JP2004262302A - Axle case - Google Patents

Axle case Download PDF

Info

Publication number
JP2004262302A
JP2004262302A JP2003053579A JP2003053579A JP2004262302A JP 2004262302 A JP2004262302 A JP 2004262302A JP 2003053579 A JP2003053579 A JP 2003053579A JP 2003053579 A JP2003053579 A JP 2003053579A JP 2004262302 A JP2004262302 A JP 2004262302A
Authority
JP
Japan
Prior art keywords
joint
main body
spindle
axle case
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003053579A
Other languages
Japanese (ja)
Other versions
JP4098117B2 (en
Inventor
Michio Osaki
陸夫 大崎
Hisanao Maruyama
久直 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Press Kogyo Co Ltd
Original Assignee
Press Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Press Kogyo Co Ltd filed Critical Press Kogyo Co Ltd
Priority to JP2003053579A priority Critical patent/JP4098117B2/en
Publication of JP2004262302A publication Critical patent/JP2004262302A/en
Application granted granted Critical
Publication of JP4098117B2 publication Critical patent/JP4098117B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an axle case for enhancing the strength of a joining part of a body with a spindle. <P>SOLUTION: The axle case comprises a body 38 which is constituted of an upper member 30 and a lower member 31 which are joined with each other in a vertically overlapping manner with both end parts in the longitudinal direction formed in a substantially cylindrical shape, and substantially cylindrical spindles 33 to be joined with both end parts in the longitudinal method of the body 38. The vertical dimension of at least one set of joining end parts 1 and 2 between the body 38 and the spindles 33 is set to be smaller than that of adjacent parts 4 and 10 continuous to the joining end parts 1 and 2. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、車軸ケースに係り、特に、本体とスピンドルとの接合部の強度向上を図った車軸ケースに関するものである。
【0002】
【従来の技術】
車軸ケースとは、トラック等、車両の駆動車軸及びディファレンシャルギヤ等を収容するためのものであり、図7に示すように、車両の車幅方向に延出し、上下に重ね合わせて接合された上部材30と下部材31とで構成され、長手方向両端部がほぼ円筒形状に形成された本体38と、その本体38の長手方向両端部に接合されるほぼ円筒形状のスピンドル33とを備える。上下部材30,31は、その長手方向中央部が上方又は下方に湾曲しており、本体38の長手方向中央部には略円形の穴(図示せず)が形成される。本体38には、その穴を覆うように半球形状のカバー部材32が取り付けられる。このような車軸ケース34は、例えば特許文献1等にも記載されている。
【0003】
このような車軸ケース34において、本体38の長手方向両端部とスピンドル33とは溶接接合される。つまり、図8に示すように、本体38の端部とスピンドル33の端部とを互いに突き合わせて隅肉溶接して接合する。なお、図8は本体38とスピンドル33との上部接合部の断面を示している。
【0004】
ところで、車軸ケース34には車両の加減速や方向転換、及び走行路面の凹凸等によって様々な負荷やモーメントが作用する。特に、車軸ケース34を上又は下方向へと曲げるようなモーメントが作用することが多い。例えば、スピンドル33の外周部には車輪が設けられるため、路面から上方向への反力をうけた場合、車軸ケース34の長手方向ほぼ中央部を支点として、長手方向両端部を上方へと持ち上げるようなモーメントM1(図7参照)が作用する。その結果、本体38とスピンドル33との接合部に応力が発生する。
【0005】
このため、本体38とスピンドル33との接合部には比較的高い強度が要求される。そこで従来から、本体38とスピンドル33との接合部の溶接溶け込み率が、本体38及びスピンドル33の板厚に対して100%となるようにしている。
【0006】
板材の突き合わせ溶接において、溶接溶け込み率を100%とする場合、板材の表裏両側から溶接するのが一般的であるが、スピンドル33はその外側端部が縮径された形状であるため、溶接ロッド等を内部に挿入しずらく、裏から溶接することが困難である。そこで、表側からの溶接だけで100%の溶け込み率を確保すべく大きな入熱を与えると、接合部の裏側に溶融金属が滴れ落ち、車軸ケース34内に組み込まれる駆動車軸等と干渉してしまう虞がある。また、極端な場合では、接合部に穴が開いてしまい油漏れや接合部の強度低下に繋がる。
【0007】
そこで、図8に示すように、本体38とスピンドル33との接合部の内側に円筒形状の当金39を挿入するようにしている。こうすれば、溶接の溶け込み率を100%としても、溶融金属が車軸ケース34内部に滴り落ちることを防止できる。なお、当金39は、本体38又はスピンドル33の内側に一体に成形されることもある。
【0008】
【特許文献1】
特開平08−067108号公報
【0009】
【発明が解決しようとする課題】
しかしながら、このような従来の車軸ケースでは、溶接溶け込み率を100%としても、本体38とスピンドル33との接合部に亀裂等が発生することがあり、更なる強度向上が望まれていた。
【0010】
例えば、本体38と当金39、及びスピンドル33と当金39との接触面における未溶着部分40が、予め形成された亀裂として作用してしまい、接合部の内面側の溶接ルート部41に応力が集中し、そこから亀裂が発生してしまう場合がある。
【0011】
また、本体38とスピンドル33との接合部には、溶接後の溶着金属の収縮により残留応力が発生するが、このとき、接合部の外面側には強度上有利となる長手方向(図中左右方向)の圧縮応力が残留するが、接合部の内面側には強度上不利となる長手方向の引張応力が残留してしまう。
【0012】
つまり、本体38とスピンドル33との接合部の内面側は、もともと引張応力が残留しているうえに、車軸ケース34に外力が加わったときに応力が集中するため、亀裂等が発生する可能性が高いのである。
【0013】
そこで、本発明の目的は、上記課題を解決し、本体とスピンドルとの接合部の強度向上を図った車軸ケースを提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するために本発明は、上下に重ね合わせて接合された上部材と下部材とで構成され、長手方向両端部が略円筒形状に形成された本体と、その本体の長手方向両端部に接合される略円筒形状のスピンドルとを備えた車軸ケースであって、上記本体及び上記スピンドルの少なくとも一方の接合端部を、接合端部に連続する隣接部と比べて上下方向寸法が小さくなるようにしたものである。
【0015】
この構成によれば、本体とスピンドルとの板厚中心を通る線が屈曲して形成されるため、本体とスピンドルとの接合部に引張応力が発生したときに、その作用点が接合部の板厚中心から径方向外方にずれる。その結果、接合部の内面側に圧縮応力が発生するようなモーメントが作用する。従って、接合部の内面側には引張応力と圧縮応力との、相反する二つの応力が発生する。この相反する応力が互いに打ち消し合うため、接合部の内面側に発生する応力は小さくなり、接合部の強度及び寿命向上につながる。
【0016】
ここで、上記接合端部の上下方向寸法と、上記隣接部の上下方向寸法との差が、上記接合端部の板厚の20〜50%の範囲内であっても良い。
【0017】
また、上記接合端部の長さが、接合端部の板厚の1〜2倍の範囲内であっても良い。
【0018】
【発明の実施の形態】
以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。
【0019】
図1は本実施形態に係る車軸ケースの本体とスピンドルとの上部接合部の拡大断面図である。本実施形態の車軸ケースの概略構成は図7に示したものと同様である。
【0020】
即ち、本実施形態の車軸ケースは、上下に重ね合わせて接合された上部材30と下部材31とで構成され、長手方向両端部がほぼ円筒形状に形成された本体38と、その本体38の長手方向両端部に接合されるほぼ円筒形状のスピンドル33とを備える。上下部材30,31は、その長手方向中央部が上方又は下方に湾曲しており、本体38の長手方向中央部には略円形の穴(図示せず)が形成される。本体38には、その穴を覆うように半球形状のカバー部材32が取り付けられる。
【0021】
図1に示すように、本体38及びスピンドル33の端部は互いに突き合わされ、その突き合わせ部の内側に円筒形状の当金39が挿入・配置される。そして、本体38及びスピンドル33の外面側(図中上側)から隅肉溶接を行って互いに接合する。この際、溶接の溶け込み率は、本体38及びスピンドル33の接合端部1,2の板厚Tに対して100%とされる。なお、本体38の接合端部1の板厚と、スピンドル33の接合端部2の板厚とはほぼ等しい。
【0022】
本実施形態の車軸ケースの特徴は、本体38におけるスピンドル33との接合端部1が、その接合端部1に連続する隣接部4と比べて縮径されている点にある。具体的には、本体38は、スピンドル33の接合端部2と同じ径に形成された接合端部(縮径部)1と、その接合端部1に傾斜部3を介して連続し、接合端部1よりも大きな径を有する隣接部4とを備える。つまり、図2にも示すように、本体38は、その端部が段差状に形成される。このような段差状の本体38は、上部材30及び下部材31をプレス成形する際に、各々の端部を段差状に成形することで比較的容易に製造できる。
【0023】
このように、本体38の接合端部1を、それに連続する隣接部4よりも縮径することによって、車軸ケースに負荷やモーメントが作用したときに、本体38とスピンドル33との接合部5、特に接合部5の内面側に発生する応力を低減でき、接合部5の強度及び寿命を向上させることができる。その理由について、以下説明する。
【0024】
まず、図2に示すように、本体38とスピンドル33との上部接合部において、接合部5から長手方向両側に延出し、かつ一定の幅Wを有する領域を微少要素Cとして取り出す。微少要素Cの側面図を図3に示す。なお、図3では便宜上、溶着金属及び当金39は省略している。
【0025】
いま、車軸ケースに対して、本体38とスピンドル33との上部接合部5に引張応力が発生するようなモーメントM2が作用したとする(図2参照)。つまり、車軸ケースに対して、長手方向のほぼ中央部を支点として両端部を下方に押すようなモーメントが作用した場合である。このとき、図3に示すように、微少要素Cには本体38とスピンドル33とを引き離す方向の引張応力TSが発生する。
【0026】
ここで、本体38の接合端部1が、隣接部4に対して縮径されているため、本体38及びスピンドル33の板厚中心を通る線CLは屈曲する。一方、引張応力TSによって接合部5に作用する負荷は微少要素Cの長手方向両端部の板厚中心間を結ぶ作用線ALに沿って作用する。従って、接合部5における引張応力TSの作用点APは、接合部5の板厚中心SCから径方向外側(上側)に距離Hだけずれる。その結果、接合部5には、図に示すように、接合部5の板厚中心SCを中心としてその両側を径方向内側(下側)に押すような局部モーメントM3が作用する。これにより、接合部5の外面側には引張応力が発生し、内面側には圧縮応力CSが発生する。
【0027】
結果として、接合部5の内面側には、車軸ケースに作用するモーメントM2により発生する引張応力TSと、その引張応力TSが接合部5の板厚中心SCからずれた位置に作用することにより発生する圧縮応力CSとの、相反する二つの応力が発生する。この相反する応力が互いに打ち消し合うため、接合部5の内面側に発生する応力は小さくなり、接合部5の強度及び寿命向上につながる。
【0028】
つまり、接合部5には、図4(a)に示すような、径方向全ての位置でほぼ均一な引張応力(+)と、図4(b)に示すような、板厚中心SCよりも径方向外側では引張応力(+)となり、板厚中心SCよりも径方向内側では圧縮応力(−)となるような二つの応力が発生する。結果として、接合部5に発生する応力は、図4(c)に示すようになり、接合部5の内面側に発生する応力は小さくなる。
【0029】
例えば、図8に示したような従来の接合部構造では、本体38及びスピンドル33の板厚中心を通る線が直線状であるため、図3に示すような局部モーメントM3は発生せず、接合部の内面側には引張応力のみが発生する。従って、本実施形態と比較して、接合部の内面側には大きな引張応力が発生する。
【0030】
このように、本実施形態の車軸ケースは、本体38の接合端部1を、それに連続する隣接部4よりも縮径し、接合部5に発生する引張応力TSの作用点APを接合部5の板厚中心SCからずらすことで、接合部5の内面側に、引張応力TSをうち消す圧縮応力CSを発生させるようにしたものである。これによって、接合部5の強度が向上し、亀裂の発生寿命や疲労破壊寿命が延びる。従って、本実施形態の車軸ケースによれば、非常にシンプルな構造で、かつ低コストで接合部5の強度及び寿命の向上を図ることができる。
【0031】
なお、本実施形態の車軸ケースでは、接合部5の外面側に発生する引張応力は大きくなるが、このことはあまり大きな問題とはならない。その理由を説明すると、接合部5の外面側には応力が極度に集中するポイントが無いからである。しいて挙げれば、溶着金属の長手方向両端部の止端部7(図1参照)に応力が集中するが、接合部5の外面側には応力緩和対策を容易に行うことができる。例えば、接合部5の外面側をグラインダで削ったり、ショットブラストを施すことなどにより、止端部7への応力集中を回避できる。また、接合部5の外面側には溶接後の溶着金属の収縮による圧縮残留応力が存在するため、ある程度の引張応力は吸収される。これも、接合部5の外面側が強度的に有利な理由である。従って、接合部5の外面側に発生する応力がある程度大きくなっても、内面側に発生する応力を低減すれば、接合部5全体としての強度を向上させることができる。
【0032】
本発明者らは、本実施形態の効果を確認すべく、端部の径を縮径させた円筒部材(パイプ)に対して、その端部を下方に押すようなモーメントを加えたときに、パイプの上部断面の外面及び内面に発生する応力の解析(シミュレーション)を行った。その結果を図5に示す。
【0033】
図中、横軸はパイプの板厚に対するパイプ端部の縮径率であり、パイプの板厚をT、パイプの基本直径D1と端部(縮径部)の直径D2との差をΔD(=D1−D2)とすると、ΔD/T×100%で表されるものである。また、図中縦軸は、端部が縮径されていない通常のパイプに同一のモーメントを加えたときにパイプの上部断面の外面及び内面に発生する応力を100とし、それに対して縮径パイプに発生する応力の割合を示したものである。図中、丸ポイントで示す線はパイプ上部断面の内面に発生する応力を示しており、三角ポイントで示す線は外面に発生する応力を示している。
【0034】
図から分かるように、縮径率が0から大きくなる、つまり、パイプ端部の径が小さくなるほど、内面に発生する応力は小さくなる。しかしながら、縮径率が約80%を越えたあたりから内面に発生する応力は逆に大きくなる。つまり、端部の径をあまり小さくしすぎると応力低減効果が小さくなってしまうことが分かる。従って、内面側だけを考慮するのであれば、端部の縮径率は80%程度にするのが好ましい。しかしながら、図からも分かるように、端部の縮径率が大きくなるほど、外面に発生する応力が比例的に上昇する。本発明者らは、内面及び外面に発生する応力のバランスをとって、接合部5の全体強度を最適に向上させるには、縮径率を20〜50%の範囲内にすれば良いことを確認した。つまり、縮径率がこの範囲内であれば、内面に発生する応力を充分に低減でき、かつ、外面に発生する応力が過度に大きくならず、最適なバランスとなる。従って、図1に示したような本実施形態の車軸ケースにおいて、本体38の接合端部1の径と、隣接部4の径との差を、接合端部1の板厚Tに対して20〜50%の範囲内とすることが好ましい。
【0035】
更に本発明者らは、図1に示す接合端部1の長さLを、接合端部1の板厚Tの1〜2倍の範囲内にすることが好ましいことを確認した。つまり、接合端部1の長さLが短すぎると、本体38(上下部材30,31)の成形が困難になり、逆に長すぎると、接合部5に作用する局部モーメントM3(図3参照)が小さくなるため、応力低減効果は小さくなってしまう。
【0036】
なお、上記実施形態では本体38の接合端部1を縮径した例を説明したが、本発明はこの点において限定されない。つまり、図6(a)に示すように、スピンドル33の接合端部2を、それに連続する隣接部10に対して縮径しても良いし、図6(b)に示すように、本体38及びスピンドル33の両方の接合端部1,2を縮径しても良い。これらの形態でも、図1に示した形態と同様の効果を得ることができる。
【0037】
また、本発明は、本体38及び/又はスピンドル33の接合端部1,2を、必ずしも全周に渡って縮径する必要はない。つまり、「従来の技術」の欄で説明したように、車軸ケースに作用するモーメントは上下方向に作用することが多いので、本体38及び/又はスピンドル33の接合端部1,2の少なくとも上下方向の寸法長さを、接合端部1,2に連続する隣接部4,10の上下方向寸法と比べて小さくなるようにすれば良い。その場合、本体38及び/又はスピンドル33を金型に嵌めて上下方向に圧縮(プレス)して、左右方向寸法は変えずに上下方向寸法のみを短くしても良い。あるいは、本体38及び/又はスピンドル33を単に上下方向から押しつぶしてほぼ楕円形状に成形しても良い。本体38及び/又はスピンドル33を単に押しつぶして成形する場合、金型等が必要とならないため、より低コストでの提供が可能となる。これらの加工は、本体38とスピンドル33とを接合する前に行っても、接合後に行っても良い。
【0038】
これまで、本体38及び/又はスピンドル33の接合端部1,2を隣接部4,10に対して縮径するとして説明したが、これとは逆に、本体38及び/又はスピンドル33の隣接部4,10を拡径しても良いことは勿論である。
【0039】
【発明の効果】
以上要するに本発明によれば、シンプルかつ低コストで本体とスピンドルとの接合部の強度向上を図ることができるという優れた効果を発揮するものである。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る車軸ケースにおける本体とスピンドルとの上部接合部の拡大断面図である。
【図2】図1の車軸ケースにおける本体とスピンドルとの接合部を示す斜視図である。
【図3】本体とスピンドルとの接合部に発生する応力を説明するための説明図である。
【図4】(a)は、本体とスピンドルとの接合部に発生する引張応力を示している。
(b)は、本体とスピンドルとの接合部に作用する局部モーメントによって接合部に発生する応力を示している。
(c)は、本体とスピンドルとの接合部に発生する応力を示している。
【図5】パイプ端部の縮径率と、パイプの上部断面の外面及び内面に発生する応力との関係を示すグラフである。
【図6】(a)は、本発明の他の実施形態の車軸ケースにおける本体とスピンドルとの上部接合部の拡大断面図である。
(b)は、本発明の他の実施形態の車軸ケースにおける本体とスピンドルとの上部接合部の拡大断面図である。
【図7】車軸ケースの正面図である。
【図8】従来の車軸ケースにおける本体とスピンドルとの上部接合部の拡大断面図である。
【符号の説明】
1,2 接合端部
4,10 隣接部
5 接合部
30 上部材
31 下部材
33 スピンドル
38 本体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an axle case, and more particularly to an axle case in which the strength of a joint between a main body and a spindle is improved.
[0002]
[Prior art]
The axle case is for accommodating a driving axle of a vehicle such as a truck, a differential gear, and the like. As shown in FIG. 7, the axle case extends in the vehicle width direction and is overlapped and joined vertically. The main body 38 includes a member 30 and a lower member 31 and has a substantially cylindrical shape at both ends in the longitudinal direction, and a substantially cylindrical spindle 33 joined to both longitudinal ends of the body 38. The upper and lower members 30 and 31 have a central portion in the longitudinal direction curved upward or downward, and a substantially circular hole (not shown) is formed in the central portion in the longitudinal direction of the main body 38. A hemispherical cover member 32 is attached to the main body 38 so as to cover the hole. Such an axle case 34 is also described in, for example, Patent Document 1 and the like.
[0003]
In such an axle case 34, both ends in the longitudinal direction of the main body 38 and the spindle 33 are welded to each other. That is, as shown in FIG. 8, the end of the main body 38 and the end of the spindle 33 are butted against each other and joined by fillet welding. FIG. 8 shows a cross section of an upper joining portion between the main body 38 and the spindle 33.
[0004]
By the way, various loads and moments act on the axle case 34 due to acceleration / deceleration and direction change of the vehicle, unevenness of the traveling road surface, and the like. In particular, a moment often acts to bend the axle case 34 upward or downward. For example, since wheels are provided on the outer peripheral portion of the spindle 33, when a reaction force is applied upward from the road surface, the longitudinal ends of the axle case 34 are lifted with the substantially central portion in the longitudinal direction as a fulcrum. Such a moment M1 (see FIG. 7) acts. As a result, stress is generated at the joint between the main body 38 and the spindle 33.
[0005]
For this reason, a relatively high strength is required at the joint between the main body 38 and the spindle 33. Therefore, conventionally, the welding penetration rate at the joint between the main body 38 and the spindle 33 is set to be 100% with respect to the plate thickness of the main body 38 and the spindle 33.
[0006]
In the case of butt welding of a plate material, when the penetration ratio is set to 100%, the plate material is generally welded from both the front and back sides. However, since the outer end of the spindle 33 has a reduced diameter, a welding rod is used. Is difficult to insert into the inside, and it is difficult to weld from behind. Therefore, when a large heat input is applied to secure a penetration rate of 100% only by welding from the front side, the molten metal drips on the back side of the joint and interferes with the drive axle incorporated in the axle case 34 and the like. There is a possibility that it will end up. In an extreme case, a hole is formed in the joint, which leads to oil leakage and a decrease in the strength of the joint.
[0007]
Therefore, as shown in FIG. 8, a cylindrical abutment 39 is inserted inside the joint between the main body 38 and the spindle 33. This can prevent the molten metal from dripping into the axle case 34 even when the penetration rate of welding is set to 100%. The abutment 39 may be integrally formed inside the main body 38 or the spindle 33.
[0008]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 08-067108
[Problems to be solved by the invention]
However, in such a conventional axle case, even if the welding penetration rate is set to 100%, a crack or the like may occur at the joint between the main body 38 and the spindle 33, and further improvement in strength has been desired.
[0010]
For example, the unwelded portion 40 at the contact surface between the main body 38 and the metal 39 and between the spindle 33 and the metal 39 acts as a crack formed in advance, and a stress is applied to the welding route portion 41 on the inner surface side of the joint. May be concentrated, and cracks may be generated therefrom.
[0011]
At the joint between the main body 38 and the spindle 33, residual stress is generated due to shrinkage of the weld metal after welding. At this time, the outer surface side of the joint has a longitudinal direction (right and left in the figure) which is advantageous in strength. Direction), but a longitudinal tensile stress, which is disadvantageous in strength, remains on the inner surface side of the joint.
[0012]
In other words, the inner surface of the joint between the main body 38 and the spindle 33 originally has a residual tensile stress, and the stress is concentrated when an external force is applied to the axle case 34. Is high.
[0013]
Therefore, an object of the present invention is to provide an axle case that solves the above-mentioned problem and improves the strength of a joint between a main body and a spindle.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a main body, which is composed of an upper member and a lower member which are vertically overlapped and joined, and whose both ends in the longitudinal direction are formed in a substantially cylindrical shape, and both ends in the longitudinal direction of the main body. An axle case comprising a substantially cylindrical spindle to be joined to the portion, wherein at least one of the joining ends of the main body and the spindle has a smaller vertical dimension than an adjacent portion continuous with the joining end. It is to be.
[0015]
According to this configuration, since a line passing through the center of the plate thickness between the main body and the spindle is formed to be bent, when a tensile stress occurs at the joint between the main body and the spindle, the point of action is changed to the plate at the joint. Deviates radially outward from the center of thickness. As a result, a moment acts such that a compressive stress is generated on the inner surface side of the joint. Therefore, two contradictory stresses, a tensile stress and a compressive stress, are generated on the inner surface side of the joint. Since these opposing stresses cancel each other, the stress generated on the inner surface side of the joint becomes smaller, which leads to an improvement in the strength and life of the joint.
[0016]
Here, the difference between the vertical dimension of the joint end and the vertical dimension of the adjacent part may be within a range of 20 to 50% of the plate thickness of the joint end.
[0017]
Further, the length of the joining end may be in the range of 1 to 2 times the plate thickness of the joining end.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
[0019]
FIG. 1 is an enlarged cross-sectional view of an upper joining portion between the main body of the axle case and the spindle according to the present embodiment. The schematic configuration of the axle case of the present embodiment is the same as that shown in FIG.
[0020]
That is, the axle case according to the present embodiment includes an upper member 30 and a lower member 31 which are vertically overlapped and joined, and a main body 38 having both ends in a substantially cylindrical shape in the longitudinal direction is formed. A substantially cylindrical spindle 33 joined to both ends in the longitudinal direction. The upper and lower members 30 and 31 have a central portion in the longitudinal direction curved upward or downward, and a substantially circular hole (not shown) is formed in the central portion in the longitudinal direction of the main body 38. A hemispherical cover member 32 is attached to the main body 38 so as to cover the hole.
[0021]
As shown in FIG. 1, the ends of the main body 38 and the spindle 33 abut against each other, and a cylindrical abutment 39 is inserted and arranged inside the abutting portion. Then, fillet welding is performed from the outer surface side (upper side in the figure) of the main body 38 and the spindle 33 to join them together. At this time, the penetration rate of welding is set to 100% with respect to the plate thickness T of the joining ends 1 and 2 of the main body 38 and the spindle 33. The thickness of the joining end 1 of the main body 38 is substantially equal to the thickness of the joining end 2 of the spindle 33.
[0022]
The feature of the axle case of the present embodiment is that the joint end 1 of the main body 38 with the spindle 33 is smaller in diameter than the adjacent portion 4 continuous with the joint end 1. Specifically, the main body 38 is connected to the joining end (reduced diameter portion) 1 formed to have the same diameter as the joining end 2 of the spindle 33 via the inclined portion 3, An adjacent portion 4 having a larger diameter than the end portion 1. That is, as shown in FIG. 2, the main body 38 has an end portion formed in a stepped shape. Such a stepped main body 38 can be relatively easily manufactured by molding each end into a stepped shape when the upper member 30 and the lower member 31 are press-formed.
[0023]
As described above, by reducing the diameter of the joint end 1 of the main body 38 from that of the adjacent part 4 continuous thereto, when a load or a moment acts on the axle case, the joint 5 between the main body 38 and the spindle 33 can be moved. In particular, the stress generated on the inner surface side of the joint 5 can be reduced, and the strength and life of the joint 5 can be improved. The reason will be described below.
[0024]
First, as shown in FIG. 2, in the upper joint portion between the main body 38 and the spindle 33, a region extending from the joint portion 5 on both sides in the longitudinal direction and having a constant width W is taken out as a microelement C. A side view of the microelement C is shown in FIG. In FIG. 3, the weld metal and the metal 39 are omitted for convenience.
[0025]
Now, it is assumed that a moment M2 acts on the axle case such that a tensile stress is generated at the upper joint portion 5 between the main body 38 and the spindle 33 (see FIG. 2). That is, a moment is applied to the axle case such that both ends are pressed downward with the substantially central portion in the longitudinal direction as a fulcrum. At this time, as shown in FIG. 3, a tensile stress TS is generated in the microelement C in a direction in which the main body 38 and the spindle 33 are separated from each other.
[0026]
Here, since the joining end 1 of the main body 38 is reduced in diameter with respect to the adjacent part 4, the line CL passing through the center of the thickness of the main body 38 and the spindle 33 is bent. On the other hand, the load acting on the joint portion 5 due to the tensile stress TS acts along the action line AL connecting the center of the plate thickness at both ends in the longitudinal direction of the microelement C. Therefore, the application point AP of the tensile stress TS at the joint 5 is shifted by a distance H outward (upper side) in the radial direction from the thickness center SC of the joint 5. As a result, as shown in the drawing, a local moment M3 acts on the joint 5 so as to push both sides of the center of the thickness SC of the joint 5 radially inward (downward). As a result, a tensile stress is generated on the outer surface side of the joint portion 5, and a compressive stress CS is generated on the inner surface side.
[0027]
As a result, on the inner surface side of the joint 5, a tensile stress TS generated by the moment M2 acting on the axle case and the tensile stress TS generated at a position deviated from the plate thickness center SC of the joint 5 are generated. And two compressive stresses CS, which are opposite to each other. Since these opposing stresses cancel each other, the stress generated on the inner surface side of the joint 5 is reduced, which leads to an improvement in the strength and life of the joint 5.
[0028]
In other words, the joining portion 5 has a substantially uniform tensile stress (+) at all positions in the radial direction as shown in FIG. 4A, and has a smaller thickness than the thickness center SC as shown in FIG. 4B. Two stresses are generated such that a tensile stress (+) occurs radially outward and a compressive stress (−) occurs radially inward of the plate thickness center SC. As a result, the stress generated at the joint 5 is as shown in FIG. 4C, and the stress generated on the inner surface side of the joint 5 is reduced.
[0029]
For example, in the conventional joint structure as shown in FIG. 8, since the line passing through the center of the plate thickness of the main body 38 and the spindle 33 is straight, the local moment M3 as shown in FIG. Only tensile stress is generated on the inner surface side of the portion. Therefore, compared with the present embodiment, a large tensile stress is generated on the inner surface side of the joint.
[0030]
As described above, in the axle case of the present embodiment, the joint end portion 1 of the main body 38 is smaller in diameter than the adjacent portion 4 continuous thereto, and the action point AP of the tensile stress TS generated in the joint portion 5 is changed to the joint portion 5. Is shifted from the center SC of the plate thickness to generate a compressive stress CS which cancels out the tensile stress TS on the inner surface side of the joint portion 5. As a result, the strength of the joint 5 is improved, and the life of occurrence of cracks and the life of fatigue fracture are extended. Therefore, according to the axle case of the present embodiment, it is possible to improve the strength and life of the joint 5 with a very simple structure and at low cost.
[0031]
In the axle case according to the present embodiment, the tensile stress generated on the outer surface side of the joint portion 5 increases, but this does not cause a serious problem. The reason is that there is no point where the stress is extremely concentrated on the outer surface side of the joint 5. In this case, stress concentrates on the toe 7 (see FIG. 1) at both ends in the longitudinal direction of the weld metal, but stress relief measures can be easily performed on the outer surface side of the joint 5. For example, stress concentration on the toe 7 can be avoided by grinding the outer surface of the joint 5 with a grinder or performing shot blasting. Further, since a compressive residual stress due to the contraction of the weld metal after welding exists on the outer surface side of the joint portion 5, a certain amount of tensile stress is absorbed. This is another reason why the outer surface side of the joint 5 is advantageous in strength. Therefore, even if the stress generated on the outer surface side of the joint 5 increases to some extent, the strength of the entire joint 5 can be improved by reducing the stress generated on the inner surface side.
[0032]
The present inventors, when confirming the effect of the present embodiment, when a moment is applied to a cylindrical member (pipe) having a reduced diameter at the end so as to push the end downward. Analysis (simulation) of the stress generated on the outer and inner surfaces of the upper section of the pipe was performed. The result is shown in FIG.
[0033]
In the figure, the horizontal axis represents the diameter reduction ratio of the pipe end with respect to the thickness of the pipe. The thickness of the pipe is T, and the difference between the basic diameter D1 of the pipe and the diameter D2 of the end (reduced diameter) is ΔD ( = D1-D2), it is represented by ΔD / T × 100%. In the figure, the vertical axis represents the stress generated on the outer and inner surfaces of the upper section of the pipe when the same moment is applied to a normal pipe whose end is not reduced in diameter. 1 shows the ratio of the stresses generated in FIG. In the drawing, the line indicated by a circle point indicates the stress generated on the inner surface of the upper section of the pipe, and the line indicated by a triangular point indicates the stress generated on the outer surface.
[0034]
As can be seen from the drawing, the stress generated on the inner surface decreases as the diameter reduction ratio increases from 0, that is, as the diameter of the pipe end decreases. However, the stress generated on the inner surface increases when the diameter reduction rate exceeds about 80%. In other words, it is understood that if the diameter of the end portion is too small, the effect of reducing the stress is reduced. Therefore, if only the inner surface side is considered, it is preferable that the diameter reduction ratio of the end portion be about 80%. However, as can be seen from the figure, the stress generated on the outer surface increases proportionally as the diameter reduction ratio of the end portion increases. The present inventors have found that in order to balance the stresses generated on the inner surface and the outer surface and optimally improve the overall strength of the joint portion 5, the diameter reduction ratio may be set within the range of 20 to 50%. confirmed. In other words, when the diameter reduction ratio is within this range, the stress generated on the inner surface can be sufficiently reduced, and the stress generated on the outer surface does not become excessively large, resulting in an optimum balance. Therefore, in the axle case according to the present embodiment as shown in FIG. 1, the difference between the diameter of the joining end 1 of the main body 38 and the diameter of the adjacent part 4 is set to be 20 It is preferable to be in the range of 50% to 50%.
[0035]
Furthermore, the present inventors have confirmed that it is preferable that the length L of the joining end portion 1 shown in FIG. 1 be within a range of 1 to 2 times the thickness T of the joining end portion 1. In other words, if the length L of the joint end 1 is too short, it is difficult to form the main body 38 (upper and lower members 30, 31). Conversely, if the length L is too long, the local moment M3 acting on the joint 5 (see FIG. 3). ) Is reduced, so that the stress reduction effect is reduced.
[0036]
In the above embodiment, the example in which the diameter of the joint end 1 of the main body 38 is reduced has been described, but the present invention is not limited in this respect. That is, as shown in FIG. 6A, the joining end 2 of the spindle 33 may be reduced in diameter with respect to the adjacent portion 10 which is continuous with the spindle 33, or as shown in FIG. The diameter of both the joint ends 1 and 2 of the spindle 33 may be reduced. In these embodiments, the same effects as in the embodiment shown in FIG. 1 can be obtained.
[0037]
Further, in the present invention, it is not always necessary to reduce the diameter of the joining ends 1 and 2 of the main body 38 and / or the spindle 33 over the entire circumference. That is, as described in the section of “Prior Art”, since the moment acting on the axle case often acts in the vertical direction, at least the vertical direction of the joining end portions 1 and 2 of the main body 38 and / or the spindle 33 is required. May be made smaller than the vertical dimension of the adjacent portions 4 and 10 that are continuous with the joining ends 1 and 2. In that case, the main body 38 and / or the spindle 33 may be fitted into a mold and compressed (pressed) in the vertical direction, and only the vertical dimension may be shortened without changing the horizontal dimension. Alternatively, the main body 38 and / or the spindle 33 may be simply crushed from above and below to form a substantially elliptical shape. When the main body 38 and / or the spindle 33 are simply crushed and formed, a mold or the like is not required, so that it is possible to provide at a lower cost. These processes may be performed before or after the main body 38 and the spindle 33 are joined.
[0038]
Up to now, the joint ends 1 and 2 of the main body 38 and / or the spindle 33 have been described as being reduced in diameter with respect to the adjacent parts 4 and 10. However, conversely, the adjoining part of the main body 38 and / or the spindle 33 may be reduced. Needless to say, diameters of 4, 10 may be increased.
[0039]
【The invention's effect】
In short, according to the present invention, an excellent effect that the strength of the joint between the main body and the spindle can be improved simply and at low cost is exhibited.
[Brief description of the drawings]
FIG. 1 is an enlarged sectional view of an upper joining portion between a main body and a spindle in an axle case according to an embodiment of the present invention.
FIG. 2 is a perspective view showing a joint between a main body and a spindle in the axle case of FIG. 1;
FIG. 3 is an explanatory diagram for explaining stress generated at a joint between a main body and a spindle.
FIG. 4A shows a tensile stress generated at a joint between a main body and a spindle.
(B) shows the stress generated at the joint by the local moment acting on the joint between the main body and the spindle.
(C) shows the stress generated at the joint between the main body and the spindle.
FIG. 5 is a graph showing the relationship between the diameter reduction ratio of the pipe end and the stress generated on the outer and inner surfaces of the upper cross section of the pipe.
FIG. 6A is an enlarged cross-sectional view of an upper joining portion between a main body and a spindle in an axle case according to another embodiment of the present invention.
(B) is an enlarged sectional view of an upper joining portion between a main body and a spindle in an axle case according to another embodiment of the present invention.
FIG. 7 is a front view of the axle case.
FIG. 8 is an enlarged sectional view of an upper joint portion between a main body and a spindle in a conventional axle case.
[Explanation of symbols]
1, 2 joining ends 4, 10 adjacent portion 5 joining portion 30 upper member 31 lower member 33 spindle 38 main body

Claims (3)

上下に重ね合わせて接合された上部材と下部材とで構成され、長手方向両端部が略円筒形状に形成された本体と、その本体の長手方向両端部に接合される略円筒形状のスピンドルとを備えた車軸ケースであって、
上記本体及び上記スピンドルの少なくとも一方の接合端部を、該接合端部に連続する隣接部と比べて上下方向寸法が小さくなるようにしたことを特徴とする車軸ケース。
A main body composed of an upper member and a lower member that are overlapped and joined together vertically, and both ends in the longitudinal direction are formed in a substantially cylindrical shape, and a substantially cylindrical spindle that is joined to both ends in the longitudinal direction of the main body. An axle case with
An axle case characterized in that at least one joint end of the main body and the spindle has a smaller vertical dimension than an adjacent part continuous with the joint end.
上記接合端部の上下方向寸法と、上記隣接部の上下方向寸法との差が、上記接合端部の板厚の20〜50%の範囲内である請求項1記載の車軸ケース。The axle case according to claim 1, wherein a difference between a vertical dimension of the joint end and a vertical dimension of the adjacent part is within a range of 20 to 50% of a plate thickness of the joint end. 上記接合端部の長さが、該接合端部の板厚の1〜2倍の範囲内である請求項1又は2記載の車軸ケース。3. The axle case according to claim 1, wherein a length of the joint end is in a range of 1 to 2 times a plate thickness of the joint end.
JP2003053579A 2003-02-28 2003-02-28 Axle case Expired - Lifetime JP4098117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003053579A JP4098117B2 (en) 2003-02-28 2003-02-28 Axle case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053579A JP4098117B2 (en) 2003-02-28 2003-02-28 Axle case

Publications (2)

Publication Number Publication Date
JP2004262302A true JP2004262302A (en) 2004-09-24
JP4098117B2 JP4098117B2 (en) 2008-06-11

Family

ID=33118139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053579A Expired - Lifetime JP4098117B2 (en) 2003-02-28 2003-02-28 Axle case

Country Status (1)

Country Link
JP (1) JP4098117B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071352A (en) * 2005-09-09 2007-03-22 Jtekt Corp Roller bearing unit for axle
JP2008221300A (en) * 2007-03-14 2008-09-25 Press Kogyo Co Ltd Fillet weld structure and fillet welding method
JP2014139049A (en) * 2013-01-21 2014-07-31 Hino Motors Ltd Rear dead axle

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071352A (en) * 2005-09-09 2007-03-22 Jtekt Corp Roller bearing unit for axle
JP2008221300A (en) * 2007-03-14 2008-09-25 Press Kogyo Co Ltd Fillet weld structure and fillet welding method
JP2014139049A (en) * 2013-01-21 2014-07-31 Hino Motors Ltd Rear dead axle

Also Published As

Publication number Publication date
JP4098117B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
CA2588386C (en) Joining structure for side members and cross members in chassis frames
JP3994168B2 (en) Rigid axle with integrated trailing arm
JP3378145B2 (en) Manufacturing method of welded structure
JP2005532228A5 (en)
JP6570989B2 (en) Suspension control arm
CN107206525A (en) Lap fillet welding arc-welded joint
JP2018517613A (en) Wheel suspension link
RU2660095C1 (en) Connecting structure
US11253956B2 (en) Structure having stress protected groove weld and structural members forming the same
JP2004262302A (en) Axle case
JP2013256142A (en) Torsion beam joining structure of torsion beam type suspension
US7374823B2 (en) Welded portion constitution and welding method
JP4560288B2 (en) Welding method
WO2017073129A1 (en) Lap-fillet arc welding joint and joint structure for press forming parts
JP5178135B2 (en) Manufacturing method of vehicle axle housing
JP2007167924A (en) Method for welding and joining body structural member of railroad vehicle, and joint structure used therefor
JP2007062538A (en) Welding structure of axle case for vehicle
JP2007283348A (en) Welding method and ring gear member welded thereby
JPH0349800Y2 (en)
JP2002336975A (en) Method for friction-welding pipe members made of dissimilar materials
JP6922753B2 (en) Welded joint structure and welded joint method
JP7044099B2 (en) Suspension arm
JP7063427B1 (en) Structural members
KR20130046926A (en) Welding method for preventing end-cracking
JP2004261833A (en) Welded part structure and welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080312

R150 Certificate of patent or registration of utility model

Ref document number: 4098117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term