルカリ土類金属塩、塩素酸リチウム、塩素酸ナトリウム、塩素酸カリウム、臭素酸リチウム、臭素酸ナトリウム、臭素酸カリウム、ヨウ素酸リチウム、ヨウ素酸ナトリウム、ヨウ素酸カリウム等のハロゲン酸アルカリ金属塩、塩素酸カルシウム、臭素酸カルシウム、ヨウ素酸カルシウム等のハロゲン酸アルカリ土類金属塩、塩素、臭素、ヨウ素等のハロゲン分子、過酸化水素、過酸化ナトリウム、過酸化カリウム等の過酸化水素誘導体とタングステン酸、タングステン酸ナトリウム等の金属酸化触媒との併用物、過蟻酸、過酢酸、m−クロロ過安息香酸等のカルボン酸過酸化物、分子上酸素、分子状酸素と金属触媒との酸化活性種等を挙げることができる。分子状酸素と組み合わされる金属触媒としては従来から知られているものをいずれも使用でき、例えば、塩化第2銅、臭化第2銅、ヨウ化第2銅等のハロゲン化第2銅、塩化ルテニウム、酸化ルテニウム、塩化ルテニウムトリフェニルホスフィン錯体等のルテニウム触媒等を挙げることができる。また、ここに列記した化合物を他の化合物を用いて反応系中で発生させることによっても使用できる。酸化剤は1種を単独で使用でき又は2種以上を併用できる。酸化剤の使用量は、反応生成物、反応条件等に応じて広い範囲から適宜選択すればよいが、アルコール1モルに対し20モルまで、好ましくは1〜10モルとすればよい。
【0018】
本発明において、酸化反応をより一層効率良く行うために、ハロゲン含有塩を反応系に加えてもよい。ハロゲン含有塩としては公知のものを使用でき、例えば、塩化リチウム、塩化ナトリウム、塩化カリウム、臭化リチウム、臭化ナトリウム、臭化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム等のハロゲン化アルカリ金属塩、塩化ベリリウム、塩化マグネシウム、塩化カルシウム、臭化ベリリウム、臭化マグネシウム、臭化カルシウム、ヨウ化ベリリウム、ヨウ化マグネシウム、ヨウ化カルシウム等のハロゲン化アルカリ土類金属塩、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウム等のハロゲン化アンモニウム塩、塩化テトラメチルアンモニウム、臭化テトラメチルアンモニウム、ヨウ化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、臭化テトラエチルアンモニウム、ヨウ化テトラエチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、ヨウ化テトラブチルアンモニウム等のハロゲン化テトラアルキルアンモニウム等を挙げることができる。ハロゲン含有塩は1種を単独で使用でき又は2種以上を併用できる。ハロゲン含有塩類の使用量は、通常水の使用量に対して0.01〜50重量%程度、好ましくは0.1〜25重量%程度とすればよい。
本反応は、通常−5〜100℃程度、好ましくは0〜60℃程度の温度下に行われ、5分〜20時間程度、好ましくは10分〜5時間程度で終了する。
【0019】
次に本発明の電解酸化法はアルコール化合物を、支持電解質の存在下、又は不存在下、水中に入れ通常の方法に従って電解酸化することにより行われる。
必要により用いられる支持電解質としては、水に可溶で通電が可能な塩であれば全て使用可能であるが、例えばハロゲン化アルカリ金属塩、ハロゲン化アルカリ土類金属塩、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ金属リン酸塩、アルカリ土類金属リン酸塩、ハロゲン化アンモニウム塩、ハロゲン化テトラアルキルアンモニウム塩、炭酸アンモニウム塩、リン酸アンモニウム塩、リン酸テトラアルキルアンモニウム塩、アルカリ金属硫酸塩、硫酸水素アルカリ金属塩、硫酸水素テトラアルキルアンモニウム塩、アルカリ土類金属硫酸塩、次亜塩素酸塩、過塩素酸金属塩、過塩素酸アンモニウム塩、スルホン酸アンモニウム塩、硼弗化金属塩、硼弗化アンモニウム塩等を例示できる。
【0020】
具体的には、塩化リチウム、塩化ナトリウム、塩化カリウム、臭化リチウム、臭化ナトリウム、臭化カリウム、沃化リチウム、沃化ナトリウム、沃化カリウム等のハロゲン化アルカリ金属塩、塩化ベリリウム、塩化マグネシウム、塩化カルシウム、臭化ベリリウム、臭化マグネシウム、臭化カルシウム、沃化ベリリウム、沃化マグネシウム、沃化カルシウム等のハロゲン化アルカリ土類金属塩、炭酸リチウム、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、炭酸ベリリウム、炭酸マグネシウム、炭酸カルシウム等のアルカリ土類金属炭酸塩、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム等のアルカリ金属炭酸水素塩、リン酸2水素ナトリウム、リン酸2ナトリウム、リン酸2水素カリウム、リン酸2カリウム等のアルカリ金属リン酸塩、リン酸マグネシウム、リン酸カルシウム等のアルカリ土類金属リン酸塩、塩化アンモニウム、臭化アンモニウム、沃化アンモニウム等のハロゲン化アンモニウム塩、塩化テトラメチルアンモニウム、臭化テトラメチルアンモニウム、沃化テトラメチルアンモニウム、塩化テトラエチルアンモニウム、臭化テトラエチルアンモニウム、沃化テトラエチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、沃化テトラブチルアンモニウム等のハロゲン化テトラアルキルアンモニウム、炭酸アンモニウム、炭酸水素アンモニウム等の炭酸アンモニウム塩、リン酸2水素アンモニウム、リン酸2アンモニウム等のリン酸アンモニウム塩、リン酸2水素テトラエチルアンモニウム、リン酸2水素テトラブチルアンモニウム等のリン酸テトラアルキルアンモニウム塩、硫酸リチウム、硫酸ナトリウム、硫酸カリウム等のアルカリ金属硫酸塩、硫酸水素リチウム、硫酸水素ナトリウム、硫酸水素カリウム等の硫酸水素アルカリ金属塩、硫酸水素テトラエチルアンモニウム、硫酸水素テトラブチルアンモニウム等の硫酸水素テトラアルキルアンモニウム塩、硫酸マグネシウム、硫酸カルシウム等のアルカリ土類金属硫酸塩、次亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜塩素酸カルシウム等の次亜塩素酸塩、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸マグネシウム等の過塩素酸金属塩、過塩素酸アンモニウム、過塩素酸テトラエチルアンモニウム、過塩素酸テトラブチルアンモニウム等の過塩素酸アンモニウム塩、テトラブチルアンモニウムトシレート等のスルホン酸アンモニウム塩、硼弗化リチウム、硼弗化ナトリウム等の硼弗化金属塩、硼弗化テトラエチルアンモニウム、硼弗化テトラブチルアンモニウム等の硼弗化アンモニウム塩等を挙げることができる。これらの中でも、ハロゲン化アルカリ金属塩、ハロゲン化アルカリ土類金属塩等が好ましい。これらの支持電解質は1種を単独で使用でき又は必要に応じ2種以上を併用できる。支持電解質の使用量は各種反応条件に応じて広い範囲から適宜選択できるが、通常、水溶液として0.01重量%〜飽和濃度程度、好ましくは0.1〜20重量%程度の濃度になるように使用すればよい。
【0021】
本電解反応における水の使用量は特に制限されず、各種反応条件等に応じて適宜選択すればよいが、通常原料化合物1kgあたり、2〜2000リットル程度、好ましくは5〜100リットル程度とすればよい。水と混合可能な有機溶媒が混入していても反応に支障はない。支障をきたさない溶媒としては、メタノール、エタノール、n−プロパノール、i−プロパノール等の低級アルキルアルコール類、テトラヒドロフラン、ジオキサン、ジオキソラン等の環状エーテル類、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド等のアミド類、N−メチルピロリジノン等の環状アミド類、ジメチルスルホキシド等が挙げられる。
【0022】
本電解反応は、通常−5〜100℃程度、好ましくは0〜60℃程度の温度下に実施される。
本発明の方法による電解酸化においては、通常の電解反応に用いられる電極を広く利用できる。具体的には、陽極材料として、白金、ステンレス、ニッケル、酸化鉛、炭素、酸化鉄、チタン等が、また陰極材料としては、白金、スズ、アルミニウム、ステンレス、亜鉛、鉛、銅、炭素等を使用できるが、好ましくは、陽極材料として白金、炭素、ステンレス等を、陰極材料として白金、ステンレス、銅、炭素等を使用できる。
本発明の電解酸化は陽極と陰極とを隔膜で分離してもよいが、特に分離する必要はなく、単一槽で行えることをも特徴としている。
本電解反応は、定電流電解法及び定電圧電解法のいずれをも採用することができるが、装置や操作の簡便さの点で定電流電解法を採用するのが好ましい。電解は、直流又は交流電解が可能であるが、電流方向を1〜30秒毎に切り替えて行うこともできる。電流密度は、通常1〜500mA/cm、好ましくは1〜50mA/cmの範囲とするのが良い。電気量は用いる電解槽の形状、出発物質の種類、用いる溶媒の種類等により異なり一概には言えないが、通常2〜20F/モル程度、好ましくは2〜8F/モル程度とするのがよく、上記電気量を通電すれば反応は完結する。
【0023】
本酸化反応では、触媒、支持電解質が水溶性であり且つ水溶液での反応を行っているため、アルコールの酸化終了後、生じた目的物を濾過、濃縮、乾燥もしくは抽出等で容易に分離することができる。分離後の水溶液はそのまま次の酸化反応に供することも可能である。
【0024】
【実施例】
以下に実施例を挙げ、本発明を具体的に説明するが、何らこれに限定されるものではない。
【0025】
製造例1A
100mLナスフラスコに6−トリエチルアンモニウムヘキサン酸ブロミド 248mgをはかり取り、塩化メチレン 10mlを加え十分に撹拌する。このものに4−アミノ−2,2,6,6−テトラメチルピペリジン−N−オキシル 257mgおよびジシクロヘキシルカルボジイミド(DCC,414mg)を加え室温下6時間撹拌した。撹拌終了後、反応液を減圧濃縮し、残査に水(10ml)を加え不溶分を濾別した。濾液を減圧濃縮し、残査をさらに減圧乾燥すると目的化合物Aが388mg得られた(収率66%)。得られた化合物Aの構造式および1HNMRは以下の通りである。
【0026】
【化2】
Figure 2004262823
【0027】
1HNMR(200MHz,CDCl) δ 1.15〜1.46(m,23H),1.52〜1.89(m,6H),2.20(t,J=7.2Hz,2H),2.40(t,J=7.2Hz,2H),3.08〜3.32(m,9H),4.00〜4.36(m,1H).
【0028】
製造例1B
4−(6−ブロモヘキサンアミド)―2,2,5,5−テトラメチルピペリジン−N−オキシル 186mg(0.53mmol)を100mlのナスフラスコに秤り取り、このものにエタノール2mlを加えた。これにトリエチルアミン 1mlを加えアルゴン雰囲気下24時間加熱還流を行った。反応終了後、反応混合物を減圧濃縮し残査をエーテル 10mlにて10回洗浄した。得られた残査を乾燥すると目的化合物Aが170mg(収率70%)で得られた。得られた化合物Aの1HNMRは製造例1Aと一致した。
【0029】
製造例2
4−(6−ブロモヘキサンアミド)―2,2,5,5−テトラメチルピペリジン−N−オキシル 258mg(0.74mmol)を100mlのナスフラスコに秤り取り、このものにエタノール 2mlを加えた。これにN,N−ジエチル−n−ドデシルアミン 0.5mlを加えアルゴン雰囲気下24時間加熱還流を行った。反応終了後、反応混合物を減圧濃縮し残査をエーテル 10mlにて10回洗浄した。得られた残査を乾燥すると目的化合物Bが353mg(収率88%)で得られた。
【0030】
【化3】
Figure 2004262823
【0031】
1HNMR(200MHz,CDCl) δ 0.78(t,J=6.1Hz,3H),1.05(d,J=3.2Hz,12H),1.11〜1.35(m,23H),1.48〜1.72(m,8H),2.09(t,J=7.2Hz,2H),2.92(s,6H),3.10〜3.27(m,2H),3.91〜4.08(m,1H).
【0032】
製造例3
4−(6−ブロモヘキサンアミド)―2,2,5,5−テトラメチルピペリジン−N−オキシル 258mg(0.74mmol)を100mlのナスフラスコに秤り取り、このものにエタノール 2mlを加えた。これにピリジン 0.5mlを加えアルゴン雰囲気下24時間加熱還流を行った。反応終了後、反応混合物を減圧濃縮し残査をエーテル 10mlにて10回洗浄した。得られた残査を乾燥すると目的化合物Cが278mg(収率98%)で得られた。
【0033】
【化4】
Figure 2004262823
【0034】
1HNMR(200MHz,CDCl) δ 1.16(d,J=3.2Hz,12H),1.23〜1.43(m,4H),1.63〜1.82(m,4H),1.93〜2.03(m,4H),2.38(t,J=7.0Hz,2H),3.96〜4.14(m,1H)4.62(t,J=7.0Hz,2H),8.10(t,J=7.0Hz,2H),8.58(t,J=7.6Hz,1H),8.99(d,J=6.0Hz,2H).
【0035】
製造例4
4−(6−ブロモヘキサンアミド)―2,2,5,5−テトラメチルピペリジン−N−オキシル 340mg(0.98mmol)を100mlのナスフラスコに秤り取り、このものにエタノール 3mlを加えた。これにN−メチルイミダゾール 1mlを加えアルゴン雰囲気下24時間加熱還流を行った。反応終了後、反応混合物を減圧濃縮し残査をエーテル 10mlにて10回洗浄した。得られた残査を乾燥すると目的化合物Dが409mg(収率97%)で得られた。
【0036】
【化5】
Figure 2004262823
【0037】
1HNMR(200MHz,CDCl) δ 1.16(m,12H),1.33〜1.50(m,4H),1.57〜1.76(m,4H),1.85〜1.96(m,2H),2.18(t,J=7.20Hz,2H),3.90(s,3H)4.01〜4.12(m,1H),4.19(t,J=7.2Hz,2H),6.95(s,1H),7.60(s,1H),8.92(s,1H).
【0038】
製造例5(化合物Aの還元型触媒の製造)
化合物Aの170mg(0.38mmol)を100mlのナスフラスコに秤り取り、塩化メチレン 5mlを加え十分に撹拌する。このものに1,2−ジフェニルヒドラジン 83.7mg(0.45mmol)を加えアルゴン雰囲気下室温にて3時間撹拌した。反応終了後、反応混合物を減圧濃縮し、残査を酢酸エチル10mlにて10回洗浄した後、乾燥を行うと目的化合物E(化合物Aの還元型,130.7mg,76%)が得られた。
【0039】
【化6】
Figure 2004262823
【0040】
1HNMR(200MHz,CDCl) δ 1.05(d,J=3.6Hz,12H),1.11〜1.21(m,10H),1.21〜1.37(m,6H),1.48〜1.68(m,6H),2.09(t,J=7.4Hz,2H),3.03〜3.25(m,8H),3.88〜4.06(m,1H).
【0041】
実施例1
1−(p−クロロフェニル)エチルアルコール(109mg,0.7mmol)及び化合物A(30.1mg,0.07mmol)を秤り取り、次にイオン交換水(8ml)を加え、十分に撹拌する。この物に2枚の白金電極(1.5×1.0cm)を付し、室温下激しく撹拌しながら電流を30mAに保ちながら1.5時間電解酸化反応を行う(2.5F/mol)。反応終了後、反応液を酢酸エチルにて抽出した後、減圧濃縮、シリカゲルカラム精製を行うと1−(p−クロロフェニル)エチル−1−オン(98.1mg,収率91%)が得られた。得られたケトン体の1HNMRは以下の通りである。
1HNMR(200MHz,CDCl) δ 2.60(s,3H),7.44(d,J=8.3Hz,2H),7.90(d,J=8.4Hz,2H)
【0042】
実施例2〜5
実施例1において酢酸エチル抽出後に得られた水溶液をそのまま用いて4回(合計5サイクル)電解酸化反応を行った結果を下記に示す。後処理は実施例1と同様にし、抽出後の水層をそのまま繰り返し使用した。
【0043】
【表1】
Figure 2004262823
【0044】
実施例6〜12
電流と時間を以下の条件に変えた以外は実施例1と同様の反応を行った結果を示す。
【0045】
【表2】
Figure 2004262823
【0046】
実施例13〜22
電極を以下の電極に変えた以外は実施例1と同様の反応を行った結果を示す。
【0047】
【表3】
Figure 2004262823
【0048】
実施例23〜28
イオン交換水に支持電解質を加えて実施例1と同様の反応を行った結果を示す。なお、支持電解質は水溶液として5重量%となるように調整した。
【0049】
【表4】
Figure 2004262823
【0050】
実施例29〜33
原料アルコールを以下のアルコールに変えた以外は実施例1と同様の反応を行った結果を以下に示す。
【0051】
【表5】
Figure 2004262823
【0052】
実施例34
1,5−ペンタンジオール1b(144mg,1.00mmol)及び化合物A(43mg)を秤り取り、イオン交換水(5ml)を加え、十分に撹拌する。この物に2枚の白金電極(1.5×1.0cm)を付し、室温下激しく撹拌しながら電流を30mAに保ちながら2.7時間電解酸化反応を行う(3F/mol)。反応終了後、反応混合物を酢酸エチルにて抽出した後減圧下濃縮する。得られた残査をシリカゲルカラム(酢酸エチル/ヘキサン=7/1)を用いて精製するとδ−ラクトン2b(114mg,収率85%)が得られる。得られたラクトン体の1HNMRは以下の通りである。
1HNMR(200MHz,CDCl) δ 1.15〜2.61(m,10H),3.93(d,J=8.8Hz,2H),4.18(dd,J=4.2,8.0Hz,2H)。
【0053】
【化7】
Figure 2004262823
【0054】
実施例35
ジオール化合物1c(144mg,1.00mmol)及び化合物A(30.0mg,0.07mmol)を秤り取り、水5mlを加えて均一溶液とする。このものに2枚の白金電極(1.5×1.0cm)を付し、室温下激しく撹拌しながら電流を30mAに保ちながら4時間電解酸化反応を行う(4.5F/mol)。反応終了後、反応混合物を酢酸エチルにて抽出した後減圧下溶媒を留去する。得られた残査をシリカゲルカラム(酢酸エチル/ヘキサン=7/1)を用いて精製するとラクトン化合物2c(120mg,収率90%)が得られる。得られたケトン体の1HNMRは以下の通りである。
1HNMR(200MHz,CDCl) δ 1.2〜2.6(m,10H),3.9(d,J=8.8Hz,1H),4.2(dd,J=4.2,8.0Hz,1H)。
【0055】
【化8】
Figure 2004262823
【0056】
実施例36〜38
原料アルコールを以下のジオールに変えた以外は実施例34と同様の反応を行った結果を以下に示す。
【0057】
【表6】
Figure 2004262823
【0058】
実施例39(還元型化合物Eを用いた実施例)
1−(p−クロロフェニル)エチルアルコール(110mg,0.7mmol)及び化合物E(30.0mg,0.07mmol)を秤り取り、次にイオン交換水(8ml)を加え、十分に撹拌する。このものに2枚の白金電極(1.5×1.0cm)を付し、室温下激しく撹拌しながら電流を30mAに保ちながら1.8時間電解酸化反応を行う(3F/mol)。反応終了後、反応液を酢酸エチルにて抽出した後、減圧濃縮、シリカゲルカラム精製を行うと1−(p−クロロフェニル)エチル−1−オン(100.1mg,収率93%)が得られた。得られたケトン体の1HNMRは実施例1と一致した。
【0059】
実施例40(次亜塩素酸ナトリウム水溶液による酸化)
1−(p−クロロフェニル)エチルアルコール(110mg,0.7mmol)及び化合物A(30.0mg,0.07mmol)を秤り取り、7%重曹水溶液5mlを加えて十分に攪拌する。この溶液を氷浴に浸し、1〜2℃まで冷却する。このものに、別途調整した次亜塩素酸ナトリウム溶液(1.1mmol活性酸素含有の5ml水溶液)を冷却したものをゆっくりと滴下する。滴下終了後、反応液をその温度で30分攪拌した。攪拌終了後、反応混合物を酢酸エチルにて抽出を行い、得られた有機層を減圧下濃縮した後、シリカゲルカラムにより精製を行うと1−(p−クロロフェニル)エチル−1−オン(99mg,収率92%)が得られた。得られたケトン体の1HNMRは実施例1と一致した。
【0060】
実施例41〜45
原料アルコール化合物を以下に代えた以外は実施例40と同様の反応を行った。結果を以下の表に示す。得られた化合物のNMRは実施例29〜33の化合物と一致した。
【0061】
【表7】
Figure 2004262823
【0062】
実施例46〜48
原料アルコール化合物を以下に代えた以外は実施例40と同様の反応を行った。結果を以下の表に示す。得られた化合物のNMRは実施例36〜38の化合物と一致した。
【0063】
【表8】
Figure 2004262823
【0064】
【発明の効果】
本発明においては、水溶性N−オキシル型化合物及びこれを用いた酸化触媒を新しく開発することが可能となった。
本発明によれば、原料になるアルコールの種類に関係なく、非常に簡便な反応操作で目的物を高収率で製造することができ、環境に悪影響を及ぼす恐れがある有機溶媒を使用する必要がなく、あらゆるタイプの工業生産に適応可能な、新規なアルコールの酸化方法を提供することができる。
また本発明によれば、従来の酸化法に見られる欠点を克服し、アルコール化合物を水中にて酸化し、高収率、高効率で目的とする、例えばアルデヒド、ケトン、ラクトン、カルボン酸エステル、カルボン酸化合物等のアルコールよりも高次な酸化物を製造することが可能である。
また、電解酸化反応においては回収される水溶液は酸化触媒および支持電解質を含み、その溶液は性質上再処理されることなくそのままリサイクルされるため、実質的に電気のみを用いたクリーンな酸化反応の実現が可能となった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel water-soluble N-oxyl compound, an oxidation catalyst, and a method for oxidizing alcohol using the same. According to the method of the present invention, various organic compounds, for example, aldehyde compounds, ketone compounds, higher-order oxides than alcohols such as lactone compounds can be efficiently produced in high yield by oxidizing alcohols. it can.
[0002]
[Prior art]
The oxidation reaction of alcohol compounds is generally widely used in the field of organic synthesis, and many methods have been developed.
In particular, an oxidation reaction using an oxidation catalyst is a useful method for converting a functional group which is abundant in kind and utilized in many organic syntheses. Among them, a method using an N-oxyl compound as an oxidation catalyst is an excellent method as a method for selectively converting alcohol into a functional group, and is used for an oxidation reaction of various alcohols.
Conventionally, an alcohol oxidation reaction using an N-oxyl catalyst has been carried out in an organic solvent or a water-containing organic solvent (for example, see Non-Patent Documents 1 to 3).
[Non-Patent Document 1] Journal of the Society of Organic Synthesis, 1993, 51: 48-58
[Non-Patent Document 2] Organic Chemistry, 1989, 54, 2970-2972.
[Non-Patent Document 3] Tetrahedron Letters, 1990, 31, 2177-2180
[0003]
[Problems to be solved by the invention]
However, in these methods, it is essential to use a large amount of a harmful organic solvent such as methylene chloride, which is not preferable from the viewpoint of environmental conservation. In addition, the yield of the target product is not sufficiently satisfactory.
Further, a method of oxidizing an alcohol using a hypohalite such as hypochlorite or hypobromite in the presence of an N-oxyl compound in a mixed solvent of water and an organic solvent is also known. (For example, see Patent Documents 1 and 2). However, even in this method, the use of an organic solvent is indispensable, and fundamental improvement from the viewpoint of environmental protection has not been added. In addition, when a hypohalite such as sodium hypochlorite which is poorly soluble in an organic solvent is used, an oxidation reaction hardly occurs depending on a kind of alcohol as a raw material, and a yield of a target product is significantly reduced. There is.
In addition, the electrolytic oxidation reaction is attracting attention as a clean oxidation reaction due to electrochemical oxidation reaction, and some of the reactions are performed on an industrial scale.
[Patent Document 1] JP-A-5-25078
[Patent Document 2] JP-A-6-211827
[0004]
Conventional electrolytic oxidation methods for alcohol include direct electrolytic oxidation method in an organic solvent or a water-containing organic solvent or indirect electrolytic oxidation method using a mediator (electron carrier) (for example, see Non-Patent Document 4), water and an organic solvent that is not mixed with water. Electrolytic oxidation in a two-layer system with a solvent (for example, see Non-Patent Document 5) and the like are generally performed.
[Non-Patent Document 4] "Organic Electrosynthesis" (Shigeru Torii, 1981, pp. 262 to 273, published by Kodansha)
[Non-Patent Document 5] Org. Chem. , 1991, 56 , 2416-2421
In many of the reaction systems of these electrolytic oxidation methods, since an organic solvent through which a current hardly flows is used, for example, when N, N-dimethylformamide is used as a solvent, a supporting electrolyte of 10 to 50% by weight is required. As such, a large amount of supporting electrolyte must be used. In addition, since such a large amount of supporting electrolyte is used, complicated operations are required not only in terms of cost and waste, but also in isolation and purification of a product. In addition, methods using various metal catalysts as mediators are also known. However, these methods have great problems of cost of metal compounds and post-treatment, and those which can be industrially used are limited.
[0005]
It has been reported that an N-oxyl compound is excellent as a catalyst for an electrolytic oxidation reaction of an alcohol compound (for example, see Non-Patent Document 5). However, any of the reactions introduced in the literature is a two-layer oxidation reaction of methylene chloride / water, and it is impossible to use this reaction today because methylene chloride is difficult to use industrially due to environmental problems. It is.
An oxidation reaction using an N-oxyl compound supported on silica gel or a polymer in an aqueous solvent has also been reported (for example, see Patent Document 3). However, in each case, it was necessary to carry alcohol in advance on the carrier, and a complicated operation was required.
[Patent Document 3] WO 01/66495
[0006]
An object of the present invention is to provide a novel water-soluble N-oxyl compound and an oxidation catalyst containing the same.
Further, the object of the present invention is to overcome the drawbacks found in the conventional production method, perform the oxidation reaction of the alcohol compound with high yield and high efficiency, and produce a general-purpose oxide capable of producing a higher oxide than the target alcohol. To provide a simple manufacturing method.
[0007]
[Means for Solving the Problems]
The present invention relates to the following inventions.
1. A novel water-soluble N-oxyl compound or a reduced compound thereof.
2. A novel water-soluble N-oxyl compound having an ammonium ion at a terminal or a reduced compound thereof.
3. An oxidation catalyst comprising a water-soluble N-oxyl compound or a reduced compound thereof.
4. An oxidation catalyst comprising a water-soluble N-oxyl compound having an ammonium ion at a terminal or a reduced compound thereof.
5. A method for producing an oxide, comprising oxidizing an alcohol compound using an oxidizing agent in the presence of a water-soluble N-oxyl compound or a reduced compound thereof to obtain an oxide higher in order than alcohol.
6. A method for producing an oxide, characterized in that an alcohol compound is electrolytically oxidized in the presence of a water-soluble N-oxyl compound or a reduced compound thereof to obtain an oxide having a higher order than alcohol.
[0008]
That is, in order to solve the above-mentioned problems, the present invention finds a water-soluble N-oxyl-type oxidation catalyst capable of acting with high efficiency in an oxidation reaction in a water solvent, and at the same time, uses a water-soluble N-oxyl-type oxidation catalyst. We have developed a completely new method for producing oxides by oxidizing alcohol compounds in aqueous solution.
That is, in the electrolytic oxidation, by performing the electrolytic oxidation reaction of the organic compound in an aqueous solution having a high current efficiency using the oxidation catalyst, the aqueous solution after isolation of the target substance is not limited to the reduction in the amount of the supporting electrolyte used. In particular, it is possible to use the catalyst-containing aqueous solution again without any need for post-treatment.
As described above, by oxidizing an alcohol using a water-soluble N-oxyl type oxidation catalyst without using an organic solvent in an organic compound oxidation reaction system, a target aldehyde, ketone, lactone compound and the like can be obtained in high yield and high yield. They have found a completely new fact that they can be manufactured with high efficiency, and have completed the present invention. Of course, it is possible to use an organic solvent in an amount that does not substantially cause a problem.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Examples of oxides higher than alcohols include aldehydes, ketones, lactones, carboxylic esters, and carboxylic compounds.
Specific examples of the alcohol include, for example, n-butyl alcohol, n-pentyl alcohol, 2-chloro-n-pentyl alcohol, 3-acetoxy-n-pentyl alcohol, 2-butyl alcohol, 2-pentyl alcohol, 2-phenyl Alkyl alcohol which may have a substituent such as -1-ethanol, 1-phenyl-1-ethanol, aralkyl alcohol such as benzyl alcohol, cyclohexyl alcohol, cyclopentyl alcohol, and 4-methoxycyclohexyl alcohol. Certain cycloalcohols, ethylene glycol, butanediol, pentanediol, hexanediol, heptanediol, 3-methylhexanediol, 3-acetoxypentanediol, 3-chloro-2-methylhexa Alkyl diols such as diol, a cycloalkyl diol such as cyclohexane-1,2-diethanol, and the like. Further, triols and compounds having four or more hydroxyl groups can be used without any problem. These alcohols include, for example, halogen atom, nitro group, cyano group, aryl group, lower alkyl group, amino group, mono-lower alkylamino group, di-lower alkylamino group, mercapto group, lower alkylthio group, arylthio group, formyl An oxy group, an acyloxy group represented by the formula RCOO- (R represents a lower alkyl group or an aryl group), a formyl group, an acyl group represented by the formula RCO- (R is the same as described above), a lower alkyloxy group, One or more of an aryloxy group, a carboxyl group, a lower alkyloxycarbonyl group, an aryloxycarbonyl group and the like may be substituted. Here, the lower alkyl group includes an alkyl group having 1 to 6 carbon atoms, and the aryl group includes phenyl, tolyl, xylyl, naphthyl and the like. Among these alcohols, alkyl alcohols and alkyl diols are preferable, and alkyl alcohols and alkyl diols having 4 or more carbon atoms are particularly preferable.
The oxide higher than the raw material alcohol used in the present invention is, for example, when n-butyl alcohol is used as the raw material alcohol, n-butanal or n-butanoic acid n-butyl ester is obtained, and 1-phenylethanol Is used, acetophenone is obtained, when 1,4-butanediol is used, tetrahydro-2-furanone is obtained, and when 1,2-bis (hydroxymethyl) cyclohexane is used, 8-oxa is used. Bicyclo [4.3.0] nonan-7-one and the like are obtained.
[0010]
As the water-soluble N-oxyl compound, for example, the following compound (1) can be exemplified.
[0011]
Embedded image
Figure 2004262823
[0012]
A is C 1 -C Fifteen Is a linear or branched alkylene group of 1 -C 20 May have a substituent such as alkoxy, alkoxycarbonyl, alkylcarbonyloxy, and acyl. R 1 , R 2 Is a hydrogen atom, C 1 -C 4 An alkyl group of R 3 Is O Alternatively, OH and X each represent a halogen atom such as chlorine, bromine, and iodine. n shows the integer of 5-8. Q represents a tertiary amine compound or a nitrogen-containing heterocyclic compound.
[0013]
As a method for producing the N-oxyl compound, various synthetic methods can be considered. For example, the N-oxyl compound can be produced by dehydration condensation of an ω-quaternary ammonium alkylcarboxylic acid and an N-oxyl compound having an amino group. As these raw materials, commercially available products can be used, or they can be separately synthesized according to the purpose. As the ω-quaternary ammonium alkylcarboxylic acid that can be used, a linear or branched alkylene group between the carboxylic acid group and the ω-ammonium group is desirable. The alkylene group may have a suitable substituent. The straight-chain or branched alkylene group is not particularly limited, but the length of the straight-chain portion is C 1 -C Fifteen Degree is desirable, C 2 -C 8 The degree is particularly preferred. Examples of the N-oxyl compound having an amino group include aminopiperidine-N-oxyl compounds such as 4-amino-2,2,6,6-tetramethylpiperidine-N-oxyl, and 3-amino-2,2,5, Examples thereof include pyrrolidine-N-oxyl compounds such as 5-tetramethylpyrrolidine-N-oxyl. Of course, it can also be used for other 7-membered rings, 8-membered rings and other medium- and macrocyclic N-oxyl compounds. It is possible. As the condensing agent for the dehydration condensation of the ω-quaternary ammonium alkyl carboxylic acid and the N-oxyl compound having an amino group, all commonly used condensing agents can be used, but imide dehydration condensation such as dicyclohexylcarbodiimide can be used. Easy to use agent. Of course, dehydrating condensing agents such as HBTU, TBTU and PY-BOP used in peptide synthesis can also be used.
[0014]
Further, an N-oxyl compound having a halogen atom at a terminal, which can be produced by dehydration condensation of an ω-halogenoalkylcarboxylic acid and an N-oxyl compound having an amino group, is previously synthesized, and the terminal halogen atom is a tertiary amine compound or a tertiary amine compound. It is obtained by substitution with a nitrogen heterocyclic compound or the like. As these raw materials, commercially available products can be used, or they can be separately synthesized according to the purpose. As the N-oxyl compound having an amino group, any of the aforementioned N-oxyl compounds having an amino group can be used. As the ω-halogenoalkylcarboxylic acid, any of chlorine, bromine and iodine compounds can be used, and one having a linear or branched alkylene group between the carboxylic acid group and the ω-halogen is preferable. The alkylene group may have a suitable substituent. The straight-chain or branched alkylene group is not particularly limited, but the length of the straight-chain portion is C 1 -C Fifteen Degree is desirable, C 2 -C 8 The degree is particularly preferred. Examples of the tertiary amine compound to be substituted with halogen include trialkylamines such as trimethylamine, triethylamine, and diethyldodecylamine (where the alkyl group is 1 -C 20 ), N-methylpyrrolidine, N-methylpiperidine, N-methylmorpholine and the like, N-alkyl cyclic amines such as N, N-dimethylaniline and the like. Examples of the nitrogen-containing heterocyclic compound to be substituted with halogen include nitrogen-containing aromatic compounds such as pyridine, picoline, lutidine, and quinoline, and nitrogen-containing unsaturated compounds such as N-methylimidazole and 4-methyl-1,2,4-triazole. Heterocyclic compounds can be exemplified.
[0015]
The amount of the oxidizing catalyst to be used can be appropriately selected from a wide range according to various reaction conditions and the like, but is usually 0.01 to 50 mol%, preferably 1 to 25 mol%, more preferably 1 to 25 mol%, based on the alcohol compound having low water solubility. May be 3 to 15 mol%. Further, since a reduced form of a water-soluble N-oxyl type oxidation catalyst can be easily converted into an oxidation catalyst in an oxidation reaction system, a corresponding reduced form can be used. The reduced compound of the water-soluble N-oxyl-type oxidation catalyst is a compound in which N-oxyl is converted to N-hydroxy, and the water-soluble N-oxyl-type oxidation catalyst must be reduced with a reducing agent or electrolytically reduced. Easily obtained by The water-soluble N-oxyl-type oxidation catalyst or its reduced compound thus obtained is subjected to an oxidation reaction in an aqueous solution.
[0016]
In the present invention, alcohol oxidation using an oxidizing agent is usually performed by adding an alcohol and an inorganic oxidizing agent to water, which is a solvent.
Water is used as a reaction solvent. The amount of water used can be appropriately selected from a wide range depending on the type and amount of the alcohol or N-oxyl compound, but is usually about 2 to 2000 liters, preferably about 5 to 100 liters per kg of alcohol. do it. Water in a neutral region can be used as it is, but the reaction may be carried out by adding an appropriate alkali agent to make it alkaline. The alkaline agent is not particularly limited as long as the aqueous solution shows alkalinity, and examples thereof include alkali metal carbonates such as lithium carbonate, sodium carbonate and potassium carbonate, and alkaline earth carbonates such as beryllium carbonate, magnesium carbonate and calcium carbonate. Metal salts, alkali metal hydrogencarbonates such as lithium hydrogencarbonate, sodium hydrogencarbonate and potassium hydrogencarbonate, alkali metal hydroxides such as lithium hydroxide, sodium hydroxide and potassium hydroxide, magnesium hydroxide, calcium hydroxide, etc. And alkaline inorganic salts such as alkaline earth metal hydroxides. One alkali agent can be used alone, or two or more alkali agents can be used in combination. The amount of the alkali agent used is not particularly limited, and is usually about 0.01% by weight to a saturated amount, preferably about 0.1% by weight to a saturated amount based on water. In addition, an organic solvent that can be mixed with water can be used in combination as long as the reaction is not adversely affected. Examples of the organic solvent include lower alkyl alcohols such as methanol, ethanol, n-propanol and iso-propanol; cyclic ethers such as tetrahydrofuran, dioxane and dioxolan; amides such as dimethylformamide, diethylformamide and dimethylacetamide; Examples include cyclic amides such as N-methylpyrrolidinone, dimethyl sulfoxide, and the like. The amount of the organic solvent to be used may be appropriately selected according to the kind of the organic solvent itself, the amount of the organic solvent to be used, and the like, but is usually preferably 30% by weight or less of the total amount of water and the organic solvent.
[0017]
The oxidizing agent is not particularly limited, and any known compound having the ability to oxidize a reduced form of the N-oxyl compound can be used. However, the solubility and the reaction rate when water as a solvent is adjusted to an alkaline region may be used. Considering, for example, lithium hypochlorite, sodium hypochlorite, potassium hypochlorite, lithium hypobromite, sodium hypobromite, potassium hypobromite, lithium hypoiodite, hypoiodine Alkali metal hypohalites such as sodium oxalate and potassium hypoiodite, alkaline earth metal hypohalites such as calcium hypochlorite, calcium hypobromite, calcium hypoiodite, chlorite Alkali metal halides such as lithium, sodium chlorite, potassium chlorite, lithium bromite, sodium bromite and potassium bromite Alkaline earth metal salts such as calcium chlorite, calcium bromate, calcium iodate, lithium chlorate, sodium chlorate, potassium chlorate, lithium bromate, sodium bromate, potassium bromate, iodine Alkali metal halides such as lithium oxide, sodium iodate and potassium iodate; alkaline earth metal salts such as calcium chlorate, calcium bromate and calcium iodate; halogen molecules such as chlorine, bromine and iodine; Combinations of hydrogen peroxide derivatives such as hydrogen oxide, sodium peroxide and potassium peroxide with metal oxidation catalysts such as tungstic acid and sodium tungstate, and carboxylic acid peroxides such as formic acid, peracetic acid and m-chloroperbenzoic acid Examples include oxides, molecular oxygen, and active species for oxidation of molecular oxygen and metal catalyst. . As the metal catalyst combined with molecular oxygen, any of the conventionally known metal catalysts can be used, for example, cupric halides such as cupric chloride, cupric bromide, cupric iodide, chlorides, and the like. Ruthenium catalysts such as ruthenium, ruthenium oxide and ruthenium chloride triphenylphosphine complex can be mentioned. Further, the compounds listed here can also be used by generating them in a reaction system using other compounds. The oxidizing agents can be used each alone or two or more of them can be used in combination. The amount of the oxidizing agent to be used may be appropriately selected from a wide range according to the reaction product, reaction conditions, and the like, but may be up to 20 mol, preferably 1 to 10 mol, per mol of alcohol.
[0018]
In the present invention, a halogen-containing salt may be added to the reaction system in order to perform the oxidation reaction more efficiently. As the halogen-containing salt, known salts can be used, for example, halogenated salts such as lithium chloride, sodium chloride, potassium chloride, lithium bromide, sodium bromide, potassium bromide, lithium iodide, sodium iodide, and potassium iodide. Alkali metal salts, alkali earth metal halide salts such as beryllium chloride, magnesium chloride, calcium chloride, beryllium bromide, magnesium bromide, calcium bromide, beryllium iodide, magnesium iodide, calcium iodide, ammonium chloride, odor Ammonium halides such as ammonium iodide and ammonium iodide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium iodide Um, it can be exemplified tetrabutylammonium chloride, tetrabutylammonium bromide, a tetraalkylammonium halide such as tetrabutylammonium iodide. As the halogen-containing salt, one type can be used alone, or two or more types can be used in combination. The amount of the halogen-containing salt used is usually about 0.01 to 50% by weight, preferably about 0.1 to 25% by weight, based on the amount of water used.
This reaction is usually performed at a temperature of about -5 to 100 ° C, preferably about 0 to 60 ° C, and is completed in about 5 minutes to 20 hours, preferably about 10 minutes to 5 hours.
[0019]
Next, the electrolytic oxidation method of the present invention is carried out by placing an alcohol compound in water in the presence or absence of a supporting electrolyte and subjecting it to electrolytic oxidation according to a conventional method.
As the supporting electrolyte used as necessary, any salt soluble in water and capable of conducting electricity can be used, and examples thereof include alkali metal halides, alkaline earth metal halides, alkali metal carbonates, and alkali metal carbonates. Earth metal carbonate, alkali metal bicarbonate, alkali metal phosphate, alkaline earth metal phosphate, ammonium halide salt, tetraalkylammonium halide salt, ammonium carbonate salt, ammonium phosphate salt, tetraphosphate Alkyl ammonium salt, alkali metal sulfate, alkali metal hydrogen sulfate, tetraalkyl ammonium hydrogen sulfate, alkaline earth metal sulfate, hypochlorite, metal perchlorate, ammonium perchlorate, ammonium sulfonate Salt, metal borofluoride, ammonium borofluoride and the like can be exemplified.
[0020]
Specifically, alkali metal halides such as lithium chloride, sodium chloride, potassium chloride, lithium bromide, sodium bromide, potassium bromide, lithium iodide, sodium iodide, potassium iodide, beryllium chloride, magnesium chloride Alkaline earth metal salts such as calcium chloride, beryllium bromide, magnesium bromide, calcium bromide, beryllium iodide, magnesium iodide, calcium iodide, and alkali metal carbonates such as lithium carbonate, sodium carbonate and potassium carbonate Salts, alkaline earth metal carbonates such as beryllium carbonate, magnesium carbonate and calcium carbonate, alkali metal hydrogen carbonates such as lithium hydrogen carbonate, sodium hydrogen carbonate and potassium hydrogen carbonate, sodium dihydrogen phosphate, disodium phosphate and phosphorus Such as potassium dihydrogen phosphate and dipotassium phosphate Alkaline earth metal phosphates such as potassium metal phosphate, magnesium phosphate and calcium phosphate; ammonium halide salts such as ammonium chloride, ammonium bromide and ammonium iodide; tetramethylammonium chloride; tetramethylammonium bromide; Tetraalkylammonium halides, such as tetramethylammonium chloride, tetraethylammonium chloride, tetraethylammonium bromide, tetraethylammonium iodide, tetrabutylammonium chloride, tetrabutylammonium bromide, tetrabutylammonium iodide, ammonium carbonate, ammonium hydrogen carbonate, etc. Ammonium carbonate, ammonium dihydrogen phosphate, ammonium phosphate such as diammonium phosphate, tetraethylammonium dihydrogen phosphate, tetrahydrogen dihydrogen phosphate Tetraalkylammonium phosphates such as butylammonium, alkali metal sulfates such as lithium sulfate, sodium sulfate, and potassium sulfate; lithium hydrogen sulfate, sodium hydrogensulfate, alkali metal hydrogensulfates such as potassium hydrogensulfate; tetraethylammonium hydrogensulfate; Tetraalkylammonium hydrogensulfate such as tetrabutylammonium hydrogensulfate; alkaline earth metal sulfates such as magnesium sulfate and calcium sulfate; sodium hypochlorite, potassium hypochlorite, and hypochlorite such as calcium hypochlorite Acid salts, metal perchlorates such as lithium perchlorate, sodium perchlorate and magnesium perchlorate; ammonium perchlorates such as ammonium perchlorate, tetraethylammonium perchlorate and tetrabutylammonium perchlorate; Tetrabutylammo Ammonium sulfonic acid salts such as sodium tosylate; metal borofluoride salts such as lithium borofluoride and sodium borofluoride; and ammonium borofluoride salts such as tetraethylammonium borofluoride and tetrabutylammonium borofluoride. Can be. Among these, alkali metal halides and alkaline earth metal halides are preferred. One of these supporting electrolytes can be used alone, or two or more can be used in combination as needed. The amount of the supporting electrolyte used can be appropriately selected from a wide range according to various reaction conditions, and is usually adjusted so that the aqueous solution has a concentration of about 0.01% by weight to a saturated concentration, preferably about 0.1 to 20% by weight. Just use it.
[0021]
The amount of water used in the electrolysis reaction is not particularly limited and may be appropriately selected depending on various reaction conditions and the like. Usually, it is about 2 to 2000 liters, preferably about 5 to 100 liters per 1 kg of the raw material compound. Good. Even if an organic solvent miscible with water is mixed, the reaction is not hindered. Examples of the solvent that does not cause a problem include lower alkyl alcohols such as methanol, ethanol, n-propanol and i-propanol; cyclic ethers such as tetrahydrofuran, dioxane and dioxolane; amides such as dimethylformamide, diethylformamide and dimethylacetamide; Cyclic amides such as N-methylpyrrolidinone; dimethyl sulfoxide;
[0022]
This electrolysis reaction is carried out at a temperature of usually about -5 to 100C, preferably about 0 to 60C.
In the electrolytic oxidation according to the method of the present invention, electrodes used for ordinary electrolytic reactions can be widely used. Specifically, platinum, stainless steel, nickel, lead oxide, carbon, iron oxide, titanium, etc. are used as the anode material, and platinum, tin, aluminum, stainless steel, zinc, lead, copper, carbon, etc. are used as the cathode material. Preferably, platinum, carbon, stainless steel or the like can be used as the anode material, and platinum, stainless steel, copper, carbon or the like can be used as the cathode material.
In the electrolytic oxidation of the present invention, the anode and the cathode may be separated from each other by a diaphragm. However, it is not necessary to separate the anode and the cathode, and the electrolytic oxidation can be performed in a single tank.
This electrolysis reaction can employ either a constant current electrolysis method or a constant voltage electrolysis method, but it is preferable to employ a constant current electrolysis method in terms of simplicity of an apparatus and operation. The electrolysis can be DC or AC electrolysis, but can also be performed by switching the current direction every 1 to 30 seconds. The current density is usually 1 to 500 mA / cm 2 , Preferably 1 to 50 mA / cm 2 Should be within the range. The amount of electricity varies depending on the shape of the electrolytic cell to be used, the type of the starting material, the type of the solvent to be used, and the like, and cannot be determined unconditionally, but is usually about 2 to 20 F / mol, preferably about 2 to 8 F / mol. The reaction is completed when the above electricity is supplied.
[0023]
In this oxidation reaction, since the catalyst and the supporting electrolyte are water-soluble and the reaction is performed in an aqueous solution, the resulting target product can be easily separated by filtration, concentration, drying, extraction or the like after the completion of alcohol oxidation. Can be. The aqueous solution after the separation can be directly used for the next oxidation reaction.
[0024]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
[0025]
Production Example 1A
In a 100 mL eggplant flask, 248 mg of 6-triethylammonium hexanoic bromide is weighed, and 10 mL of methylene chloride is added, followed by sufficient stirring. To this, 4-amino-2,2,6,6-tetramethylpiperidine-N-oxyl (257 mg) and dicyclohexylcarbodiimide (DCC, 414 mg) were added, and the mixture was stirred at room temperature for 6 hours. After completion of the stirring, the reaction solution was concentrated under reduced pressure, water (10 ml) was added to the residue, and the insoluble matter was filtered off. The filtrate was concentrated under reduced pressure, and the residue was further dried under reduced pressure to obtain 388 mg of the target compound A (yield 66%). The structural formula and 1HNMR of the obtained compound A are as follows.
[0026]
Embedded image
Figure 2004262823
[0027]
1H NMR (200 MHz, CDCl 3 ) Δ 1.15 to 1.46 (m, 23H), 1.52 to 1.89 (m, 6H), 2.20 (t, J = 7.2 Hz, 2H), 2.40 (t, J = 7.2 Hz, 2H), 3.08 to 3.32 (m, 9H), 4.00 to 4.36 (m, 1H).
[0028]
Production Example 1B
186 mg (0.53 mmol) of 4- (6-bromohexaneamide) -2,2,5,5-tetramethylpiperidine-N-oxyl was weighed and placed in a 100 ml eggplant flask, and 2 ml of ethanol was added thereto. To this was added 1 ml of triethylamine, and the mixture was heated and refluxed for 24 hours under an argon atmosphere. After completion of the reaction, the reaction mixture was concentrated under reduced pressure, and the residue was washed 10 times with 10 ml of ether. The obtained residue was dried to obtain 170 mg (yield 70%) of the target compound A. 1HNMR of the obtained Compound A was consistent with that of Production Example 1A.
[0029]
Production Example 2
258 mg (0.74 mmol) of 4- (6-bromohexaneamide) -2,2,5,5-tetramethylpiperidine-N-oxyl was weighed into a 100 ml eggplant flask, and 2 ml of ethanol was added thereto. To this was added 0.5 ml of N, N-diethyl-n-dodecylamine, and the mixture was heated and refluxed for 24 hours under an argon atmosphere. After completion of the reaction, the reaction mixture was concentrated under reduced pressure, and the residue was washed 10 times with 10 ml of ether. The obtained residue was dried to obtain 353 mg of the target compound B (88% yield).
[0030]
Embedded image
Figure 2004262823
[0031]
1H NMR (200 MHz, CDCl 3 ) Δ 0.78 (t, J = 6.1 Hz, 3H), 1.05 (d, J = 3.2 Hz, 12H), 1.11 to 1.35 (m, 23H), 1.48 to 1 0.72 (m, 8H), 2.09 (t, J = 7.2 Hz, 2H), 2.92 (s, 6H), 3.10-3.27 (m, 2H), 3.91-4 .08 (m, 1H).
[0032]
Production Example 3
258 mg (0.74 mmol) of 4- (6-bromohexaneamide) -2,2,5,5-tetramethylpiperidine-N-oxyl was weighed into a 100 ml eggplant flask, and 2 ml of ethanol was added thereto. To this was added 0.5 ml of pyridine, and the mixture was heated and refluxed for 24 hours under an argon atmosphere. After completion of the reaction, the reaction mixture was concentrated under reduced pressure, and the residue was washed 10 times with 10 ml of ether. The obtained residue was dried to obtain 278 mg (yield: 98%) of target compound C.
[0033]
Embedded image
Figure 2004262823
[0034]
1H NMR (200 MHz, CDCl 3 ) Δ 1.16 (d, J = 3.2 Hz, 12H), 1.23 to 1.43 (m, 4H), 1.63 to 1.82 (m, 4H), 1.93 to 2.03 (M, 4H), 2.38 (t, J = 7.0 Hz, 2H), 3.96-4.14 (m, 1H) 4.62 (t, J = 7.0 Hz, 2H), 8. 10 (t, J = 7.0 Hz, 2H), 8.58 (t, J = 7.6 Hz, 1H), 8.99 (d, J = 6.0 Hz, 2H).
[0035]
Production Example 4
340 mg (0.98 mmol) of 4- (6-bromohexaneamide) -2,2,5,5-tetramethylpiperidine-N-oxyl was weighed into a 100 ml eggplant flask, and 3 ml of ethanol was added thereto. 1 ml of N-methylimidazole was added thereto, and the mixture was heated and refluxed for 24 hours under an argon atmosphere. After completion of the reaction, the reaction mixture was concentrated under reduced pressure, and the residue was washed 10 times with 10 ml of ether. The obtained residue was dried to obtain 409 mg of the target compound D (yield 97%).
[0036]
Embedded image
Figure 2004262823
[0037]
1H NMR (200 MHz, CDCl 3 ) Δ 1.16 (m, 12H), 1.33 to 1.50 (m, 4H), 1.57 to 1.76 (m, 4H), 1.85 to 1.96 (m, 2H), 2.18 (t, J = 7.20 Hz, 2H), 3.90 (s, 3H) 4.01 to 4.12 (m, 1H), 4.19 (t, J = 7.2 Hz, 2H) , 6.95 (s, 1H), 7.60 (s, 1H), 8.92 (s, 1H).
[0038]
Production Example 5 (Production of reduced catalyst of compound A)
170 mg (0.38 mmol) of Compound A is weighed and placed in a 100 ml eggplant-shaped flask, and 5 ml of methylene chloride is added and stirred sufficiently. To this, 83.7 mg (0.45 mmol) of 1,2-diphenylhydrazine was added, and the mixture was stirred at room temperature under an argon atmosphere for 3 hours. After completion of the reaction, the reaction mixture was concentrated under reduced pressure, and the residue was washed 10 times with 10 ml of ethyl acetate. After drying, the target compound E (reduced form of compound A, 130.7 mg, 76%) was obtained. .
[0039]
Embedded image
Figure 2004262823
[0040]
1H NMR (200 MHz, CDCl 3 ) Δ 1.05 (d, J = 3.6 Hz, 12H), 1.11 to 1.21 (m, 10H), 1.21 to 1.37 (m, 6H), 1.48 to 1.68 (M, 6H), 2.09 (t, J = 7.4 Hz, 2H), 3.03 to 3.25 (m, 8H), 3.88 to 4.06 (m, 1H).
[0041]
Example 1
1- (p-Chlorophenyl) ethyl alcohol (109 mg, 0.7 mmol) and compound A (30.1 mg, 0.07 mmol) are weighed, then ion-exchanged water (8 ml) is added, and the mixture is thoroughly stirred. Two platinum electrodes (1.5 × 1.0 cm) 2 ), And an electrolytic oxidation reaction is performed for 1.5 hours (2.5 F / mol) while maintaining the current at 30 mA with vigorous stirring at room temperature. After completion of the reaction, the reaction solution was extracted with ethyl acetate, concentrated under reduced pressure, and purified by silica gel column to obtain 1- (p-chlorophenyl) ethyl-1-one (98.1 mg, yield: 91%). . 1HNMR of the obtained ketone compound is as follows.
1H NMR (200 MHz, CDCl 3 ) Δ 2.60 (s, 3H), 7.44 (d, J = 8.3 Hz, 2H), 7.90 (d, J = 8.4 Hz, 2H)
[0042]
Examples 2 to 5
The results of performing the electrolytic oxidation reaction four times (a total of five cycles) using the aqueous solution obtained after the extraction with ethyl acetate as it is in Example 1 are shown below. The post-treatment was the same as in Example 1, and the aqueous layer after extraction was repeatedly used as it was.
[0043]
[Table 1]
Figure 2004262823
[0044]
Examples 6 to 12
The result of performing the same reaction as in Example 1 except that the current and the time were changed to the following conditions is shown.
[0045]
[Table 2]
Figure 2004262823
[0046]
Examples 13 to 22
The result of performing the same reaction as in Example 1 except that the electrode was changed to the following electrode is shown.
[0047]
[Table 3]
Figure 2004262823
[0048]
Examples 23 to 28
The result of having performed the same reaction as Example 1 by adding a supporting electrolyte to ion-exchanged water is shown. The supporting electrolyte was adjusted to be 5% by weight as an aqueous solution.
[0049]
[Table 4]
Figure 2004262823
[0050]
Examples 29 to 33
The result of performing the same reaction as in Example 1 except that the raw material alcohol was changed to the following alcohol is shown below.
[0051]
[Table 5]
Figure 2004262823
[0052]
Example 34
1,5-pentanediol 1b (144 mg, 1.00 mmol) and compound A (43 mg) are weighed, ion-exchanged water (5 ml) is added, and the mixture is sufficiently stirred. Two platinum electrodes (1.5 × 1.0 cm) 2 ), And an electrolytic oxidation reaction is performed for 2.7 hours (3 F / mol) while vigorously stirring at room temperature and maintaining the current at 30 mA. After completion of the reaction, the reaction mixture is extracted with ethyl acetate and concentrated under reduced pressure. The obtained residue is purified using a silica gel column (ethyl acetate / hexane = 7/1) to obtain δ-lactone 2b (114 mg, yield 85%). 1HNMR of the obtained lactone compound is as follows.
1H NMR (200 MHz, CDCl 3 ) Δ 1.15 to 2.61 (m, 10H), 3.93 (d, J = 8.8 Hz, 2H), 4.18 (dd, J = 4.2, 8.0 Hz, 2H).
[0053]
Embedded image
Figure 2004262823
[0054]
Example 35
The diol compound 1c (144 mg, 1.00 mmol) and the compound A (30.0 mg, 0.07 mmol) are weighed, and 5 ml of water is added to make a homogeneous solution. Two platinum electrodes (1.5 × 1.0 cm) 2 ), And an electrolytic oxidation reaction is performed for 4 hours (4.5 F / mol) while vigorously stirring at room temperature and maintaining the current at 30 mA. After completion of the reaction, the reaction mixture is extracted with ethyl acetate, and then the solvent is distilled off under reduced pressure. The obtained residue is purified using a silica gel column (ethyl acetate / hexane = 7/1) to obtain lactone compound 2c (120 mg, yield 90%). 1HNMR of the obtained ketone compound is as follows.
1H NMR (200 MHz, CDCl 3 ) Δ 1.2-2.6 (m, 10H), 3.9 (d, J = 8.8 Hz, 1H), 4.2 (dd, J = 4.2, 8.0 Hz, 1H).
[0055]
Embedded image
Figure 2004262823
[0056]
Examples 36 to 38
The result of performing the same reaction as in Example 34 except that the raw material alcohol was changed to the following diol is shown below.
[0057]
[Table 6]
Figure 2004262823
[0058]
Example 39 (Example using reduced compound E)
1- (p-Chlorophenyl) ethyl alcohol (110 mg, 0.7 mmol) and compound E (30.0 mg, 0.07 mmol) are weighed, then ion-exchanged water (8 ml) is added, and the mixture is thoroughly stirred. Two platinum electrodes (1.5 × 1.0 cm) 2 ), And an electrolytic oxidation reaction is performed for 1.8 hours (3 F / mol) while maintaining the current at 30 mA with vigorous stirring at room temperature. After completion of the reaction, the reaction solution was extracted with ethyl acetate, concentrated under reduced pressure, and purified on a silica gel column to give 1- (p-chlorophenyl) ethyl-1-one (100.1 mg, yield 93%). . 1HNMR of the obtained ketone compound was consistent with Example 1.
[0059]
Example 40 (oxidation with aqueous sodium hypochlorite solution)
1- (p-Chlorophenyl) ethyl alcohol (110 mg, 0.7 mmol) and compound A (30.0 mg, 0.07 mmol) are weighed, and 5 ml of a 7% aqueous sodium bicarbonate solution is added thereto, followed by sufficient stirring. The solution is immersed in an ice bath and cooled to 1-2 ° C. A cooled solution of a separately prepared sodium hypochlorite solution (5 ml of an aqueous solution containing 1.1 mmol of active oxygen) is slowly added dropwise thereto. After the addition was completed, the reaction solution was stirred at that temperature for 30 minutes. After completion of the stirring, the reaction mixture was extracted with ethyl acetate. The obtained organic layer was concentrated under reduced pressure, and purified by a silica gel column to give 1- (p-chlorophenyl) ethyl-1-one (99 mg, yield 92%). 1HNMR of the obtained ketone compound was consistent with Example 1.
[0060]
Examples 41 to 45
The same reaction as in Example 40 was performed except that the starting alcohol compound was changed as follows. The results are shown in the table below. The NMR of the obtained compound was consistent with the compounds of Examples 29 to 33.
[0061]
[Table 7]
Figure 2004262823
[0062]
Examples 46-48
The same reaction as in Example 40 was performed except that the starting alcohol compound was changed as follows. The results are shown in the table below. The NMR of the obtained compound was consistent with the compounds of Examples 36 to 38.
[0063]
[Table 8]
Figure 2004262823
[0064]
【The invention's effect】
In the present invention, it has become possible to newly develop a water-soluble N-oxyl type compound and an oxidation catalyst using the same.
According to the present invention, irrespective of the type of alcohol used as a raw material, it is possible to produce a target product with a very simple reaction operation in a high yield, and it is necessary to use an organic solvent that may adversely affect the environment. The present invention can provide a novel method for oxidizing an alcohol, which is free of any problem and applicable to all types of industrial production.
Further, according to the present invention, the disadvantages of the conventional oxidation method are overcome, the alcohol compound is oxidized in water, and the target is obtained with high yield and high efficiency, for example, aldehyde, ketone, lactone, carboxylic acid ester, It is possible to produce oxides of higher order than alcohols such as carboxylic acid compounds.
In the electrolytic oxidation reaction, the recovered aqueous solution contains an oxidation catalyst and a supporting electrolyte, and the solution is recycled without being reprocessed due to its properties. Realization has become possible.

Claims (10)

水溶性N−オキシル化合物又はその還元型化合物。A water-soluble N-oxyl compound or a reduced compound thereof. 末端にアンモニウムイオンを有する水溶性N−オキシル化合物又はその還元型化合物。A water-soluble N-oxyl compound having an ammonium ion at a terminal or a reduced compound thereof. 水溶性N−オキシル化合物又はその還元型化合物からなる酸化触媒。An oxidation catalyst comprising a water-soluble N-oxyl compound or a reduced compound thereof. 末端にアンモニウムイオンを有する水溶性N−オキシル化合物又はその還元型化合物からなる酸化触媒。An oxidation catalyst comprising a water-soluble N-oxyl compound having an ammonium ion at a terminal or a reduced compound thereof. 水溶性N−オキシル化合物又はその還元型化合物の存在下、アルコール化合物を酸化剤を用いて酸化してアルコールよりも高次な酸化物を得ることを特徴とする酸化物の製造方法。A method for producing an oxide, comprising oxidizing an alcohol compound using an oxidizing agent in the presence of a water-soluble N-oxyl compound or a reduced compound thereof to obtain an oxide higher in order than alcohol. 水溶性N−オキシル化合物又はその還元型化合物の存在下、アルコール化合物を電解酸化してアルコールよりも高次な酸化物を得ることを特徴とする酸化物の製造方法。A method for producing an oxide, comprising: electrolytically oxidizing an alcohol compound in the presence of a water-soluble N-oxyl compound or a reduced compound thereof to obtain an oxide higher in order than alcohol. 支持電解質を使用しない請求項6に記載の酸化物の製造方法。The method for producing an oxide according to claim 6, wherein a supporting electrolyte is not used. 支持電解質を使用する請求項6に記載の酸化物の製造方法。The method for producing an oxide according to claim 6, wherein a supporting electrolyte is used. アルコール化合物が、1価アルコール及び2価アルコールから選ばれる少なくとも1種である請求項5〜8に記載の製造方法。The method according to claim 5, wherein the alcohol compound is at least one selected from monohydric alcohols and dihydric alcohols. アルコールより高次な酸化物がアルデヒド、ケトン、ラクトン、カルボン酸エステル、カルボン酸化合物である請求項5〜9に記載の製造方法。The production method according to any one of claims 5 to 9, wherein the oxide higher than the alcohol is an aldehyde, ketone, lactone, carboxylic acid ester, or carboxylic acid compound.
JP2003054347A 2003-02-28 2003-02-28 Water-soluble N-oxyl compound, oxidation catalyst and method for producing oxide using the same Expired - Fee Related JP4566519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003054347A JP4566519B2 (en) 2003-02-28 2003-02-28 Water-soluble N-oxyl compound, oxidation catalyst and method for producing oxide using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003054347A JP4566519B2 (en) 2003-02-28 2003-02-28 Water-soluble N-oxyl compound, oxidation catalyst and method for producing oxide using the same

Publications (2)

Publication Number Publication Date
JP2004262823A true JP2004262823A (en) 2004-09-24
JP4566519B2 JP4566519B2 (en) 2010-10-20

Family

ID=33118712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003054347A Expired - Fee Related JP4566519B2 (en) 2003-02-28 2003-02-28 Water-soluble N-oxyl compound, oxidation catalyst and method for producing oxide using the same

Country Status (1)

Country Link
JP (1) JP4566519B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249500A (en) * 2005-03-10 2006-09-21 Otsuka Chemical Co Ltd Method for producing carboxylic acid derivative by electrolytic oxidation of amphiphilic alcohol
WO2008109740A2 (en) * 2007-03-06 2008-09-12 Colby Pharmaceutical Company Mitochondria targeted cationic anti-oxidant compounds for prevention, therapy or treatment of hyper-proliferative disease, neoplasias and cancers
US20110059922A1 (en) * 2009-09-04 2011-03-10 Colby Pharmaceutical Company Mitochondria targeted cationic anti-oxidant compounds for prevention, therapy or treatment of hyper-proliferative disease, neoplasias and cancers
CN105777507A (en) * 2016-04-15 2016-07-20 大连信科化工有限公司 Method for synthesizing methoxy acetone
CN105801388A (en) * 2016-04-15 2016-07-27 大连信科化工有限公司 Method for preparing methoxyacetone by oxidizing 1-methoxy-2-propanol with chlorine
CN108677210A (en) * 2018-04-17 2018-10-19 大连理工大学 A kind of method of ketone and carboxylic acid step hydrogenation and esterification in electrochemical hydrogen pump reactor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100048A (en) * 1988-10-07 1990-04-12 Fuji Photo Film Co Ltd Silver halide color photographic sensitive material
WO2001020078A1 (en) * 1999-09-15 2001-03-22 Ciba Specialty Chemicals Holding Inc. Chlorohydrin and cationic compounds having high affinity for pulp or paper
WO2001066495A1 (en) * 2000-03-09 2001-09-13 Otsuka Kagaku Kabushiki Kaisha Processes for producing oxide with higher oxidation than alcohol
WO2002055618A1 (en) * 2001-01-16 2002-07-18 Ciba Specialty Chemicals Holding Inc. Ink-jet ink and recording material
JP2002275162A (en) * 2001-03-15 2002-09-25 Mitsui Chemicals Inc Method for producing 4-formylimidazoles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100048A (en) * 1988-10-07 1990-04-12 Fuji Photo Film Co Ltd Silver halide color photographic sensitive material
WO2001020078A1 (en) * 1999-09-15 2001-03-22 Ciba Specialty Chemicals Holding Inc. Chlorohydrin and cationic compounds having high affinity for pulp or paper
WO2001066495A1 (en) * 2000-03-09 2001-09-13 Otsuka Kagaku Kabushiki Kaisha Processes for producing oxide with higher oxidation than alcohol
WO2002055618A1 (en) * 2001-01-16 2002-07-18 Ciba Specialty Chemicals Holding Inc. Ink-jet ink and recording material
JP2002275162A (en) * 2001-03-15 2002-09-25 Mitsui Chemicals Inc Method for producing 4-formylimidazoles

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006249500A (en) * 2005-03-10 2006-09-21 Otsuka Chemical Co Ltd Method for producing carboxylic acid derivative by electrolytic oxidation of amphiphilic alcohol
JP4740614B2 (en) * 2005-03-10 2011-08-03 大塚化学株式会社 Production of carboxylic acid derivatives by electrooxidation of amphiphilic alcohols
WO2008109740A2 (en) * 2007-03-06 2008-09-12 Colby Pharmaceutical Company Mitochondria targeted cationic anti-oxidant compounds for prevention, therapy or treatment of hyper-proliferative disease, neoplasias and cancers
WO2008109740A3 (en) * 2007-03-06 2008-11-06 Colby Pharmaceutical Company Mitochondria targeted cationic anti-oxidant compounds for prevention, therapy or treatment of hyper-proliferative disease, neoplasias and cancers
US20110059922A1 (en) * 2009-09-04 2011-03-10 Colby Pharmaceutical Company Mitochondria targeted cationic anti-oxidant compounds for prevention, therapy or treatment of hyper-proliferative disease, neoplasias and cancers
US8466130B2 (en) 2009-09-04 2013-06-18 Colby Pharmaceutical Company Mitochondria targeted cationic anti-oxidant compounds for prevention, therapy or treatment of hyper-proliferative disease, neoplasias and cancers
CN105777507A (en) * 2016-04-15 2016-07-20 大连信科化工有限公司 Method for synthesizing methoxy acetone
CN105801388A (en) * 2016-04-15 2016-07-27 大连信科化工有限公司 Method for preparing methoxyacetone by oxidizing 1-methoxy-2-propanol with chlorine
CN108677210A (en) * 2018-04-17 2018-10-19 大连理工大学 A kind of method of ketone and carboxylic acid step hydrogenation and esterification in electrochemical hydrogen pump reactor

Also Published As

Publication number Publication date
JP4566519B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
Leech et al. Organic electrosynthesis: from academia to industry
CN111286748B (en) Method for electrochemically synthesizing carbazole compounds
Klein et al. Counter Electrode Reactions—Important Stumbling Blocks on the Way to a Working Electro‐organic Synthesis
US8617376B2 (en) Process for the electrochemical preparation of gamma-hydroxycarboxylic esters and gamma-lactones
JP4801866B2 (en) Method for producing higher-order oxide than alcohol
JP4566519B2 (en) Water-soluble N-oxyl compound, oxidation catalyst and method for producing oxide using the same
Senboku et al. Regioselective electrochemical carboxylation of polyfluoroarenes
JP4971538B2 (en) Oxidation catalyst polymer and method for producing higher order oxide than alcohol using the same
Huang et al. Electrochemical allylation of carbonyl compounds in aqueous electrolyte catalyzed by zinc
JP5207680B2 (en) Process for producing 2,5-furandicarboxylic acid
Bäumer et al. Cleavage of alkenes by anodic oxidation
US4235683A (en) Electrolytic preparation of benzaldehydes
JP4676056B2 (en) N-oxyl compound, silica gel-bound N-oxyl compound, and method for producing higher order oxide than alcohol using the same
JP4740614B2 (en) Production of carboxylic acid derivatives by electrooxidation of amphiphilic alcohols
Kazemi‐Rad et al. Improved Synthesis of 2, 2‐Arylmethylene Bis (3‐hydroxy‐5, 5‐dimethyl‐2‐cyclohexene‐1‐one) and 1, 8‐Dioxo‐octahydroxanthene Derivatives Catalyzed by Electrogenerated Base and Sulfuric Acid
US20050145504A1 (en) Process for the production of diaryl iodonium compounds
JP2022514771A (en) Maleic acid ester formation by oxidation of 5-hydroxy-2-furanone
JPS6330992B2 (en)
JPS6221876B2 (en)
RU2393272C1 (en) Electrochemical method of oxidising of alcohols to carbonyl compounds
RU2351693C1 (en) Method of alcohol oxidation to carbonyl compounds
JPS6070193A (en) Production of piperonal
RU2671827C1 (en) Method of electrochemical oxidation of alcohols
RU2221805C1 (en) Method for preparing triphenylphosphine
JP3188930B2 (en) Method for producing 1,4-dihydroxy-2-naphthoic acid aryl ester

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090805

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100622

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100720

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees