JP2004262773A - Bifidus bacterial pharmaceutical preparation for improving immunological function - Google Patents
Bifidus bacterial pharmaceutical preparation for improving immunological function Download PDFInfo
- Publication number
- JP2004262773A JP2004262773A JP2003038831A JP2003038831A JP2004262773A JP 2004262773 A JP2004262773 A JP 2004262773A JP 2003038831 A JP2003038831 A JP 2003038831A JP 2003038831 A JP2003038831 A JP 2003038831A JP 2004262773 A JP2004262773 A JP 2004262773A
- Authority
- JP
- Japan
- Prior art keywords
- stress
- fraction
- preparation
- bifidobacterium
- bifidobacteria
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/66—Microorganisms or materials therefrom
- A61K35/74—Bacteria
- A61K35/741—Probiotics
- A61K35/744—Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
- A61K35/745—Bifidobacteria
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Molecular Biology (AREA)
- Epidemiology (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、ストレスにより誘発された動物(ヒトを含む)の腸管免疫系の機能低下を改善するビフィズス菌製剤に関する。本発明のビフィズス菌製剤は、ストレス事象の前、ストレス事象中および/またはストレス事象後に、ビフィズス菌製剤を含む栄養製品を動物(ヒトを含む)に投与することを含む。本発明はまた、抗酸化剤系およびビフィズス菌製剤を含む栄養製品にも関する。
【0002】
【従来の技術】
元来、種々の外的有害因子(ストレッサー)に対する共通した一群の生体反応、すなわち一般適応症候群(general adaptation syndrome )として医学的生理学的に記載されたのがストレスまたはストレス反応とよばれるものである。しかし、今日においては社会的心理学的因子を含め広く外的要因による生体の変化を“ストレス”としてとらえることが一般的である。1930年代、ストレスの概念を提唱したSelyeのいう3症候のひとつに、胸腺・リンパ線の萎縮があげられていることからも明らかなように、心理的情動因子を含む“ストレス”は免疫系に量的質的変化をもたらす。
【0003】
ストレスによる末梢血白血球数、リンパ球数、リンパ球分画の変動については、これまでの報告は必ずしも一定していない。古典的にはストレスにより末梢血顆粒球の増加に伴い総白血球数は増加するが、リンパ球数は減少すると報告されている(例えば非特許文献1)。しかし、運動負荷を物理的ストレスのモデルとした近年の報告では、運動負荷時には一過性の末梢血リンパ球(NK細胞数、T細胞数、B細胞数)数の増加がみられ、運動終了後にリンパ球数の減少がみられる(例えば非特許文献2)。T細胞サブセットの変化についても報告により異なり、ストレスによりCD4/CD8比は低下するという報告が多いが、逆に増加するという報告もある。
【0004】
一方、ストレスによる免疫系の機能的変化については、NK細胞活性、phytohemagglutinやconcanavalin Aなどのマイトジェン刺激によりリンパ球増殖反応、抗体産生能などは、種々のストレスによりいずれも抑制される。
【0005】
ストレスが個体の免疫系に上記のような量的質的変化を与える機構については、“精神神経免疫学”あるいは“神経内分泌免疫学”とよばれる分野において解析が行われている。それによると、生体防御系としての免疫系は、神経系や内分泌系と相互に影響し合い、いわゆる「神経−内分泌−免疫系」のクロストークを通して恒常性維持に働くことが明らかになりつつある。しかしながら、全身系・末梢系免疫システムとは異なった誘導・制御機構をもつ腸管免疫系に対するストレスの作用についてはほとんど解析が行われていないのが現状である。すなわち、腸管免疫系は粘膜面へのIgA分泌が特徴的であり、感染防御において重要な役割を果たしているが、このIgA分泌に対する各種ストレスの影響はこれまで明らかにされてない。
【0006】
一方、プロバイオティクスとして期待される腸内細菌由来成分は腸管免疫調節作用(例えば非特許文献3)がある。
【0007】
BifidobacteriumやLactobacillusなどのグラム陽性菌の中には、リンパ球の増殖活性を高めたり、IgA産生を亢進させるはたらきのあるものが存在し、プロバイオティクスの免疫調節作用が期待されている。ペプチドグリカンなどのグラム陽性菌の菌体壁成分には抗腫瘍効果やアジュバント活性などが報告されているが、Bifidobacteriumの菌体由来成分のうち水溶性高分子多糖成分にも高い免疫賦活作用があることが報告されている。この活性成分はグルコースとガラクトースを主成分とする高分子多糖を含み、その構成糖の結合型は、−4Galp−(または−5Galf1−)、−6Glcp1−が多く、Galf1−、−6Galf1−といったガラクトフラノシドも含んでいる。さらにβ−グルコシド結合をとる構造と活性との相関も示唆されている。
【0008】
上記のマイトジェン活性の高いB. pseudocatenulatum 7041由来菌体成分のマウスへの6日間の経口投与によって、腸管免疫系の誘導部位であるパイエル板のCD4陽性細胞はインターロイキン−6(IL−6)やインターフェロン−γ(IFN−γ)などのサイトカインの産生量が亢進し、腸管粘膜に外分泌される総IgA量は増加することが明らかになっている。このことから、菌体成分によって粘膜免疫系への感作が起こると、IL−6によってIgA形質細胞への最終分化の誘導が促進され、さらに上皮細胞(IEC)側ではIFN−γによってポリIgレセプター(pIgR)の誘導促進がおこり、結果として管腔側へのSIgAの分泌が促進されていることが示唆される。
【0009】
さらに、プロバイオティクスとして期待される菌体によって腸管内で産生される代謝産物(短鎖脂肪酸など)が腸管上皮細胞間リンパ球(IEC)などに作用している可能性も考えられ、SIgA産生に影響を与えていることが推察される。
【0010】
【非特許文献1】Keller, S. E. et al.: Science. 221: 1301−1303, 1983; Keller, S. E. et al.: Proc. Natl. Acad. Sci. USA. 85: 9297−9301, 1988
【非特許文献2】Hoffman−Goetz, L. et al.: Immunol. Today. 15: 382−387, 1994
【非特許文献3】細野 朗:FOOD Style 21 2002.9(Vol. 6 No. 9)
【0011】
【発明が解決しようとする課題】
本発明は、ヒトを含む動物における、ストレスの結果として生じる免疫能、とりわけ腸管免疫系の機能低下を改善する作用を有するビフィズス菌製剤を提供する。また、本発明は、ヒトを含む動物に対するストレス抵抗性を付与する作用を有するビフィズス菌製剤を提供する。ストレスは、身体的な過度の運動、精神的な極度の疲労、疾患状態を含む。
【0012】
【課題を解決するための手段】
本発明は、Bifidobacterium菌の菌体成分を経口摂取すると、ストレスにより誘発される腸管免疫の機能低下を改善し得るいう知見に基づいてなされたものである。
【0013】
すなわち、本発明は
(1) Bifidobacterium属の菌の菌体成分を有効成分とする、ストレス抵抗性および/またはストレスにより誘発された免疫能の機能低下を改善するビフィズス菌製剤、
(2) 腸管免疫の機能低下である(1)のビフィズス菌製剤、
(3) Bifidobacterium属の菌がBifidobacterium pseudocatenulatum 7041である(2)のビフィズス菌製剤、
(4) 菌体成分が菌体の超音波破砕物および/またはその分画物である(1)のビフィズス菌製剤、
(5) 分画物が細胞壁画分、細胞質膜画分、プロトプラスト、または水溶性画分である(4)のビフィズス菌製剤、
(6) ストレス抵抗性および/またはストレスにより誘発された免疫能の機能低下を改善するビフィズス菌製剤を製造するための、Bifidobacterium属の菌の菌体成分を有効成分の使用、
(7) Bifidobacterium属の菌がBifidobacterium pseudocatenulatum 7041である(6)の使用、
(8) 菌体成分が菌体の超音波破砕物および/またはその分画物である(7)の使用、
(9) 分画物が細胞壁画分、細胞質膜画分、プロトプラスト、または水溶性画分である(8)の使用、
からなる。
【0014】
【発明の実施の形態】
Bifidobacterium属(以下「ビフィズス菌」ともいう)内の菌種については、Reuter、Mitsuoka、Scardoviらによって研究が行われ、Bergey’s Manualの第8版では11菌種に分類された。その後、DNAホモロジーを用いた遺伝子型による分類がScardoviにより導入され、DNAホモロジーを基準に多くの新菌種が認められた。Bergey’s Manual of Systematic Bacteriology(1986年)では24菌種に分類され、さらに現在、表1に示したように、Bifidobacterium属として26菌種が認められている(光岡知足編集. 1992. 腸内フローラの分類と生態: p. 55−72 . 学会出版センター)。
【0015】
【表1】
【0016】
また、B. adolescentisは、マンニトールとソルビトールの資化性により4つのbiovar a、b、c、およびdに分けられた。一方、B. catenulatim、B. angulatum、B. dentium、およびB. pseudocatenulatumはScardoviらによりヒト糞便、膣および口腔、下水や子牛から分離される新菌種として報告された。これらの4菌種は表2に示すようにDNAの相同性においてB. adolescentisとは明らかに異なった菌種であるが、糖分解性状は類似していることがしられている(光岡知足編集. 1992. 腸内フローラの分類と生態: p. 55−72 . 学会出版センター)。
【0017】
【表2】
【0018】
本発明においては、候補となるBifidobacterium属の菌種は表1および表2に示す菌種(生菌および死菌)すべてを含む。ビフィズス菌の培養方法は公知である〔光岡知足著、“腸内菌の世界”(叢文社、1980)〕。また、ビフィズス菌培養物、精製ビフィズス菌体、凍結乾燥菌体、あるいは市販のビフィズス菌製剤等も含む。ビフィズス菌製剤については、1×1010個/g以上を訴求した商品も多くみられるようになっている。
【0019】
本発明は、上記菌体の破砕物、細胞壁画分、プロトプラスト、細胞質膜画分、または水溶性画分であって、各種ストレス負荷したとき、腸管粘膜系におけるIgA抗体および総IgA産生低下、ならびにin vitroにおけるリンパ球に対するマイトジェン作用低下、あるいはサイトカイン産生低下を抑制する作用を有するものすべてを含む。
【0020】
ビフィズス菌の可溶性の細胞質画分とそれ以外の膜画分を含む菌体不溶性画分は、菌体を超音波処理の後、超遠心分離により簡便に分けることができる。細胞壁画分、プロトプラスト、細胞質膜画分、または水溶性画分の調製は公知〔例えば、松沢 洋, 李泳春, “微生物実験法(新生化学実験講座)”, (社)日本生化学会編, (株)東京化学同人, p. 179;特許3174611号;特開平9−241179公開公報〕であり、本発明はこれらの公知技術を含む。
【0021】
ビフィズス菌は、ヒトや各種動物の消化管や糞便、ヒトの膣や口腔、ミツバチの消化管、下水などに分布し、ヒトと動物種間や乳児と成人の間には“すみわけ”が認められる。現在、ヒト由来ビフィズス菌として10菌種が報告されているが、わが国においては、ヒトから分離されるビフィズス菌種として報告されているのはB. bifidum、B. infantis、B. breve、B. longum、B. adolescentisの5菌種であり、その他の菌種については報告されていない(光岡知足編集. 1992. 腸内フローラの分類と生態: p. 55−72 . 学会出版センター)。
【0022】
そこで、ストレスにより誘発される免疫抑制を改善する適用対象がヒトの場合は、候補となるビフィズス菌はヒトに常在する上記10菌種、すなわち、B. bifidum、B. infantis、B. breve、B. longum、B. adolescentis、B. angulatum、B. catenulatum、B. pseudocatenulatum、B. dentiumおよびB. gallicumがあげられる。また、対象が家畜の牛を想定する場合は、表1の牛由来のビフィズス菌、すなわち、B. bifidum、B. adolescentis、B. pseudocatenulatum、B. globosum、B. pseudolongum、B. animalis、B. thermophilumおよびB. boumが候補としてあげられる。対象が鶏の場合は同様の考えで B. pseudolongum、B. animalis、B. thermophilum、B. pullorumおよびB. gallicumが候補としてあげられる。さらに今後自然界から分離されるビフィズス菌も候補となる。
【0023】
微生物保存機関のビフィズス菌株としては、B. longum ATCC15707T株(Intestine of adult)、B. breveATCC15700T株(Intestine of infant)、B. infantisATCC15697T株(Intestine of infant)、B. adolescentisATCC15703T株(Intestine of adult)、およびB. catenulatimATCC27677株(Int. J. Syst. Bact. 24:
6−20, 1974)等を例示することができる。
【0024】
近年、ビフィズス菌のなかでも、さらに菌種により、あるいは菌株により作用がすこしずつ異なることが明らかにされてきており、最近の利用傾向は特徴の異なる数種の菌を組み合わせて、より機能性を高めた商品や、腸内ビフィズス菌の増殖因子となるオリゴ糖などと組合わせた商品が多くみられるようになっている。そこで、本発明はこのような組み合わせを含む。
【0025】
本発明のビフィズス菌破砕物、細胞壁画分、プロトプラスト、細胞質膜画分、または水溶性画分を含む製剤は、ストレスにより免疫機能の低下したヒトを含む動物に免疫機能改善を目的として投与することができる。また、ストレスにより免疫機能の低下したヒトに対して、保健機能食品として利用することができる。また、ストレスにより免疫機能の低下した動物に対して、免疫機能改善を目的として、その有効量を飼料に添加することができる。
【0026】
ビフィズス菌製剤には、免疫機能に有利な効果を発揮する抗酸化剤、例えば、ビタミンA、セレン、ビタミンCあるいはβ−カロチンなどを添加することができる。
ストレスにより免疫機能の低下したヒトが、免疫機能改善、あるいは免疫機能低下の改善を目的して、ビフィズス菌製剤を摂取する場合の有効量は、経験的に1日あたり生菌数が109以上で整腸効果が認められているので、この数字は一つの目安となると考えられる(Ogata T. et al.: Bioscience Microflora, 16(2): 53−58, 1997 )が、免疫機能改善の有効量は公知の免疫学的パラメーター(例えば、白血球機能の活性化)から決定可能である。
【0027】
本発明のビフィズス菌製剤の形態は、例えば、塊状、液状、シロップ状、粉末状とすることができ、これらの形態に応じて、種々の添加剤、例えば増量剤、甘味剤、他の糖質、ビタミン類、香料、着色剤等を含有させることがでる。形態は液状または粉末の食品形態や、粉剤、散剤、液剤、懸濁剤、錠剤、発泡剤等の医薬品形態等である。
【0028】
次に、実施例により本発明を説明する。
【実施例】
[実施例1] ビフィズス菌の菌体破砕物の調製
Bifidobacterium pseudocatenulatum 7041〔日本ビフィズス菌センター〕を37℃、48 時間嫌気培養した。
培養後菌体を遠心(6,000×g、5℃、10分間 )して回収し、超純水で3回洗浄(6,000×g、5℃、10分間 )した後、凍結乾燥して−20℃で保存した。凍結乾燥菌体は超純水で4 mg/mLに懸濁した後、氷冷却下超音波処理(大岳製作所製、15分間 )し、さらに800×g、5℃、5分間の遠心によって未処理の細胞や超音波処理によって生じた金属くずを除去した。これを凍結乾燥し、細胞破砕物(BP)を得た(BPはアッセイまで−20℃で保存 )。
【0029】
[実施例2] 各種ストレス負荷の腸管免疫に及ぼす影響
雌性BALB/cマウスを6週齢で購入(日本クレア)し、3日間順化飼育した後、1群 8匹として4群に分けた。次に運動ストレス群のみ4〜8日目までの5日間、流水遊泳運動のトレーニング(水温32℃、7 L/minの流水中にて5分間×3セット )を行い、さらに2日間おいて11〜15日目の5日間は以下の条件で各群にそれぞれのストレスを負荷した。実験期間中(15日間)は、それぞれのマウスにはマウス用固型飼料MF(オリエンタル酵母)および水を自由摂取させた。
ストレス条件は、運動ストレスとして水温32℃、7L/minの流水遊泳運動負荷(1日あたり10 min×3セット)群、拘束ストレス(小さい穴を多数開けた50 mL容ポリプロピレン製チューブ中にマウスを固定)負荷群(1日3時間)、さらに、水侵拘束ストレス(小さい穴を多数開けた50 mL容ポリプロピレン製チューブ中にマウスを固定し、これを水深1 cm、約32℃の水をたくわえたケージ内に静置 )負荷群(1日3時間)負荷、および非ストレス負荷群とした。
ストレスを負荷する前(10日目)、ストレス負荷期間(11、12、13、14および15日目)の5日間、眼窩静脈叢から採血し、血漿中のコルチコステロン量をRIA法により測定した。
ストレス負荷終了後(15日目)、マウスからパイエル板細胞を採取し、各種サイトカイン刺激による培養条件での培養上清中の総IgA量をELISA法により測定した。ELISA法の概略は以下のとおりである。
ヤギ抗マウスIgA抗体(ICN Pharmaceuticals )を96ウェルマイクロプレート(MaxSorp、Nunc社製)に添加し、4℃で一晩固相化した。ウシ血清アルブミン(BSA)でブロッキング後、1 % BSA−PBS−Tween溶液(サンプルバッファー)で適当な倍率に希釈した測定サンプルを各ウェルに添加し、4℃で一晩インキュベーションした。サンプルバッファーで1,000倍に希釈したビオチン化抗マウスIgA抗体(Sigma)を各ウェルに添加し、室温で2時間インキュベーションした。1 % BSA−PBS−Tween溶液で1,000倍に希釈したストレプトアビジン−アルカリホスファターゼ複合体(Zymed)を各ウェルに添加し、室温で1時間インキュベーションした。そして0.1 %フェニルリン酸二ナトリウム含ジエタノールアミン緩衝液を各ウェルに添加し、37℃でインキュベーション後、405 nmにて吸光値を測定した(BioRad)。腸内容物中の総IgA量についても同様の方法で測定した。
血中コルチコステロン量は、運動ストレス、拘束ストレス、および水侵拘束ストレス負荷群において、いずれも非ストレス群(対照群)に比べて高いレベルを維持したが、ストレスの種類による大きな差異は認められなかった(図1)。
腸内容物中の総IgA量は、運動ストレス負荷群において、非ストレス群(対照群)に対して有意(*<0.05、一元配置分散分析およびTukey’s test )に低下した。拘束ストレスおよび水侵拘束ストレス負荷群においては、非ストレス群に対して低値を示す傾向がみられた(図2)。
パイエル板細胞のIgA産生量は、運動ストレス、拘束ストレス群が非ストレス群に対して顕著に低下する傾向が認められた(図3)。
以上の結果から、マウスに運動ストレスあるいは拘束ストレスを負荷すると、血中コルチコステロンレベルが上昇し、腸管免疫系における総IgA分泌が抑制されることが明らかとなった。
【0030】
[実施例3] ストレス負荷による腸管免疫機能低下に対するビフィズス菌体破砕物の効果
雌性BALB/cマウスを6週齢で購入(日本クレア)し、3日間順化飼育した後、1群 8匹として、拘束ストレス負荷+BP投与、2)拘束ストレス負荷+BP非投与、3)拘束ストレス非負荷+BP投与、および4)拘束ストレス非負荷+BP非投与の4群に分けた。
実施例1で調製したBPを10 mg/日、9日間あらかじめ経口投与したマウスに対し、さらにBPの経口投与とともに拘束ストレス(1日5時間)を連続5日間負荷した(この場合、BPを14日間投与し、投与期間中の最後の5日間にストレスを負荷した)。
実験終了後、実施例2と同様に、腸内容物中総IgA量、およびパイエル板細胞の培養上清中のIFN−γ量をELISA法にて測定した。測定法は実施例2と同様に行い、このときの捕捉用抗体はラット抗マウスIFN−γ抗体、検出用抗体をビオチン標識ラット抗マウス用IFN−γ抗体(いずれもPharMingen)を用いた。
腸内容物中の総IgA量は、拘束ストレス負荷群において、BP投与群がBP非投与群に対して高値を示す傾向が認められた(図4)。また、拘束ストレス負荷群におけるBP非投与群の総IgA量は、非ストレス負荷群におけるBP投与群およびBP非投与群の総IgA量とほぼ同じレベルであった。
【0031】
一方、パイエル板細胞のIFN−γ産生量は、拘束ストレス負荷群および非拘束ストレス負荷群に対してBPを投与することにより、顕著に亢進した。
以上の結果から、BPの経口投与は、ストレス負荷による腸管粘膜におけるIgA産生の低下を抑制することが明らかとなった。これは、BP投与によってIFN−γ産生応答が亢進し、分泌型IgA産生が高まりことによるものと考えられる。
すなわち、Bifidobacterium pseudocatenulatum 7041の菌体破砕物の経口摂取は、ストレスによる腸管免疫の低下を改善することが明らかとなった。
このことは、プロバイオティクスとして期待されるBifidobacterium菌体成分が、ストレスによる腸管免疫系の機能低下を改善化できることを示すものである。
【0032】
【発明の効果】
本発明により、ストレスの結果として生じる腸管免疫系の機能低下を改善するのに有用なビフィズス菌製剤が提供された。該製剤は保健機能食品として有用である。ストレスは、身体的な過度の運動、精神的な極度の疲労、疾患状態を含む。
本発明により、ヒトを含む動物における、ストレスの結果として生じる免疫能、とりわけ腸管免疫系の機能低下を改善する作用を有するビフィズス菌製剤が提供された。また、ヒトを含む動物に対するストレス抵抗性を付与する作用を有するビフィズス菌製剤が提供された。ストレスは、身体的な過度の運動、精神的な極度の疲労、疾患状態を含む。
【図面の簡単な説明】
【図1】BALB/cマウスへの運動ストレス、拘束ストレス、水侵拘束ストレスおよび非ストレス負荷期間中の血中コルチコステロンの測定結果を示す。
ここで、運動ストレス:●、拘束ストレス:■、水侵拘束ストレス▲:非ストレス:×である。
【図2】BALB/cマウスへの同上ストレスを5日間負荷後の腸内容物中の総IgAの測定結果を示す。
【図3】BALB/cマウスへの同上ストレスを5日間負荷後のパイエル板細胞をCon AあるいはBP存在下で培養し、その培養上清中のIgAを測定した結果を示す。
【図4】Bifidobacterium pseudocatenulatum 7041菌体破砕物(BP)を10 mg/日、5日間経口投与したマウスに対し、拘束ストレス(1日5時間)を連続5日間負荷した後、
腸内容物中総IgA量を測定した結果を示す。
【図5】同上におけるパイエル板細胞をCon AあるいはBP存在下で培養し、その培養上清中のIgAを測定した結果を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bifidobacteria preparation that improves the intestinal immune system functional decline in animals (including humans) induced by stress. The bifidobacterial preparation of the present invention comprises administering a nutritional product comprising a bifidobacterial preparation to an animal (including a human) before, during and / or after a stress event. The present invention also relates to a nutritional product comprising an antioxidant system and a bifidobacterial preparation.
[0002]
[Prior art]
Originally described as a common group of biological reactions to various external adverse factors (stressors), that is, medical and physiological description as general adaptation syndrome, is called stress or stress response . Today, however, it is common to see changes in the body due to external factors, including social psychological factors, as “stress”. In the 1930s, one of the three symptoms of Sely who proposed the concept of stress is the atrophy of the thymus and lymphatics, as is clear from the fact that “stress”, including psychological emotion factors, affects the immune system. Bring about quantitative and qualitative changes.
[0003]
Regarding changes in peripheral blood leukocyte count, lymphocyte count, and lymphocyte fraction due to stress, reports so far have not necessarily been constant. Classically, it has been reported that the total number of white blood cells increases with the increase in peripheral blood granulocytes due to stress, but the number of lymphocytes decreases (for example, Non-Patent Document 1). However, recent reports using exercise as a physical stress model show that the number of transient peripheral blood lymphocytes (number of NK cells, number of T cells, number of B cells) increases during exercise, and exercise ends. Later, the number of lymphocytes decreases (for example, Non-Patent Document 2). Changes in T cell subsets also differ depending on the report, and there are many reports that the CD4 / CD8 ratio decreases due to stress, but there is also a report that it increases conversely.
[0004]
On the other hand, regarding the functional change of the immune system due to stress, NK cell activity, mitogenic stimulation such as phytohemagglutinin and concanavalin A, etc. all suppress lymphocyte proliferation reaction and antibody production ability due to various stresses.
[0005]
The mechanism by which stress imparts quantitative and qualitative changes as described above to an individual's immune system has been analyzed in a field called “psycho-neuroimmunology” or “neuroendocrine immunology”. According to it, it is becoming clear that the immune system as a biological defense system interacts with the nervous system and the endocrine system and works to maintain homeostasis through the so-called “nerve-endocrine-immune system” crosstalk. . However, at present, little has been analyzed on the effects of stress on the intestinal tract immune system, which has a different induction and control mechanism than the systemic and peripheral immune systems. That is, the intestinal tract immune system is characterized by secretion of IgA to the mucosal surface and plays an important role in infection protection, but the influence of various stresses on this IgA secretion has not been clarified so far.
[0006]
On the other hand, enterobacteria-derived components expected as probiotics have an intestinal immunity-modulating action (for example, Non-Patent Document 3).
[0007]
Some Gram-positive bacteria such as Bifidobacterium and Lactobacillus have functions to increase the proliferation activity of lymphocytes or enhance IgA production, and the immunoregulatory action of probiotics is expected. Anti-tumor effect and adjuvant activity have been reported for Gram-positive bacterial cell wall components such as peptidoglycan, but among Bifidobacterium cell-derived components, water-soluble polymer polysaccharide component also has high immunostimulatory action Has been reported. This active ingredient includes a high-molecular polysaccharide mainly composed of glucose and galactose, and the conjugated sugars include -4Galp- (or -5Galf1-) and -6Glcp1-, and galacto such as Galf1- and -6Galf1-. Furanoside is also included. Furthermore, a correlation between the structure taking a β-glucoside bond and activity has also been suggested.
[0008]
B. High mitogenic activity As a result of oral administration of the bacterial component derived from pseudoceratum 7041 to mice for 6 days, CD4 positive cells on the Peyer's patch, which is the induction site of the intestinal tract immune system, are interleukin-6 (IL-6) and interferon-γ (IFN-γ). It has been clarified that the production amount of cytokines such as these increases, and the total amount of IgA exocrine to the intestinal mucosa increases. From this, when sensitization to the mucosal immune system occurs by the bacterial component, IL-6 promotes the induction of terminal differentiation into IgA plasma cells, and on the epithelial cell (IEC) side, poly-Ig is promoted by IFN-γ. It is suggested that the induction of receptor (pIgR) is promoted, and as a result, secretion of SIgA to the luminal side is promoted.
[0009]
Furthermore, there is a possibility that metabolites (short chain fatty acids, etc.) produced in the intestinal tract by cells expected as probiotics may act on intestinal epithelial cell lymphocytes (IEC), etc., and SIgA production It is inferred that it has an influence on
[0010]
[Non-Patent Document 1] Keller, S .; E. et al. : Science. 221: 1301-1303, 1983; Keller, S .; E. et al. : Proc. Natl. Acad. Sci. USA. 85: 9297-9301, 1988
[Non-Patent Document 2] Hoffman-Goetz, L. et al. et al. : Immunol. Today. 15: 382-387, 1994
[Non-Patent Document 3] Akira Hosono: FOOD Style 21 2002. 9 (Vol. 6 No. 9)
[0011]
[Problems to be solved by the invention]
The present invention provides a bifidobacterial preparation having an action of improving the immune ability resulting from stress in animals including humans, in particular, the functional deterioration of the intestinal tract immune system. The present invention also provides a bifidobacterial preparation having an action of imparting stress resistance to animals including humans. Stress includes excessive physical exercise, extreme mental fatigue, and disease state.
[0012]
[Means for Solving the Problems]
The present invention has been made based on the finding that oral ingestion of Bifidobacterium bacteria can improve intestinal immunity deterioration induced by stress.
[0013]
That is, the present invention is (1) a bifidobacteria preparation that improves stress resistance and / or stress-induced decline in immune function, comprising as an active ingredient a bacterial component of the genus Bifidobacterium.
(2) The bifidobacteria preparation of (1), which is a decrease in intestinal immunity function,
(3) The bifidobacteria preparation of (2), wherein the bacterium belonging to the genus Bifidobacterium is Bifidobacterium pseudocatenum 7041,
(4) The bifidobacteria preparation of (1), wherein the bacterial cell component is an ultrasonic disruption product and / or a fraction thereof,
(5) The bifidobacteria preparation of (4), wherein the fraction is a cell wall fraction, a cytoplasmic membrane fraction, a protoplast, or a water-soluble fraction,
(6) Use of an active ingredient as a bacterial component of the genus Bifidobacterium to produce a bifidobacteria preparation that improves stress resistance and / or stress-induced decline in immune function.
(7) Use of (6), wherein the bacterium of the genus Bifidobacterium is Bifidobacterium pseudocatetumum 7041,
(8) Use of (7), wherein the bacterial cell component is an ultrasonic disruption product and / or a fraction thereof,
(9) Use of (8), wherein the fraction is a cell wall fraction, a cytoplasmic membrane fraction, a protoplast, or a water-soluble fraction,
Consists of.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The bacterial species in the genus Bifidobacterium (hereinafter also referred to as “Bifidobacteria”) were studied by Reuter, Mitsuka, Scardovi et al. And classified into 11 bacterial species in the eighth edition of Bergey's Manual. Thereafter, classification by genotype using DNA homology was introduced by Scardovi, and many new bacterial species were recognized based on DNA homology. In Bergey's Manual of Systematic Bacteriology (1986), it is classified into 24 bacterial species, and as shown in Table 1, 26 species of Bifidobacterium are currently recognized (Tomooka Mitsuoka Editing. 1992. Intestine). Classification and ecology of flora: p.55-72.
[0015]
[Table 1]
[0016]
B. adolescentis was divided into four biovars a, b, c, and d according to the utilization of mannitol and sorbitol. On the other hand, B. catenuratim, B.M. angulatum, B.I. denium, and B.I. pseudocatenumatum was reported as a new strain isolated from human feces, vagina and oral cavity, sewage and calf by Scardovi et al. As shown in Table 2, these four bacterial species have B. Although it is a clearly different bacterial species from adolescentis, its glycolytic properties are considered to be similar (edited by Tomochitsu Mitsuoka. 1992. Classification and ecology of intestinal flora: p. 55-72) Center).
[0017]
[Table 2]
[0018]
In the present invention, candidate Bifidobacterium genus species include all the species (live and dead) shown in Tables 1 and 2. The culture method of bifidobacteria is publicly known (Tomoho Mitsuoka, “The World of Enteric Bacteria” (Koubunsha, 1980)). Also included are bifidobacteria cultures, purified bifidobacteria cells, freeze-dried cells, and commercially available bifidobacteria preparations. As for bifidobacteria preparations, many products that appeal for 1 × 10 10 cells / g or more are also seen.
[0019]
The present invention is a crushed cell body fraction, a cell wall fraction, a protoplast, a cytoplasmic membrane fraction, or a water-soluble fraction, and when subjected to various stresses, decreased production of IgA antibody and total IgA in the intestinal mucosal system, and Including all in vitro mitogenic effects on lymphocytes or suppressing the production of cytokines.
[0020]
The cell-insoluble fraction containing the soluble cytoplasmic fraction of bifidobacteria and other membrane fractions can be easily separated by ultracentrifugation after sonication of the cells. Preparation of cell wall fractions, protoplasts, cytoplasmic membrane fractions, or water-soluble fractions is known [for example, Hiroshi Matsuzawa, Sumiharu Lee, “Microbial Experiments (Neochemistry Laboratory)”, Japan Biochemical Society, Ltd. ) Tokyo Chemical Doujin, p. 179; Japanese Patent No. 3174611; Japanese Patent Laid-Open No. 9-241179, and the present invention includes these known techniques.
[0021]
Bifidobacteria are distributed in the digestive tract and faeces of humans and various animals, the human vagina and oral cavity, the digestive tract of bees, and sewage, and there is a “separation” between humans and animal species and between infants and adults. It is done. Currently, 10 bacterial species have been reported as human-derived bifidobacteria, but in Japan, it has been reported that Bifidobacteria species isolated from humans are B. cerevisiae species. bifidum, B.I. infantis, B.M. breve, B.M. longum, B.M. It is 5 species of adolescentis and other species have not been reported (edited by Tomomitsu Mitsuoka. 1992. Classification and ecology of intestinal flora: p. 55-72.
[0022]
Therefore, when the subject of application to improve stress-induced immunosuppression is a human, the candidate bifidobacteria are the above ten bacterial species that are resident in humans, namely B. cerevisiae. bifidum, B.I. infantis, B.M. breve, B.M. longum, B.M. adolescentis, B.M. angulatum, B.I. catenatum, B. et al. pseudocateulatum, B.I. dentium and B.I. gallicum. Further, when the subject is assumed to be a domestic cattle, Bifidobacterium derived from cattle in Table 1, ie, B. bifidum, B.I. adolescentis, B.M. pseudocateulatum, B.I. globosum, B.I. pseudolongum, B.I. animalis, B. et al. thermophilum and B.I. room is a candidate. If the subject is a chicken, the same idea is applied. pseudolongum, B.I. animalis, B. et al. thermophilum, B.M. pullorum and B.I. Gallicum is a candidate. In addition, bifidobacteria isolated from nature will be candidates.
[0023]
Bifidobacteria strains of microorganism preservation organizations include B. longum ATCC 15707 T strain (Intestine of adult), breveATCC15700 T strain (Intestine of infant), B.I. infantisATCC15697 T strain (Intestine of infant), B.I. adolescentis ATCC 15703 strain T (Intestine of adult), catenulatimATCC27677 strain (Int. J. Syst. Bact. 24:
6-20, 1974) and the like.
[0024]
In recent years, it has been clarified that the action of bifidobacteria is slightly different depending on the species or strains, and the recent usage tendency is more functional by combining several types of bacteria with different characteristics. Many products that have been combined with oligosaccharides, which are enhanced products or as growth factors for intestinal bifidobacteria, have come to be seen. Therefore, the present invention includes such a combination.
[0025]
The preparation containing the disrupted bifidobacteria, cell wall fraction, protoplast, cytoplasmic membrane fraction, or water-soluble fraction of the present invention should be administered to animals including humans whose immune function has been reduced by stress for the purpose of improving immune function. Can do. Moreover, it can utilize as a health functional food with respect to the human whose immune function fell by stress. In addition, an effective amount of an animal whose immune function has been reduced by stress can be added to the feed for the purpose of improving immune function.
[0026]
Antibiotics that exert an advantageous effect on immune function, such as vitamin A, selenium, vitamin C or β-carotene, can be added to the bifidobacteria preparation.
The effective amount when a human whose immune function is reduced by stress ingests a bifidobacteria preparation for the purpose of improving immune function or improving immune function is empirically more than 10 9 viable bacteria per day This figure is considered to be a guideline (Ogata T. et al .: Bioscience Microflora, 16 (2): 53-58, 1997), but is effective in improving immune function. The amount can be determined from known immunological parameters (eg, activation of leukocyte function).
[0027]
The form of the bifidobacteria preparation of the present invention can be, for example, a lump, liquid, syrup, or powder, and various additives such as a bulking agent, a sweetener, and other carbohydrates can be used depending on these forms. , Vitamins, fragrances, colorants and the like. The form may be a liquid or powder food form, or a pharmaceutical form such as a powder, powder, liquid, suspension, tablet, or foaming agent.
[0028]
Next, an example explains the present invention.
【Example】
[Example 1] Preparation of Bifidobacteria cell disruption Bifidobacterium pseudocatenurum 7041 [Nippon Bifidobacterium Center] was anaerobically cultured at 37 ° C for 48 hours.
After culture, the cells are collected by centrifugation (6,000 × g, 5 ° C., 10 minutes), washed 3 times with ultrapure water (6,000 × g, 5 ° C., 10 minutes), and then lyophilized. And stored at -20 ° C. Freeze-dried cells are suspended in ultrapure water at 4 mg / mL, then sonicated under ice-cooling (manufactured by Otake Seisakusho, 15 minutes), and then untreated by centrifugation at 800 × g, 5 ° C. for 5 minutes. The metal waste produced by the cells and sonication was removed. This was freeze-dried to obtain cell debris (BP) (BP was stored at −20 ° C. until assay).
[0029]
[Example 2] Effect of various stress loads on intestinal immunity Female BALB / c mice were purchased at 6 weeks of age (Claire Japan), acclimated for 3 days, and then divided into 4 groups of 8 per group. Next, only the exercise stress group was trained in running water swimming exercise for 5 days from the 4th to the 8th day (3 minutes set for 5 minutes in running water at 32 ° C. and 7 L / min), and further 11 days after 2 days. Each group was stressed under the following conditions for 5 days on the 15th day. During the experimental period (15 days), each mouse was given free access to mouse solid feed MF (oriental yeast) and water.
The stress conditions are as follows: exercise stress, water temperature 32 ° C, 7L / min running water swimming exercise load (10 min x 3 sets per day), restraint stress (50 mL polypropylene tube with many small holes) Fixation) Load group (3 hours a day), water invasion restraint stress (Mouse was fixed in a 50 mL polypropylene tube with many small holes, and water was stored at a depth of 1 cm and about 32 ° C. It was left in a cage), a load group (3 hours a day), and a non-stress load group.
Blood was collected from the orbital venous plexus for 5 days before stress was applied (day 10) and during the stress period (days 11, 12, 13, 14, and 15), and the amount of corticosterone in plasma was measured by the RIA method. did.
After the end of stress loading (15th day), Peyer's patch cells were collected from the mice, and the total IgA amount in the culture supernatant under culture conditions by various cytokine stimulation was measured by ELISA. The outline of the ELISA method is as follows.
A goat anti-mouse IgA antibody (ICN Pharmaceuticals) was added to a 96-well microplate (MaxSorp, Nunc) and immobilized at 4 ° C. overnight. After blocking with bovine serum albumin (BSA), a measurement sample diluted to an appropriate magnification with a 1% BSA-PBS-Tween solution (sample buffer) was added to each well and incubated at 4 ° C. overnight. Biotinylated anti-mouse IgA antibody (Sigma) diluted 1: 1000 with sample buffer was added to each well and incubated at room temperature for 2 hours. Streptavidin-alkaline phosphatase complex (Zymed) diluted 1,000-fold with 1% BSA-PBS-Tween solution was added to each well and incubated at room temperature for 1 hour. Then, 0.1% disodium phenylphosphate-containing diethanolamine buffer was added to each well, incubated at 37 ° C., and the absorbance was measured at 405 nm (BioRad). The total amount of IgA in the intestinal contents was also measured by the same method.
Blood corticosterone levels remained high in the exercise stress, restraint stress, and water stress restraint stress groups compared to the non-stress group (control group), but there were significant differences depending on the type of stress. (Figure 1).
The total IgA content in the intestinal contents was significantly decreased (* <0.05, one-way analysis of variance and Tukey's test) in the exercise stress group compared to the non-stress group (control group). The restraint stress and water invasion restraint stress load groups tended to show lower values than the non-stress group (FIG. 2).
The IgA production amount of Peyer's patch cells tended to decrease significantly in the exercise stress and restraint stress groups compared to the non-stress group (FIG. 3).
From the above results, it was revealed that when exercise stress or restraint stress is applied to mice, the blood corticosterone level increases and total IgA secretion in the intestinal tract immune system is suppressed.
[0030]
[Example 3] Effect of disrupted bifidobacteria on intestinal immunity function due to stress load Female BALB / c mice were purchased at 6 weeks of age (CLEA Japan) and acclimatized for 3 days, and then 8 animals per group. They were divided into four groups: restraint stress load + BP administration, 2) restraint stress load + BP non-administration, 3) restraint stress non-load + BP administration, and 4) restraint stress non-load + BP non-administration.
A mouse subjected to oral administration of BP prepared in Example 1 at 10 mg / day for 9 days in advance was further subjected to restraint stress (5 hours per day) along with oral administration of BP for 5 consecutive days (in this case, BP was 14 times). For the last 5 days during the dosing period).
After the experiment was completed, in the same manner as in Example 2, the total amount of IgA in the intestinal contents and the amount of IFN-γ in the culture supernatant of Peyer's patch cells were measured by ELISA. The measurement was performed in the same manner as in Example 2. At this time, a rat anti-mouse IFN-γ antibody was used as the capture antibody, and a biotin-labeled rat anti-mouse IFN-γ antibody (both from PharMingen) was used as the detection antibody.
The total IgA content in the intestinal contents tended to be higher in the BP administration group than in the BP non-administration group in the restraint stress load group (FIG. 4). Moreover, the total IgA amount of the BP non-administered group in the restraint stress load group was almost the same level as the total IgA amount of the BP-administered group and the BP non-administered group in the non-stress load group.
[0031]
On the other hand, the amount of IFN-γ produced by Peyer's patch cells was remarkably enhanced by administering BP to the restraint stress load group and the non-restraint stress load group.
From the above results, it has been clarified that oral administration of BP suppresses a decrease in IgA production in the intestinal mucosa due to stress load. This is considered to be due to the increased IFN-γ production response and increased secretory IgA production by BP administration.
That is, it was clarified that oral ingestion of Bifidobacterium pseudocatenurum 7041 microbial cell disruption improves the decrease in intestinal immunity due to stress.
This indicates that the Bifidobacterium cell component expected as probiotics can improve the functional deterioration of the intestinal tract immune system due to stress.
[0032]
【The invention's effect】
According to the present invention, a bifidobacteria preparation useful for improving the functional deterioration of the intestinal tract immune system resulting from stress is provided. The preparation is useful as a health functional food. Stress includes excessive physical exercise, extreme mental fatigue, and disease state.
INDUSTRIAL APPLICABILITY According to the present invention, a bifidobacterial preparation having an effect of improving immune ability resulting from stress in animals including humans, in particular, functional deterioration of the intestinal tract immune system is provided. Moreover, the bifidobacteria preparation which has the effect | action which provides the stress resistance with respect to the animal including a human was provided. Stress includes excessive physical exercise, extreme mental fatigue, and disease state.
[Brief description of the drawings]
FIG. 1 shows the measurement results of blood corticosterone during exercise stress, restraint stress, water invasion restraint stress and non-stress load period on BALB / c mice.
Here, exercise stress: ●, restraint stress: ■, water invasion restraint stress ▲: non-stress: x.
FIG. 2 shows the measurement results of total IgA in intestinal contents after 5 days of stress applied to BALB / c mice for the same period as above.
FIG. 3 shows the results of measurement of IgA in the culture supernatant after culturing Peyer's patch cells in the presence of Con A or BP after loading the same stress on BALB / c mice for 5 days.
FIG. 4 shows that mice subjected to oral administration of Bifidobacterium pseudocatenurum 7041 crushed cells (BP) at 10 mg / day for 5 days were subjected to restraint stress (5 hours per day) for 5 consecutive days.
The result of having measured the total amount of IgA in intestinal contents is shown.
FIG. 5 shows the results obtained by culturing the Peyer's patch cells in the above in the presence of Con A or BP and measuring IgA in the culture supernatant.
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003038831A JP2004262773A (en) | 2003-02-17 | 2003-02-17 | Bifidus bacterial pharmaceutical preparation for improving immunological function |
PCT/JP2004/001683 WO2004071520A1 (en) | 2003-02-17 | 2004-02-17 | Bifidobacterium preparation for improving immune functions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003038831A JP2004262773A (en) | 2003-02-17 | 2003-02-17 | Bifidus bacterial pharmaceutical preparation for improving immunological function |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004262773A true JP2004262773A (en) | 2004-09-24 |
Family
ID=32866408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003038831A Pending JP2004262773A (en) | 2003-02-17 | 2003-02-17 | Bifidus bacterial pharmaceutical preparation for improving immunological function |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2004262773A (en) |
WO (1) | WO2004071520A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006087913A1 (en) * | 2005-02-02 | 2006-08-24 | Meiji Dairies Corporation | Composition for immune activation |
WO2007122885A1 (en) | 2006-03-31 | 2007-11-01 | Morinaga Milk Industry Co., Ltd. | Interleukin production regulator, pharmaceutical composition or food comprising the interleukin production regulator, and method for production of the interleukin production regulator |
JP2008195635A (en) * | 2007-02-09 | 2008-08-28 | Crossfield Bio Inc | Lactic acid bacteria preparation for horse |
JP2009100692A (en) * | 2007-10-24 | 2009-05-14 | Crossfield Bio Inc | New microorganism of genus lactobacillus and lactic acid bacterial preparation for mammal |
JP2011517568A (en) * | 2008-04-15 | 2011-06-16 | ネステク ソシエテ アノニム | Bifidobacterium longum and hippocampal BDNF expression |
WO2012173163A1 (en) * | 2011-06-14 | 2012-12-20 | 有限会社バイオメディカルリサーチグループ | Crushed cells and composition thereof |
JP2013503130A (en) * | 2009-08-25 | 2013-01-31 | ネステク ソシエテ アノニム | Bifidobacterium longum and functional GI disorders |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0656680A (en) * | 1992-02-10 | 1994-03-01 | Vesely Renata Maria Anna Cavaliere | Nutritional and/or pharmaceutical composi- tion containing freeze-dried lactic acid bacterium and preparation and use thereof |
JPH08214900A (en) * | 1995-02-17 | 1996-08-27 | Yakult Honsha Co Ltd | Rna sequence, new segment bacterium, its detection and use thereof |
JPH1192390A (en) * | 1997-09-17 | 1999-04-06 | Natl Fedelation Of Agricult Coop Assoc | Agent for improving stressed state |
JP2001314172A (en) * | 1999-09-20 | 2001-11-13 | Meiji Milk Prod Co Ltd | Immunoactivating composition |
JP2002017337A (en) * | 2000-05-02 | 2002-01-22 | Biofuerumin Seiyaku Kk | Dried microbial cell by spray-drying |
-
2003
- 2003-02-17 JP JP2003038831A patent/JP2004262773A/en active Pending
-
2004
- 2004-02-17 WO PCT/JP2004/001683 patent/WO2004071520A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0656680A (en) * | 1992-02-10 | 1994-03-01 | Vesely Renata Maria Anna Cavaliere | Nutritional and/or pharmaceutical composi- tion containing freeze-dried lactic acid bacterium and preparation and use thereof |
JPH08214900A (en) * | 1995-02-17 | 1996-08-27 | Yakult Honsha Co Ltd | Rna sequence, new segment bacterium, its detection and use thereof |
JPH1192390A (en) * | 1997-09-17 | 1999-04-06 | Natl Fedelation Of Agricult Coop Assoc | Agent for improving stressed state |
JP2001314172A (en) * | 1999-09-20 | 2001-11-13 | Meiji Milk Prod Co Ltd | Immunoactivating composition |
JP2002017337A (en) * | 2000-05-02 | 2002-01-22 | Biofuerumin Seiyaku Kk | Dried microbial cell by spray-drying |
Non-Patent Citations (2)
Title |
---|
BIOSCIENCE AND MICROFLORA, vol. 17, no. 2, JPN6009038324, 1998, pages 97 - 104, ISSN: 0001381926 * |
日本栄養・食糧学会総会講演要旨集, vol. 56, JPN6009038323, 2002, pages 351 - 3, ISSN: 0001381925 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006087913A1 (en) * | 2005-02-02 | 2006-08-24 | Meiji Dairies Corporation | Composition for immune activation |
US7943124B2 (en) | 2005-02-02 | 2011-05-17 | Meiji Dairies Corporation | Composition for immunostimulation |
JP4979689B2 (en) * | 2006-03-31 | 2012-07-18 | 森永乳業株式会社 | Interleukin production regulator, pharmaceutical composition and food / beverage products containing the interleukin production regulator, and method for producing the same |
WO2007122885A1 (en) | 2006-03-31 | 2007-11-01 | Morinaga Milk Industry Co., Ltd. | Interleukin production regulator, pharmaceutical composition or food comprising the interleukin production regulator, and method for production of the interleukin production regulator |
JP2008195635A (en) * | 2007-02-09 | 2008-08-28 | Crossfield Bio Inc | Lactic acid bacteria preparation for horse |
JP2009100692A (en) * | 2007-10-24 | 2009-05-14 | Crossfield Bio Inc | New microorganism of genus lactobacillus and lactic acid bacterial preparation for mammal |
JP2011517568A (en) * | 2008-04-15 | 2011-06-16 | ネステク ソシエテ アノニム | Bifidobacterium longum and hippocampal BDNF expression |
JP2015077133A (en) * | 2008-04-15 | 2015-04-23 | ネステク ソシエテ アノニム | Bifidobacterium longum and hippocampal bdnf expression |
JP2017160200A (en) * | 2008-04-15 | 2017-09-14 | ネステク ソシエテ アノニム | Bifidobacterium longum and hippocampal BDNF expression |
JP2013503130A (en) * | 2009-08-25 | 2013-01-31 | ネステク ソシエテ アノニム | Bifidobacterium longum and functional GI disorders |
JP2016074682A (en) * | 2009-08-25 | 2016-05-12 | ネステク ソシエテ アノニム | Bifidobacterium longum and functional gi disorder |
JP2018048112A (en) * | 2009-08-25 | 2018-03-29 | ネステク ソシエテ アノニム | Bifidobacterium longum and functional gi disorders |
WO2012173163A1 (en) * | 2011-06-14 | 2012-12-20 | 有限会社バイオメディカルリサーチグループ | Crushed cells and composition thereof |
JP5511112B2 (en) * | 2011-06-14 | 2014-06-04 | 有限会社バイオメディカルリサーチグループ | Disrupted microbial cell and its blend |
Also Published As
Publication number | Publication date |
---|---|
WO2004071520A1 (en) | 2004-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9801914B2 (en) | Prevotella histicola preparations and the treatment of autoimmune conditions | |
Matricardi et al. | High microbial turnover rate preventing atopy: a solution to inconsistencies impinging on the Hygiene hypothesis? | |
Scharek et al. | Influence of a probiotic Enterococcus faecium strain on development of the immune system of sows and piglets | |
Davis et al. | Gut microbiome and breast-feeding: Implications for early immune development | |
EP2475764B1 (en) | Probiotic derived non-viable material for allergy prevention and treatment | |
JP6935632B2 (en) | Faecalibacterium prausnitzi CNCM I-4573 strain for the treatment and prevention of gastroenteritis | |
TW202120109A (en) | Compositions and methods of treating a th2-mediated condition using prevotella | |
JP4942831B2 (en) | Antiallergic composition | |
Saliganti et al. | Feeding probiotic Lactobacillus rhamnosus (MTCC 5897) fermented milk to suckling mothers alleviates ovalbumin-induced allergic sensitisation in mice offspring | |
JP2018532380A (en) | Enterobacteriaceae butyric acid intestini and uses thereof | |
JP5144186B2 (en) | Antiallergic agent | |
JP2004262773A (en) | Bifidus bacterial pharmaceutical preparation for improving immunological function | |
WO2022011271A2 (en) | Probiotics for use in the prevention or treatment of illness and/or symptoms associated with coronaviruses | |
EP2879698B1 (en) | Use of attenuated strains of toxoplasma for the prevention or treatment of cryptosporidiosis | |
Vidal et al. | Effect of Lactobacillus paracasei NCC2461 on antigen-specific T-cell mediated immune responses in aged mice | |
JP2022155522A (en) | Agent for suppressing decreased immune function and method for suppressing decreased immune function | |
KR20240093392A (en) | Compositions and methods for treating diseases | |
García-Elorriaga et al. | Nutrition and intestinal microflora | |
JP2011068643A (en) | Antiallergic drug for oral administration, containing lactic acid bacteria and antigenic substance | |
Shaaban et al. | Evaluation of the role of combined prebiotic and probiotic supplements as prophylactic and therapeutic agents against experimental giardiasis | |
Pope et al. | Influence of commensal microbiota and metabolite for mucosal immunity | |
JP4463525B2 (en) | Desensitization therapy agent | |
BG112471A (en) | Immunomodulating synbiotic composition | |
Ménard et al. | Stimulation of immunity without alteration of oral tolerance in mice fed with heat-treated fermented infant formula | |
Huoman | Immune maturation and modulation in childhood allergies: Aspects of epigenetic, mucosal and systemic immune mediators in allergy development and prevention |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051220 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090804 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091002 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091112 |