【0001】
【発明の属する技術分野】
本発明は、電気光学効果、音響光学効果、非線形光学効果などを用いた光導波路、光変調器、波長変換素子及び光スイッチング素子を始めとする各種光学用途に好適な光学単結晶薄膜及びその製造方法に関するものである。
【0002】
【従来の技術】
電気光学効果、音響光学効果及び非線形光学効果等の光学特性を備えた光学材料の中では、LiNbO3単結晶などの薄膜が主な光学素子として広く用いられている。特に近年は、光集積回路のモノリシック化技術、更には半導体の電子回路と結合させた光電子集積回路のモノリシック化技術に対応すべく、光学素子の小型化や低コスト化が求められるのは言うまでもなく、これまで以上に光学特性の優れた単結晶薄膜が強く求められている。
【0003】
LiNbO3単結晶薄膜の製造法としては、液相エピタキシャル結晶成長法(LPE法)を用いる方法、例えば、Li2O−V2O5−Nb2O5系の酸化物原料の入ったルツボをヒーターで900〜1100℃に加熱して、原料を溶融液とし、引き上げ棒に固定したLiTaO3の単結晶基板を溶融液に浸漬し、このLiTaO3単結晶基板上にLiNbO3単結晶薄膜を形成する方法が提案されている(例えば、特許文献1)。しかしながら、LPE法では、結晶育成に伴って溶融液の組成が変化し、それにより育成される結晶の組成も徐々に変化してしまうために、均一組成の結晶を育成することが難しいという問題がある。
【0004】
また、CVD法やスパッタ法などの気相法により単結晶薄膜を形成する方法が工業的に多く採用されている。しかしながら、これら気相法で得られる薄膜の表面は、LPE法で得られる単結晶基板表面よりも粗大な粒子で構成されるために、緻密性が劣ることが分かっている。また、実験室レベルで簡便に単結晶薄膜を形成する方法として、レーザーアブレーション法がよく知られている。このレーザーアブレーション法を用いた薄膜の形成法としては、例えば、真空槽内に置かれた直径1インチ程度の非加工物にしきい値以上のエネルギー密度のレーザー光を照射し、飛び出した物質を基板に付着させて薄膜を形成する方法が提案されている(例えば、特許文献2)。しかしながら、非加工物が局所的に短時間で高温になるために、数μm程度の熔けた粒塊(一般に、ドロプレットという)が飛び出し、薄膜の穴の原因になったり、薄膜中に粗大粒子を取り込んだりしてしまうため、緻密で結晶性の高い膜を得ることが難しいという問題がある。
【0005】
【特許文献1】
特開平4−12095号公報
【特許文献2】
特開平5−279844号公報
【0006】
【発明が解決しようとする課題】
従って、本発明は、上記の従来技術の問題を解決しようとするものであり、緻密で結晶性が高く、且つ均一な組成の、光導波路、光変調器、波長変換素子、光スイッチング素子などの各種光学用途に好適な光学単結晶薄膜及びその製造方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明に係る光学単結晶薄膜の製造方法は、溶融化成分を含む溶融膜を基板上に形成する第1工程と、10Pa〜1.5kPaの空気雰囲気下又は酸化雰囲気下において、溶融膜を加熱して液体状態にし、その溶融膜に光学単結晶原料ガスを溶解させ、溶融膜と基板との界面に光学単結晶を析出させる第2工程とを有する。
【0008】
【発明の実施の形態】
図1は、本発明の一実施形態で用いることのできる薄膜製造装置である。
以下、図1を用いて本発明の光学単結晶薄膜の製造方法について説明する。本発明の第1工程(溶融膜の形成工程)において、例えば、チャンバー1内にガス導入管3から空気又は酸化性ガスを導入して、チャンバー1内を空気雰囲気又は酸化雰囲気にすることができ、さらにチャンバー1に取り付けてある真空ポンプ4によりチャンバー1内を減圧することができるようになっている。α−Al2O3単結晶基板7は、基板ホルダー6に固定され、それを介してヒーターブロック5により基板を加熱することができるようになっている。エキシマレーザー14から発振されたレーザー光8は、窓2を通過してチャンバー1内に入射される。さらにレーザー光8は、チャンバー1内に配置された溶融膜原料ターゲット9に照射されるようになっている。また、光学単結晶原料10は、溶融膜原料ターゲット9をチャンバー1から取り出すことなく、溶融膜原料ターゲット9と交換可能にチャンバー1内に配置されている。
【0009】
このような構成において、例えば、チャンバー1内に設置した溶融膜原料ターゲット9にレーザー光8を照射してアブレーションすると、α−Al2O3単結晶基板7上に溶融膜を形成することができる。基板上に溶融膜を形成する他の方法として、ゾルゲル法を用いて基板上に溶融膜原料を塗布したものを加熱して溶融膜を形成する方法が挙げられる。
次いで、溶融膜原料ターゲット9と光学単結晶原料ターゲット10とを交換し、例えば、空気雰囲気下又は酸化雰囲気下で、溶融膜12を加熱して液体状態にしておく。光学単結晶原料ターゲット10にレーザー光8を照射してアブレーションする。レーザーアブレーションにより発生する光学単結晶原料ガス11を液体状態の溶融膜12に溶解させ続けると、飽和状態、過飽和状態を経て溶融膜12と基板7との界面に光学単結晶薄膜13を析出させることができる。光学単結晶原料ガスを発生させる他の方法としては、CVD法やスパッタ法を挙げることができる。
溶融膜と基板との界面に光学単結晶を析出させた後、チャンバー1内をさらに減圧するか若しくは基板を更に加熱することによって溶融膜を蒸発させてこれを除去することが望ましく、それにより表面に不純物のない平滑な光学単結晶薄膜を得ることができる。また、溶融膜に光学特性改善を目的とする成分を多く添加した場合、溶融膜の蒸発除去が困難となるので、凝固させた溶融膜を化学研磨又は物理研磨して溶融膜を除去する方法が有効である。
【0010】
本発明において、溶融膜と基板との界面に光学単結晶を析出させるためには、溶融膜が還元されたり蒸発したりせず且つ液体状態である温度と、光学単結晶が析出しやすい温度とが一致していなければならない。酸化されやすいSi基板を用いることも考慮に入れると、本発明では基板温度を400℃〜800℃とすることが望ましい。そこで、図1の装置を用いてレーザーアブレーション法により、α−Al2O3単結晶基板上に厚さ1000Åの溶融膜を形成したものを用意し、基板温度やチャンバー内の圧力を変えて、400℃〜800℃の基板温度における溶融膜の最適溶融条件を検討した。尚、圧力を下げると液相線は低温側にシフトし、圧力を上げると液相線は高温側にシフトすることを考慮して、基板温度400℃及び450℃では、チャンバー内の圧力を7Pa及び10Paとし、基板温度750℃及び800℃では、チャンバー内の圧力を1.5kPaとした。
溶融膜の評価は、設定温度に達してから10分後に急冷した溶融凝固物の表面観察により行った。基板温度400℃では、いずれの圧力でもドロップレットと見られる粒子が観測され、溶融した形跡が見られなかった。基板温度450℃、チャンバー内圧力7Paでは、表面にドロップレットは殆ど観察されなかったが、膜が灰色を呈しており還元されていた。一方、基板温度450℃、チャンバー内圧力10Paでは、表面にドロップレットは殆ど観察されず、膜がほぼ透明であり還元されていなかった。次に、750℃、チャンバー内圧力1.5kPaでは、ドロップレットは観察されず、膜がほぼ透明であり還元されていなかった。800℃、チャンバー内圧力1.5kPaでは、局所的に直径100μmを超える大きな穴があり、膜が激しく蒸発したと考えられる形跡が見られた。
上記の結果から、400℃〜800℃の基板温度における溶融膜の最適溶融条件は、チャンバー内の圧力が10Pa〜1.5kPaのときであることが分かった。
【0011】
本発明に用いる溶融膜は、酸化ホウ素(B2O3)、酸化バナジウム(V2O6)又はこれらの混合物を溶融化成分として含む。さらに、溶融膜が、溶融化成分の他に、目的とする光学単結晶の原料を含むことにより、光学単結晶薄膜の製造効率を向上させることができる。溶融膜中の光学単結晶原料と溶融化成分とのモル比は、0.05:1〜2:1であることが好ましい。この範囲内であれば、光学単結晶析出工程における10Pa〜1.5kPaの条件下であっても溶融膜は還元され難く、且つ分解蒸発し難くなるために、光学単結晶原料ガスを安定して効率よく溶解させることができる。溶融膜形成に用いる溶融膜原料ターゲットの調製方法は、例えば、目的とする光学単結晶薄膜がLiNbO3である場合、Liが水分や炭酸ガスを吸着し易いことから、LiNbO3粉末とLiBO2粉末とを用意し、これらを混合したものをホットプレスで加圧焼結する方法が挙げられる。同様に、目的とする光学単結晶薄膜が、タンタル酸リチウム(LiTaO3)である場合には、LiTaO3粉末とLiBO2粉末、ニオブタンタル酸リチウム(Li(Nb,Ta)O3)である場合には、Li(Nb,Ta)O3粉末とLiBO2粉末とを用いて溶融膜原料ターゲットを調製することができる。
【0012】
本発明に用いる光学単結晶原料としては、ニオブ酸リチウム(LiNbO3)、タンタル酸リチウム(LiTaO3)及びニオブタンタル酸リチウム(Li(Nb,Ta)O3)を挙げることができる。これらは同じ結晶析出メカニズムを有しているので、何れの光学単結晶原料を用いた場合でも、本発明の方法により、緻密で結晶性が高く、且つ均一な組成の光学単結晶薄膜を得ることができる。
【0013】
本発明に用いる基板としては、α−Al2O3単結晶基板、ニオブ酸リチウム(LiNbO3)単結晶基板、タンタル酸リチウム(LiTaO3)単結晶基板が挙げられることは言うまでもなく、酸化亜鉛(ZnO)、α−Al2O3、酸化クロム(III)(Cr2O3)、酸化ガドリニウム(III)(Gd2O3)若しくは酸化鉄(III)(Fe2O3)の単結晶膜を最表面に配置した積層基板も挙げることができる。これらの基板を用いることにより、所望の結晶の析出を容易にすることができる。
【0014】
【実施例】
図1と同様の薄膜製造装置を用いて本発明の実施例を説明する。
実施例1.
(光学単結晶薄膜の調製)
まず、LiNbO3粉末1モルとLiBO2粉末1モルとを混合した後、ホットプレスを用いて加圧焼結させ、溶融膜原料ターゲット9を調製した。
調製した溶融膜原料ターゲット9、LiNbO3光学単結晶原料ターゲット10及びα−Al2O3単結晶基板7をチャンバー1内の所定の位置に設置し、ガス導入管3から酸素ガスを導入しながら真空ポンプ4を用いてチャンバー内圧力を53.3Paにした。20℃、53.3Paの酸化雰囲気下で、レーザー光8を溶融膜原料ターゲット9に照射し、α−Al2O3単結晶基板7上に厚さ1000Åの溶融膜12を形成した。次に、圧力を保持したまま、α−Al2O3単結晶基板7を570℃に加熱し、溶融膜を液体状態にしてから10分後、LiNbO3光学単結晶原料ターゲット10にレーザー光8を照射してアブレーションする。レーザーアブレーションにより発生するLiNbO3光学単結晶原料ガス11を液体状態の溶融膜12に溶解させ続け、溶融膜12とα−Al2O3単結晶基板7との界面に厚さ1μmのLiNbO3光学単結晶13を析出させた。次に、ガス圧を1.3Paにして基板温度を30分間保持し、溶融膜を蒸発除去した。基板を20℃に冷却して、実施例1のLiNbO3光学単結晶薄膜を得た。(薄膜の結晶性評価)
X線回折装置により、得られたLiNbO3光学単結晶薄膜のロッキングカーヴ半値幅を測定し、結晶性の評価を行った。ロッキングカーヴ半値幅が小さい程、結晶性の高い膜であるということが言える。また、比較の対照として、LiNbO3単結晶基板についても同様の評価を行った。
その結果、実施例1のLiNbO3光学単結晶薄膜のロッキングカーヴ半値幅は、0.02〜0.03度であり、LiNbO3単結晶基板は、0.02〜0.03度であった。
(原子間力顕微鏡による表面観察)
原子間力顕微鏡(AFM)を用いて、得られたLiNbO3光学単結晶薄膜の表面観察を行った。また、比較の対照として、LiNbO3単結晶基板についても同様の観察を行った。その結果、実施例1のLiNbO3光学単結晶薄膜及びLiNbO3単結晶基板の表面に大きな粒子状の結晶は観測されなかった。
(組成の均一性評価)
オージェ電子分光分析装置を用いて、得られたLiNbO3光学単結晶薄膜の深さ方向の元素分析を行い、組成の均一性を評価した。その結果、実施例1のLiNbO3光学単結晶薄膜の各元素濃度は深さ方向でほぼ一定であった。
【0015】
実施例2.
まず、LiNbO3粉末1モルとLiBO2粉末1モルとを混合した後、ホットプレスを用いて加圧焼結させ、溶融膜原料ターゲット9を調製した。
調製した溶融膜原料ターゲット9、LiNbO3光学単結晶原料ターゲット10及びα−Al2O3単結晶基板7をチャンバー1内の所定の位置に設置し、ガス導入管3から酸素ガスを導入しながら真空ポンプ4を用いてチャンバー内圧力を53.3Paにした。α−Al2O3単結晶基板7を570℃に加熱しながら、53.3Paの酸化雰囲気下で、レーザー光8を溶融膜原料ターゲット9に照射し、α−Al2O3単結晶基板7上に厚さ1000Åの溶融膜12を形成した。次に、基板及び温度圧力を保持したまま、LiNbO3光学単結晶原料ターゲット10にレーザー光8を照射してアブレーションする。レーザーアブレーションにより発生するLiNbO3光学単結晶原料ガス11を液体状態の溶融膜12に溶解させ続け、溶融膜12とα−Al2O3単結晶基板7との界面に厚さ1μmのLiNbO3光学単結晶13を析出させた。次に、ガス圧を1.3Paにして基板温度を30分間保持し、溶融膜を蒸発除去した。基板を20℃に冷却して、実施例2のLiNbO3光学単結晶薄膜を得た。
得られたLiNbO3光学単結晶薄膜のロッキングカーヴの半値幅は、0.02〜0.03度であった。
また、得られた薄膜の表面に大きな粒子状の結晶は観測されず、薄膜の各元素濃度は深さ方向でほぼ一定であった。
【0016】
実施例3.
α−Al2O3単結晶基板の代わりに、Si単結晶基板の最表面にZnO単結晶薄膜が配置された積層基板を用いたこと以外は、実施例1と同様にして、実施例3のLiNbO3光学単結晶薄膜を得た。
得られたLiNbO3光学単結晶薄膜のロッキングカーヴの半値幅は、0.03〜0.04度であった。
また、得られた薄膜の表面に大きな粒子状の結晶は観測されず、薄膜の各元素濃度は深さ方向でほぼ一定であった。
【0017】
比較例1.
従来のレーザーアブレーションによる光学単結晶薄膜の製造方法で用いた薄膜製造装置を図2に示す。図2から分かるように、図1に示した溶融膜原料ターゲットを備えていない点が、実施例で用いた薄膜製造装置と異なる。
LiNbO3光学単結晶原料ターゲット10及びα−Al2O3単結晶基板7をチャンバー1内の所定の位置に設置し、ガス導入管3から酸素ガスを導入しながら真空ポンプ4を用いてチャンバー内圧力を53.3Paにした。α−Al2O3単結晶基板7を570℃に加熱しながら、53.3Paの酸化雰囲気下で、LiNbO3光学単結晶原料ターゲット10にレーザー光8を照射し、α−Al2O3単結晶基板7上に厚さ1μmのLiNbO3光学単結晶薄膜13を形成し、基板を20℃に冷却して、比較例1のLiNbO3光学単結晶薄膜を得た。
得られたLiNbO3光学単結晶薄膜のロッキングカーヴの半値幅は、0.3〜0.9度であった。
また、得られた薄膜の表面に0.2μm程度の大きな粒子状の結晶が観測された。このように大きな粒子状の結晶が薄膜表面に存在すると、光を散乱してしまうので、光学素子として用いることができない。
【0018】
【発明の効果】
本発明の光学単結晶薄膜の製造方法によれば、単結晶基板と比較しても遜色のない、緻密で結晶性が高く、且つ均一な組成の薄膜を製造することができる。また、本発明の製造方法により得られる光学単結晶薄膜は、光学素子に限らず、高周波素子に転用しても十分使用にかなう品質を有するもので、新規な高周波素子を実現できる可能性がある。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る光学単結晶薄膜の製造方法で用いた薄膜製造装置である。
【図2】従来のレーザーアブレーションによる光学単結晶薄膜の製造方法で用いた薄膜製造装置である。
【符号の説明】
1 チャンバー、2 窓、3 ガス導入管、4 真空ポンプ、5 ヒーターブロック、6 基板ホルダー、7 基板、8 レーザー光、9 溶融膜原料ターゲット、10 光学単結晶原料ターゲット、11 光学単結晶原料ガス、12 溶融膜、13 光学単結晶薄膜、14 エキシマレーザー。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical single crystal thin film suitable for various optical applications including an optical waveguide, an optical modulator, a wavelength conversion element, and an optical switching element using an electro-optic effect, an acousto-optic effect, a non-linear optical effect, and the like, and manufacturing thereof. It is about the method.
[0002]
[Prior art]
Among optical materials having optical characteristics such as an electro-optic effect, an acousto-optic effect, and a non-linear optical effect, a thin film such as a LiNbO 3 single crystal is widely used as a main optical element. In particular, in recent years, needless to say, in order to respond to monolithic technology of optical integrated circuits and further to monolithic technology of optoelectronic integrated circuits combined with semiconductor electronic circuits, miniaturization and cost reduction of optical elements are required. There is a strong demand for a single crystal thin film having better optical characteristics than ever before.
[0003]
As a method for producing a LiNbO 3 single crystal thin film, a method using a liquid phase epitaxial crystal growth method (LPE method), for example, a crucible containing a Li 2 O—V 2 O 5 —Nb 2 O 5 based oxide material is used. The material is heated to 900 to 1100 ° C. to form a melt, the LiTaO 3 single crystal substrate fixed to a lifting rod is immersed in the melt, and a LiNbO 3 single crystal thin film is formed on the LiTaO 3 single crystal substrate. A method has been proposed (for example, Patent Document 1). However, the LPE method has a problem that it is difficult to grow a crystal having a uniform composition because the composition of the melt changes with the growth of the crystal, and the composition of the crystal grown thereby gradually changes. is there.
[0004]
In addition, a method of forming a single crystal thin film by a vapor phase method such as a CVD method or a sputtering method has been widely used in industry. However, it has been found that the surface of the thin film obtained by the vapor phase method is inferior in denseness because it is composed of coarser particles than the surface of the single crystal substrate obtained by the LPE method. Also, as a method for easily forming a single crystal thin film at a laboratory level, a laser ablation method is well known. As a method of forming a thin film using this laser ablation method, for example, a non-processed object having a diameter of about 1 inch placed in a vacuum chamber is irradiated with a laser beam having an energy density equal to or higher than a threshold, and There has been proposed a method of forming a thin film by adhering to a thin film (for example, Patent Document 2). However, since the non-processed material is locally heated to a high temperature in a short period of time, a molten agglomerate of about several μm (generally called a droplet) pops out, causing holes in the thin film or forming coarse particles in the thin film. Therefore, there is a problem that it is difficult to obtain a dense and highly crystalline film.
[0005]
[Patent Document 1]
JP-A-4-12095 [Patent Document 2]
JP-A-5-279844 [0006]
[Problems to be solved by the invention]
Therefore, the present invention is to solve the above-mentioned problems of the prior art, and has a dense, highly crystalline, and uniform composition, such as an optical waveguide, an optical modulator, a wavelength conversion element, and an optical switching element. It is an object of the present invention to provide an optical single crystal thin film suitable for various optical uses and a method for producing the same.
[0007]
[Means for Solving the Problems]
The method for producing an optical single-crystal thin film according to the present invention includes a first step of forming a molten film containing a melting component on a substrate, and heating the molten film in an air atmosphere or an oxidizing atmosphere of 10 Pa to 1.5 kPa. And dissolving the optical single crystal raw material gas in the molten film to deposit an optical single crystal at the interface between the molten film and the substrate.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a thin film manufacturing apparatus that can be used in one embodiment of the present invention.
Hereinafter, the method for producing an optical single crystal thin film of the present invention will be described with reference to FIG. In the first step (a step of forming a molten film) of the present invention, for example, air or an oxidizing gas can be introduced into the chamber 1 from the gas introduction pipe 3 to make the inside of the chamber 1 an air atmosphere or an oxidizing atmosphere. Further, the inside of the chamber 1 can be depressurized by a vacuum pump 4 attached to the chamber 1. The α-Al 2 O 3 single crystal substrate 7 is fixed to a substrate holder 6, through which the substrate can be heated by the heater block 5. The laser beam 8 oscillated from the excimer laser 14 passes through the window 2 and enters the chamber 1. Further, the laser light 8 is applied to a molten film raw material target 9 disposed in the chamber 1. The optical single crystal raw material 10 is disposed in the chamber 1 so as to be exchangeable with the molten film raw material target 9 without taking out the molten film raw material target 9 from the chamber 1.
[0009]
In such a configuration, for example, when the molten film raw material target 9 installed in the chamber 1 is irradiated with the laser beam 8 and ablated, a molten film can be formed on the α-Al 2 O 3 single crystal substrate 7. . As another method for forming a molten film on a substrate, there is a method in which a material obtained by applying a raw material of a molten film on a substrate using a sol-gel method is heated to form a molten film.
Next, the molten film raw material target 9 and the optical single crystal raw material target 10 are exchanged, and the molten film 12 is heated to a liquid state, for example, under an air atmosphere or an oxidizing atmosphere. The optical single crystal raw material target 10 is irradiated with a laser beam 8 to perform ablation. If the optical single crystal source gas 11 generated by laser ablation is continuously dissolved in the molten film 12 in a liquid state, the optical single crystal thin film 13 is deposited on the interface between the molten film 12 and the substrate 7 through a saturated state and a supersaturated state. Can be. Other methods for generating the optical single crystal source gas include a CVD method and a sputtering method.
After depositing the optical single crystal at the interface between the molten film and the substrate, it is desirable to further reduce the pressure in the chamber 1 or further heat the substrate to evaporate the molten film to remove the same. And a smooth optical single-crystal thin film having no impurities can be obtained. In addition, when a large amount of a component for the purpose of improving optical properties is added to the molten film, it is difficult to remove the molten film by evaporation. Therefore, a method of chemically polishing or physically polishing the solidified molten film to remove the molten film is used. It is valid.
[0010]
In the present invention, in order to deposit an optical single crystal at the interface between the molten film and the substrate, a temperature at which the molten film is not reduced or evaporated and is in a liquid state, and a temperature at which the optical single crystal is likely to be deposited. Must match. Taking into account the use of a Si substrate that is easily oxidized, the present invention desirably sets the substrate temperature to 400 ° C. to 800 ° C. Therefore, by preparing a molten film having a thickness of 1000 ° on an α-Al 2 O 3 single crystal substrate by a laser ablation method using the apparatus of FIG. 1, a substrate temperature and a pressure in a chamber are changed. The optimum melting conditions of the molten film at a substrate temperature of 400 ° C to 800 ° C were studied. In consideration of the fact that when the pressure is lowered, the liquidus shifts to a low temperature side, and when the pressure is increased, the liquidus shifts to a high temperature side. The pressure in the chamber was 1.5 kPa at a substrate temperature of 750 ° C. and 800 ° C.
The evaluation of the molten film was performed by observing the surface of the rapidly solidified molten material 10 minutes after reaching the set temperature. At a substrate temperature of 400 ° C., particles were observed as droplets at any pressure, and no trace of melting was observed. At a substrate temperature of 450 ° C. and a chamber pressure of 7 Pa, almost no droplets were observed on the surface, but the film was gray and reduced. On the other hand, when the substrate temperature was 450 ° C. and the pressure in the chamber was 10 Pa, almost no droplets were observed on the surface, and the film was almost transparent and was not reduced. Next, at 750 ° C. and a pressure in the chamber of 1.5 kPa, no droplets were observed, and the film was almost transparent and was not reduced. At 800 ° C. and a pressure in the chamber of 1.5 kPa, there was a large hole locally exceeding 100 μm in diameter, and evidence that the film was strongly evaporated was observed.
From the above results, it was found that the optimal melting condition of the molten film at the substrate temperature of 400 ° C. to 800 ° C. was when the pressure in the chamber was 10 Pa to 1.5 kPa.
[0011]
The molten film used in the present invention contains boron oxide (B 2 O 3 ), vanadium oxide (V 2 O 6 ), or a mixture thereof as a melting component. Furthermore, the production efficiency of the optical single crystal thin film can be improved by including the target material of the optical single crystal in addition to the melting component in the molten film. The molar ratio between the optical single crystal raw material and the melted component in the molten film is preferably 0.05: 1 to 2: 1. Within this range, even under the conditions of 10 Pa to 1.5 kPa in the optical single crystal deposition step, the molten film is difficult to be reduced and hardly decompose and evaporate. It can be dissolved efficiently. A method for preparing a molten film raw material target used for forming a molten film is, for example, when a target optical single crystal thin film is LiNbO 3 , since Li easily absorbs moisture and carbon dioxide gas, LiNbO 3 powder and LiBO 2 powder And a method of sintering a mixture of these by pressure with a hot press. Similarly, when the target optical single-crystal thin film is lithium tantalate (LiTaO 3 ), it is LiTaO 3 powder, LiBO 2 powder, and lithium niobate tantalate (Li (Nb, Ta) O 3 ). First, a molten film raw material target can be prepared using Li (Nb, Ta) O 3 powder and LiBO 2 powder.
[0012]
Examples of the optical single crystal raw material used in the present invention include lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), and lithium niobate tantalate (Li (Nb, Ta) O 3 ). Since these have the same crystal deposition mechanism, a dense, highly crystalline, and uniform optical single-crystal thin film can be obtained by the method of the present invention, regardless of which optical single-crystal raw material is used. Can be.
[0013]
Needless to say, the substrate used in the present invention includes an α-Al 2 O 3 single crystal substrate, a lithium niobate (LiNbO 3 ) single crystal substrate, and a lithium tantalate (LiTaO 3 ) single crystal substrate. A single crystal film of ZnO), α-Al 2 O 3 , chromium (III) oxide (Cr 2 O 3 ), gadolinium (III) oxide (Gd 2 O 3 ), or iron oxide (III) (Fe 2 O 3 ) A laminated substrate disposed on the outermost surface can also be mentioned. By using these substrates, precipitation of desired crystals can be facilitated.
[0014]
【Example】
An embodiment of the present invention will be described using a thin film manufacturing apparatus similar to that of FIG.
Embodiment 1 FIG.
(Preparation of optical single crystal thin film)
First, after mixing 1 mol of LiNbO 3 powder and 1 mol of LiBO 2 powder, the mixture was sintered under pressure using a hot press to prepare a molten film raw material target 9.
The prepared molten film raw material target 9, LiNbO 3 optical single crystal raw material target 10, and α-Al 2 O 3 single crystal substrate 7 are set at predetermined positions in chamber 1, and oxygen gas is introduced from gas introduction pipe 3. The pressure in the chamber was adjusted to 53.3 Pa using the vacuum pump 4. The molten film material target 9 was irradiated with a laser beam 8 in an oxidizing atmosphere of 20 ° C. and 53.3 Pa to form a molten film 12 having a thickness of 1000 ° on the α-Al 2 O 3 single crystal substrate 7. Next, while maintaining the pressure, the α-Al 2 O 3 single crystal substrate 7 is heated to 570 ° C., and after 10 minutes from the time when the molten film is brought into a liquid state, the laser light 8 is applied to the LiNbO 3 optical single crystal raw material target 10. Irradiate for ablation. The LiNbO 3 optical single crystal raw material gas 11 generated by laser ablation is continuously dissolved in the molten film 12 in a liquid state, and the interface between the molten film 12 and the α-Al 2 O 3 single crystal substrate 7 has a 1 μm thick LiNbO 3 optical. Single crystal 13 was deposited. Next, the gas pressure was set to 1.3 Pa, the substrate temperature was maintained for 30 minutes, and the molten film was evaporated and removed. The substrate was cooled to 20 ° C. to obtain the LiNbO 3 optical single crystal thin film of Example 1. (Evaluation of crystallinity of thin film)
The rocking curve half width of the obtained LiNbO 3 optical single crystal thin film was measured with an X-ray diffractometer to evaluate the crystallinity. It can be said that the smaller the rocking curve half width, the higher the crystallinity. In addition, as a comparative control, the same evaluation was performed on a LiNbO 3 single crystal substrate.
As a result, the rocking curve half width of the LiNbO 3 optical single crystal thin film of Example 1 was 0.02 to 0.03 degrees, and that of the LiNbO 3 single crystal substrate was 0.02 to 0.03 degrees.
(Surface observation by atomic force microscope)
The surface of the obtained LiNbO 3 optical single crystal thin film was observed using an atomic force microscope (AFM). As a comparative control, the same observation was performed on a LiNbO 3 single crystal substrate. As a result, no large particle crystal was observed on the surface of the LiNbO 3 optical single crystal thin film and the LiNbO 3 single crystal substrate of Example 1.
(Evaluation of composition uniformity)
The obtained LiNbO 3 optical single crystal thin film was subjected to elemental analysis in the depth direction using an Auger electron spectrometer to evaluate the composition uniformity. As a result, each element concentration of the LiNbO 3 optical single crystal thin film of Example 1 was almost constant in the depth direction.
[0015]
Embodiment 2. FIG.
First, after mixing 1 mol of LiNbO 3 powder and 1 mol of LiBO 2 powder, pressure sintering was performed using a hot press to prepare a molten film raw material target 9.
The prepared molten film raw material target 9, LiNbO 3 optical single crystal raw material target 10, and α-Al 2 O 3 single crystal substrate 7 are set at predetermined positions in chamber 1, and oxygen gas is introduced from gas introduction pipe 3. The pressure in the chamber was adjusted to 53.3 Pa using the vacuum pump 4. While heating the α-Al 2 O 3 single crystal substrate 7 to 570 ° C., the laser beam 8 is irradiated to the molten film raw material target 9 in an oxidizing atmosphere of 53.3 Pa, and the α-Al 2 O 3 single crystal substrate 7 is heated. A molten film 12 having a thickness of 1000 ° was formed thereon. Next, while maintaining the substrate and the temperature and pressure, the LiNbO 3 optical single crystal raw material target 10 is irradiated with laser light 8 to perform ablation. The LiNbO 3 optical single crystal raw material gas 11 generated by laser ablation is continuously dissolved in the molten film 12 in a liquid state, and the interface between the molten film 12 and the α-Al 2 O 3 single crystal substrate 7 has a 1 μm thick LiNbO 3 optical. Single crystal 13 was deposited. Next, the gas pressure was set to 1.3 Pa, the substrate temperature was maintained for 30 minutes, and the molten film was evaporated and removed. The substrate was cooled to 20 ° C. to obtain a LiNbO 3 optical single crystal thin film of Example 2.
The half width of the locking curve of the obtained LiNbO 3 optical single crystal thin film was 0.02 to 0.03 degrees.
In addition, no large granular crystals were observed on the surface of the obtained thin film, and the element concentrations of the thin film were almost constant in the depth direction.
[0016]
Embodiment 3 FIG.
Example 3 was repeated in the same manner as in Example 1 except that a laminated substrate having a ZnO single crystal thin film disposed on the outermost surface of a Si single crystal substrate was used instead of the α-Al 2 O 3 single crystal substrate. A LiNbO 3 optical single crystal thin film was obtained.
The half width of the locking curve of the obtained LiNbO 3 optical single crystal thin film was 0.03 to 0.04 degrees.
In addition, no large granular crystals were observed on the surface of the obtained thin film, and the element concentrations of the thin film were almost constant in the depth direction.
[0017]
Comparative Example 1
FIG. 2 shows a thin film manufacturing apparatus used in a conventional method for manufacturing an optical single crystal thin film by laser ablation. As can be understood from FIG. 2, the point that the molten film raw material target shown in FIG. 1 is not provided is different from the thin film manufacturing apparatus used in the embodiment.
The LiNbO 3 optical single crystal raw material target 10 and the α-Al 2 O 3 single crystal substrate 7 are installed at predetermined positions in the chamber 1, and the inside of the chamber is introduced using the vacuum pump 4 while introducing oxygen gas from the gas introduction pipe 3. The pressure was set to 53.3 Pa. while heating the α-Al 2 O 3 single crystal substrate 7 to 570 ° C., in an oxidizing atmosphere of 53.3Pa, irradiated with a laser beam 8 to the LiNbO 3 optical single crystal raw material target 10, α-Al 2 O 3 single A 1 μm thick LiNbO 3 optical single crystal thin film 13 having a thickness of 1 μm was formed on the crystal substrate 7, and the substrate was cooled to 20 ° C. to obtain a LiNbO 3 optical single crystal thin film of Comparative Example 1.
The half width of the locking curve of the obtained LiNbO 3 optical single crystal thin film was 0.3 to 0.9 degrees.
In addition, large granular crystals of about 0.2 μm were observed on the surface of the obtained thin film. If such large-particle crystals exist on the surface of the thin film, they scatter light, and cannot be used as an optical element.
[0018]
【The invention's effect】
According to the method for manufacturing an optical single-crystal thin film of the present invention, a thin film having a high density and a uniform composition can be manufactured, which is comparable to a single-crystal substrate. Further, the optical single-crystal thin film obtained by the manufacturing method of the present invention is not limited to an optical element, and has a quality sufficient for use even when diverted to a high-frequency element. .
[Brief description of the drawings]
FIG. 1 is a thin film manufacturing apparatus used in a method for manufacturing an optical single crystal thin film according to an embodiment of the present invention.
FIG. 2 is a thin film manufacturing apparatus used in a conventional method for manufacturing an optical single crystal thin film by laser ablation.
[Explanation of symbols]
1 chamber, 2 windows, 3 gas introduction pipe, 4 vacuum pump, 5 heater block, 6 substrate holder, 7 substrate, 8 laser beam, 9 molten film raw material target, 10 optical single crystal raw material target, 11 optical single crystal raw material gas, 12 molten film, 13 optical single crystal thin film, 14 excimer laser.