JP2004261798A - Desalting method - Google Patents

Desalting method Download PDF

Info

Publication number
JP2004261798A
JP2004261798A JP2004033012A JP2004033012A JP2004261798A JP 2004261798 A JP2004261798 A JP 2004261798A JP 2004033012 A JP2004033012 A JP 2004033012A JP 2004033012 A JP2004033012 A JP 2004033012A JP 2004261798 A JP2004261798 A JP 2004261798A
Authority
JP
Japan
Prior art keywords
water
desalination
raw water
salt
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004033012A
Other languages
Japanese (ja)
Inventor
Yoshifumi Sugito
善文 杉戸
Minoru Takizawa
稔 滝澤
Yasuyuki Isono
康幸 礒野
Mikio Saji
三喜雄 佐次
Masayuki Fukazawa
正幸 深澤
Shinzo Kanao
伸三 金尾
Keisuke Umeda
啓介 梅田
Michiei Nakamura
道衞 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP2004033012A priority Critical patent/JP2004261798A/en
Publication of JP2004261798A publication Critical patent/JP2004261798A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for desalting raw water containing at least a water soluble salt industrially and economically. <P>SOLUTION: The method for desalting raw water includes at least a first process for removing moisture of raw water containing at least a water soluble salt to concentrate the raw water and a second process for removing at least a part of the water soluble salt from the concentrated raw water. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、脱塩方法、該方法により得られる脱塩水、および脱塩装置に関し、さらに詳しくは少なくとも水溶性の塩を含む水(以下単に「原水」または「塩水」という)を、該原水中に含まれる有機有価物(以下単に「有価物」という)を損なうことなく効率的に脱塩する方法、該方法により得られる脱塩水、および脱塩装置に関する。   The present invention relates to a desalination method, desalinated water obtained by the method, and a desalination apparatus. More specifically, water containing at least a water-soluble salt (hereinafter simply referred to as "raw water" or "brine") is used in the raw water. The present invention relates to a method for efficiently desalting organic valuables (hereinafter, simply referred to as "valuables") contained in the water, and desalinated water and a desalination apparatus obtained by the method.

従来、各種原水から水のみを採取する方法や、原水中に含まれている塩を取り除く方法がいろいろ提案されている。これらの方法により、飲料水、化学工業や電子工業に使用される水、医療や医薬品に使用される水、あるいは有価物を含む水などが製造されている。例えば、海水から淡水を取り出す装置としては、常圧または真空蒸留装置、あるいは逆浸透膜などの分離膜装置や電気透析装置が実用化されている。   Conventionally, various methods have been proposed for collecting only water from various raw waters and for removing salts contained in the raw water. By these methods, drinking water, water used in the chemical industry and the electronics industry, water used in medicine and medicine, water containing valuables, and the like are produced. For example, as a device for extracting fresh water from seawater, a normal pressure or vacuum distillation device, a separation membrane device such as a reverse osmosis membrane, or an electrodialysis device has been put to practical use.

医薬品原料、色素、シリカゾルなどの有価物を含む原水の濃縮や精製には、上記の蒸留装置、逆浸透膜装置、限外濾過膜装置などが利用されている。また、原水を脱塩するためにイオン交換樹脂装置や電気透析装置が使用されている。純水や超純水の製造には、蒸留や逆浸透膜を用いる純水化装置に、イオン交換樹脂や電気透析装置を用いる脱塩装置を併用している。   The above-mentioned distillation apparatus, reverse osmosis membrane apparatus, ultrafiltration membrane apparatus and the like are used for concentrating and purifying raw water containing valuable materials such as pharmaceutical raw materials, pigments and silica sol. In addition, an ion exchange resin device and an electrodialysis device are used to desalinate raw water. In the production of pure water or ultrapure water, a desalination device using an ion exchange resin or an electrodialysis device is used in combination with a purification or purification device using a reverse osmosis membrane.

また、脱塩の対象になる原水としては、海水あるいは海洋深層水などの生理活性を有する有機や無機の有価物を含有する原水がある。   Examples of raw water to be desalted include raw water containing organic or inorganic valuables having physiological activity, such as seawater or deep sea water.

上記の海洋深層水などの生理活性を有する物質(有価物)を含有する原水中の有価物は、温度に対して敏感なものが多く、原水の処理中に高温に曝されると上記有価物が変質して、該有価物の機能が低下または消滅する場合がある。   Many of the valuables in raw water containing substances having biological activity (valuables) such as the deep ocean water are sensitive to temperature, and when exposed to high temperatures during the treatment of raw water, the valuables are May be deteriorated, and the function of the valuable material may be reduced or disappear.

また、上記の脱塩方法のうちで、電気透析法で原水を脱塩する場合には、該原水に含有されている塩の量に対応した電力が必要である。また、脱塩の進行に従って原水の塩濃度が下がるにつれて、原水の電気抵抗による原水の液温の上昇が見られ、多くの場合、脱塩される原水に含有されている有価物(有機物)の変質や劣化などを招くことが多い。また、イオン交換樹脂装置による原水の脱塩方法では、当然ながらイオン交換樹脂のイオン交換能力以上の脱塩はできず、高濃度の塩を含む原水の脱塩に使用する場合には、イオン交換樹脂の高頻度の再生が必要であり、工業的に使用するには経済的ではない。   In the above desalination method, when desalinating raw water by electrodialysis, electric power corresponding to the amount of salt contained in the raw water is required. In addition, as the salt concentration of the raw water decreases as the desalination progresses, the temperature of the raw water increases due to the electric resistance of the raw water, and in many cases, valuable resources (organic substances) contained in the raw water to be desalinated are reduced. It often causes deterioration or deterioration. Also, in the method of desalinating raw water using an ion exchange resin apparatus, it is naturally impossible to desalinate beyond the ion exchange capacity of the ion exchange resin. It requires frequent regeneration of the resin and is not economical for industrial use.

工業的に使用できる特異な脱塩方法として、アニオン性およびカチオン性イオンチャンネルを有するモザイク荷電膜を使用する方法が提案されている(特許文献1)。後述するように、モザイク荷電膜を使用する脱塩方法は、蒸留法のような熱エネルギーを必要とせず、また、電気透析のような塩のイオン量に対応する電気エネルギーを必要とせず、さらにイオン交換樹脂のような再生処理は不要である。また、使用するモザイク荷電膜は構造が簡単で、安価に製造でき、脱塩装置を構成する際の各種設備の初期投資およびランニングコストともに安く、非常に経済的である。また、上記モザイク荷電膜の使用は、脱塩中に原水の液温を上昇させず、従って脱塩時の液温の上昇による原水中の有価物の変質や劣化などを生じさせない。   As a specific desalting method that can be used industrially, a method using a mosaic charged membrane having anionic and cationic ion channels has been proposed (Patent Document 1). As described later, the desalination method using the mosaic charged membrane does not require heat energy as in the distillation method, nor does it require electric energy corresponding to the ion amount of the salt as in electrodialysis, and Regeneration treatment such as ion exchange resin is unnecessary. Further, the mosaic charging membrane to be used has a simple structure, can be manufactured at a low cost, is low in initial investment and running cost of various facilities when configuring a desalination apparatus, and is very economical. In addition, the use of the mosaic charged membrane does not increase the liquid temperature of the raw water during desalination, and thus does not cause deterioration or deterioration of valuables in the raw water due to the increase of the liquid temperature during desalination.

さらに上記モザイク荷電膜は、本質的に無孔膜であるので、該膜によって分離される物質の分画分子量が非常に小さく、原水中の塩の分子量よりも大きい分子量の有価物が塩とともに分離されない(膜から漏れない)など、他の分離装置や方法に見られない優れた特徴を有している。
特開2000−309654公報
Further, since the mosaic charged membrane is essentially a nonporous membrane, the fractionated molecular weight of the substance separated by the membrane is very small, and valuable substances having a molecular weight larger than the molecular weight of the salt in raw water are separated together with the salt. It has excellent features that are not found in other separation devices and methods, such as not being separated (not leaking from the membrane).
JP 2000-309654 A

しかしながら、モザイク荷電膜の脱塩機構は、脱塩槽をモザイク荷電膜により二つに区切り、一方を原水槽として原水を入れ、他方を透析水槽として淡水を入れ、原水槽中の原水中の塩をモザイク荷電膜を通して透析水槽中の淡水(以下「透析槽水」という)に移行させるというものである。この際の脱塩の駆動力は、原水の塩濃度と透析槽水の塩濃度との濃度差にあることから、原水をモザイク荷電膜を用いて常圧で脱塩する場合、モザイク荷電膜を用いる脱塩装置においては、原水槽中の原水に対して、透析槽水は、その塩の濃度を常に低く保持する必要があった。   However, the desalination mechanism of the mosaic charged membrane is such that the desalination tank is divided into two parts by the mosaic charged membrane, one of which is used as a raw water tank for supplying raw water, the other is used for dialysis water, and fresh water is supplied. Through a mosaic charged membrane to fresh water in a dialysis tank (hereinafter referred to as “dialysis tank water”). The driving force for desalination at this time is the difference between the salt concentration of the raw water and the salt concentration of the dialysis tank water.When desalinating the raw water at normal pressure using a mosaic charged membrane, the mosaic charged membrane is In the desalination apparatus used, the dialysis tank water had to always keep the salt concentration lower than the raw water in the raw water tank.

本来、モザイク荷電膜は、上記原水と透析槽水との塩の濃度差が小さくても、原水中の塩の脱塩が可能であるが、原水と透析槽水との塩の濃度差が小さくなるにつれて脱塩の速度が低下する。従って、モザイク荷電膜を利用した脱塩方法においても、透析水槽に大量のイオン交換水や上水などの真水を供給することが必要であり、このことは、脱塩を工業的に行なう場合には経済的に好ましくない。また、脱塩時間についても、原水槽中の原水の塩濃度が低くなるに従って、モザイク荷電膜の透過流束(塩が膜を透過する速度)が著しく低くなり、脱塩時間が非常に長くなって、工業化における問題点となっている。   Originally, the mosaic charged membrane is capable of desalting salt in the raw water even if the salt concentration difference between the raw water and the dialysis tank water is small, but the salt concentration difference between the raw water and the dialysis tank water is small. As the rate of desalination decreases. Therefore, even in a desalination method using a mosaic charged membrane, it is necessary to supply a large amount of fresh water such as ion-exchanged water or clean water to a dialysis water tank, which is a problem when industrially performing desalination. Is not economically favorable. Regarding the desalination time, as the salt concentration of the raw water in the raw water tank decreases, the permeation flux of the mosaic charged membrane (the speed at which the salt permeates the membrane) becomes extremely low, and the desalination time becomes extremely long. Therefore, it is a problem in industrialization.

従って、本発明の第一の目的は、原水の脱塩を、工業的かつ経済的に行なうことができる脱塩方法を提供することである。また、本発明の第二の目的は、モザイク荷電膜を用いる脱塩方法において、透析槽水の使用量が少なく、かつ脱塩時間も短くすることができる脱塩方法を提供することである。さらに本発明の第三の目的は、有価物を含む原水の脱塩方法において、原水中の有価物を損なうことなく、原水を脱塩する方法を提供することである。   Accordingly, a first object of the present invention is to provide a desalination method that can industrially and economically desalinate raw water. Further, a second object of the present invention is to provide a desalination method using a mosaic charged membrane, in which the amount of dialysis tank water used is small and the desalination time can be shortened. Further, a third object of the present invention is to provide a method of desalinating raw water without deteriorating the valuables in the raw water in the method for desalinating raw water containing valuables.

上記目的は以下の本発明の方法によって達成される。すなわち、本発明は、少なくとも水溶性の塩を含む原水から水分を除去して、上記原水を濃縮する第一工程、および該濃縮された原水から水溶性の塩の少なくとも一部を除去する第二工程とを少なくとも含むことを特徴とする上記原水の脱塩方法を提供する。   The above object is achieved by the following method of the present invention. That is, the present invention provides a first step of removing water from raw water containing at least a water-soluble salt and concentrating the raw water, and a second step of removing at least a part of the water-soluble salt from the concentrated raw water. And a method for desalting the raw water.

上記本発明においては、前記第一工程と第二工程とを同時に行なうことができる。また、第一工程と第二工程とは、それぞれ1回のみ行なう場合と、第一工程と第二工程とを複数回断続的、または連続的に行なうことができる。また、上記第一工程の前に必要に応じて前処理工程を置いてもよいし、第一工程と第二工程との間に中間工程を置いてもよいし、さらに上記第二工程の後に後処理工程を置いてもよい。上記原水は、少なくとも1種のアルカリ金属イオンまたはアルカリ土類金属イオンを含むことが必要である。また、前記原水の塩濃度が、10質量%〜塩の飽和溶解度の範囲に濃縮されていることが好ましい。   In the present invention, the first step and the second step can be performed simultaneously. Further, the first step and the second step can be performed only once, respectively, and the first step and the second step can be performed multiple times intermittently or continuously. In addition, a pretreatment step may be placed as needed before the first step, or an intermediate step may be placed between the first step and the second step, and further after the second step. A post-processing step may be provided. The raw water needs to contain at least one kind of alkali metal ion or alkaline earth metal ion. Further, it is preferable that the salt concentration of the raw water is concentrated in the range of 10% by mass to the saturated solubility of the salt.

また、上記本発明においては、前記第一工程を、蒸留および/または逆浸透膜を用いて行なうことができ、また、前記第二工程を、モザイク荷電膜を用いて行なうことができる。また、前記第一工程と第二工程とを、ナノフィルトレーション膜を使用して同時に行なうこともできる。   In the present invention, the first step can be performed using a distillation and / or reverse osmosis membrane, and the second step can be performed using a mosaic charged membrane. Further, the first step and the second step can be performed simultaneously using a nanofiltration film.

本発明において脱塩される前記原水は、有価物を含有するものであることが好ましい。該有価物を含有する原水としては、海水または海洋深層水が挙げられる。また、本発明は、上記本発明の方法によって得られた脱塩水を提供する。   The raw water desalted in the present invention preferably contains valuable resources. The raw water containing the valuable resource includes seawater or deep sea water. The present invention also provides desalted water obtained by the method of the present invention.

また、本発明は、真空蒸留装置、常圧蒸留装置、逆浸透膜装置およびナノフィルトレーション膜装置から選ばれる少なくとも1つの濃縮装置と、モザイク荷電膜脱塩装置とを組み合わせてなることを特徴とする脱塩装置を提供する。前記真空蒸留装置は、遠心式薄膜真空蒸留装置、回転伝熱面式真空蒸留装置、高速旋回式真空蒸留装置、流下膜式真空蒸留装置および掻面式真空蒸留装置から選ばれることが好ましい。   Further, the present invention is characterized in that at least one concentration device selected from a vacuum distillation device, a normal pressure distillation device, a reverse osmosis membrane device, and a nanofiltration membrane device is combined with a mosaic charged membrane desalination device. And a desalination apparatus. The vacuum distillation apparatus is preferably selected from a centrifugal thin-film vacuum distillation apparatus, a rotary heat transfer surface vacuum distillation apparatus, a high-speed swirling vacuum distillation apparatus, a falling film vacuum distillation apparatus, and a scratch surface vacuum distillation apparatus.

上記本発明の方法によれば、下記の効果が奏される。
(1)原水の脱塩を、工業的かつ経済的に行なうことができる。
(2)モザイク荷電膜を用いる脱塩方法において、透析槽水の使用量が少なく、かつ脱塩時間も短くすることができる。さらに、濃縮時に得られた水を透析槽水として使用することができる。
(3)有価物を含む原水の脱塩において、原水中の有価物を損なうことなく、原水を脱塩することができる。
According to the method of the present invention, the following effects can be obtained.
(1) Desalination of raw water can be performed industrially and economically.
(2) In a desalination method using a mosaic charged membrane, the amount of dialysis tank water used is small and the desalination time can be shortened. Further, water obtained at the time of concentration can be used as dialysis tank water.
(3) In the desalination of raw water containing valuables, the raw water can be desalted without damaging the valuables in the raw water.

次に、発明を実施するための最良の形態を挙げて本発明をさらに詳しく説明する。
本発明の脱塩方法の対象となる原水としては、種々の塩のイオンを含む水が挙げられる。ここで塩のイオンは、少なくとも1種がナトリウム、カリウム、マグネシウム、カルシウムなどのイオンである。原水の代表的な例として海水が挙げられる。従来、海水から淡水や塩を製造する場合には、主として表層海水(海の浅い部分の海水)が使用されている。
Next, the present invention will be described in more detail with reference to the best mode for carrying out the invention.
Examples of the raw water to be subjected to the desalting method of the present invention include water containing ions of various salts. Here, at least one kind of salt ion is an ion of sodium, potassium, magnesium, calcium, or the like. A typical example of raw water is seawater. Conventionally, when producing freshwater or salt from seawater, mainly surface seawater (seawater in a shallow portion of the sea) is used.

上記海水は、上記の塩のイオンの他に、リチウム、亜鉛、鉄、銅、アルミニウム、マンガン、モリブデン、ニッケル、ウランなどのイオンを含有している。一方、近年、深さ200m以上の深海の海水(海洋深層水と称されている)が注目され、該海洋深層水は、有用な有価物(有機物)や有用なミネラルを含むことから、化粧品、生理活性水、飲料などの原料となっており、本発明における有用な原水である。   The seawater contains ions of lithium, zinc, iron, copper, aluminum, manganese, molybdenum, nickel, uranium and the like in addition to the ions of the salt. On the other hand, in recent years, seawater in the deep sea having a depth of 200 m or more (referred to as deep seawater) has attracted attention, and since the deep seawater contains useful valuables (organic substances) and useful minerals, cosmetics, It is a raw material for physiologically active water and beverages, and is a useful raw water in the present invention.

本発明に使用するモザイク荷電膜とは、カチオン性重合体成分とアニオン性重合体成分とからなる膜であって、膜の表裏を貫通しておりかつ互いに隣接して存在しているイオンチャンネルを有する膜である。該イオンチャンネルを通して、原水中の分子量(原子量)の小さいイオン(例えば、ナトリウム、カリウムなどのアルカリ金属イオンなど)が原水槽側から透析槽水側に移行し、原水が脱塩される。該膜の脱塩の起動力は、該膜によって区画されている原水と透析槽水との塩の濃度差、および原水および透析槽水に付加されている圧力差である。該膜は、原水中の比較的低分子の塩のイオンを、該膜のイオンチャンネルを通じて透析槽水中に容易に移行させるが、原水中の非イオン性物質や、分子量の大きい分子(例えば、有機物)を透過させないという性質を有し、該膜を使用して原水中の塩のイオンと有価物とを容易に分離することができる。該モザイク荷電膜は、従来から常圧での塩透析および加圧での塩透析(ピエゾ塩透析)(脱塩)に使用されている。   The mosaic charged membrane used in the present invention is a membrane composed of a cationic polymer component and an anionic polymer component, and penetrates the front and back of the membrane and forms an ion channel present adjacent to each other. It is a film having. Through the ion channel, ions having a small molecular weight (atomic weight) (for example, alkali metal ions such as sodium and potassium) in the raw water move from the raw water tank side to the dialysis tank water side, and the raw water is desalted. The driving force for desalination of the membrane is the difference in salt concentration between the raw water and the dialysis tank water partitioned by the membrane, and the pressure difference applied to the raw water and the dialysis tank water. The membrane allows relatively low molecular weight salt ions in the raw water to be easily transferred into the dialysis tank water through the ion channels of the membrane. However, non-ionic substances in the raw water and high molecular weight molecules (for example, organic substances) ) Does not permeate, and the membrane can be used to easily separate salt ions and valuables in raw water. The mosaic charged membrane has been conventionally used for salt dialysis under normal pressure and salt dialysis under pressure (piezo salt dialysis) (desalting).

本発明において、工業的に使用できる大型のモザイク荷電膜としては、特に、特許第2681852号公報、特許第2895705号公報、特許第3012153号公報、特許第3234426号公報、特許第3236754号公報および特許第3156955号公報に示されているように、荷電性重合体成分の少なくとも一成分として、架橋した粒状重合体を使用して構成されたモザイク荷電膜が好ましい。   In the present invention, as a large-sized mosaic charged film that can be used industrially, in particular, Japanese Patent No. 2868152, Japanese Patent No. 2895705, Japanese Patent No. 30112153, Japanese Patent No. 3234426, Japanese Patent No. 3236754, and Patent As disclosed in Japanese Patent No. 3156955, a mosaic charged membrane constituted by using a crosslinked granular polymer as at least one component of the charged polymer component is preferable.

上記公報の記載では、モザイク荷電膜の塩透析特性の評価は次のようにして行なわれている。先ず、モザイク荷電膜を用いる脱塩装置を構成し、その原水槽には、電解質として、塩化カリウムを濃度0.05mol/lに調整し、非電解質としてグルコース(分子量:180)を濃度0.05mol/lに調整した水溶液(原水に相当する)を入れる。上記装置の透析水槽には脱イオン水を入れる。この状態で常圧で放置して塩化カリウムを透析水槽側に移行させることで、モザイク荷電膜の透析性能を評価している。該モザイク荷電膜は、塩化カリウムとグルコースとを含む原水に対し優れた分離性能を示したが、塩化カリウムの透過流束は透析開始1時間では45g/m2hである。 In the description of the above publication, the evaluation of the salt dialysis characteristics of the mosaic charged membrane is performed as follows. First, a desalination apparatus using a mosaic charged membrane is configured. In the raw water tank, potassium chloride is adjusted to a concentration of 0.05 mol / l as an electrolyte, and glucose (molecular weight: 180) is concentrated to a concentration of 0.05 mol as a non-electrolyte. / L adjusted aqueous solution (corresponding to raw water). The dialysis water tank of the above device is filled with deionized water. In this state, the dialysis performance of the mosaic charged membrane is evaluated by allowing potassium chloride to move to the dialysis water tank by leaving it at normal pressure. The mosaic charged membrane exhibited excellent separation performance with respect to raw water containing potassium chloride and glucose, but the permeation flux of potassium chloride was 45 g / m 2 h at the start of dialysis for 1 hour.

そこで、本発明では、上記原水中の塩化カリウム濃度を60倍(3mol/l(約20質量%))に高めた場合の、モザイク荷電膜の透析特性を調べたところ、塩化カリウムの透過流束は、透析開始1時間では959g/m2hであり、4〜5時間では714g/m2hを示した。上記原水の塩濃度と透析槽水の塩濃度との差(mol/l)と、塩の透析量の目安である透過流束(g/m2h)との関係を経時的に測定し、両対数グラフでプロットしたところ、透過流束と塩濃度差はほぼ一直線上に並び、両者の間には比例関係が成り立っていることを示した。このことは原水の塩濃度が高ければ高いほど、また、原水と透析槽水との塩濃度の差が大きければ大きいほど、透析速度が大になることを示している。 Therefore, in the present invention, when the dialysis characteristics of the mosaic charged membrane when the potassium chloride concentration in the raw water was increased 60 times (3 mol / l (about 20 mass%)), the permeation flux of potassium chloride was determined. , in start of dialysis 1 hour was 959g / m 2 h, showed 714 g / m 2 h at 4-5 hours. The relationship between the difference (mol / l) between the salt concentration of the raw water and the salt concentration of the dialysis tank water and the permeation flux (g / m 2 h), which is a measure of the dialysis amount of the salt, was measured over time, When plotted with a log-log graph, the permeation flux and the salt concentration difference were almost aligned, indicating that a proportional relationship was established between the two. This indicates that the higher the salt concentration of the raw water and the greater the difference in salt concentration between the raw water and the dialysis tank water, the higher the dialysis speed.

従って、モザイク荷電膜を工業的な脱塩方法に用いる場合の問題点、すなわち、透析槽水として大量の真水を必要とするという問題と、塩透析(脱塩)に長時間がかかるという問題は、原水の塩濃度を高くすることで解決できることが判った。原水の塩濃度を高くする場合には、原水中の有価物である溶質(例えば、有機物)を変質させることなく、原水を濃縮することが好ましい。原水を濃縮することによって、当然原水の容積が減少し、原水の塩濃度が上昇するとともに、脱塩時には上記したように塩の透過流束が増加するため、短時間で原水の脱塩を行なうことができる。   Therefore, the problems when the mosaic charged membrane is used in an industrial desalination method, that is, the problem that a large amount of fresh water is required as the dialysis tank water and the problem that the salt dialysis (desalination) takes a long time. It was found that the problem could be solved by increasing the salt concentration of the raw water. When increasing the salt concentration of the raw water, it is preferable to concentrate the raw water without altering solutes (for example, organic substances), which are valuables in the raw water. By concentrating the raw water, the volume of the raw water naturally decreases, the salt concentration of the raw water increases, and at the time of desalination, the permeation flux of the salt increases as described above. be able to.

また、脱塩に際して、原水の取水時、搬送あるいは貯蔵中や、脱塩、濃縮あるいはそれに継続する処理中に、大気中あるいは製造装置から細菌などの微生物が原水中に混入し、原水が汚染され、該微生物が原水中で繁殖してしまう場合がある。通常の原水であれば塩素殺菌、酸素殺菌、あるいは殺菌剤の添加などで殺菌することができる。しかながら、原水が有価物(例えば、有機物)を含み、該有価物を利用する場合には、上記原水は上記有価物を変質させる畏れのある殺菌剤などを含まないことが望ましい。   In addition, during desalination, during the intake of raw water, during transportation or storage, or during desalination, concentration or subsequent treatment, microorganisms such as bacteria are mixed into the raw water from the atmosphere or from manufacturing equipment, and the raw water is contaminated. In some cases, the microorganisms propagate in raw water. Normal raw water can be sterilized by chlorine sterilization, oxygen sterilization, or the addition of a germicide. However, when the raw water contains valuables (for example, organic substances) and the valuables are used, it is desirable that the raw water does not contain a germicide or the like that may alter the valuables.

本発明においては、前記原水の濃縮により原水の塩濃度を高めることで、前記の如き原水の殺菌処理や原水に殺菌剤などを添加することなく、原水中に混入する細菌などの微生物を殺菌できることを見出した。   In the present invention, by increasing the salt concentration of the raw water by concentrating the raw water, it is possible to sterilize microorganisms such as bacteria mixed in the raw water without the sterilization treatment of the raw water or adding a bactericide or the like to the raw water as described above. Was found.

一般に、細菌などの微生物には、増殖や生存に適した環境があり、特に塩濃度においては、微生物が生存または繁殖できる限界がある。塩濃度を高くすると細菌などの微生物の増殖が抑制され、さらに塩濃度を高くすると微生物が生存できなくなる。微生物が生存できる、あるいは繁殖できる塩濃度の限界は、細菌などの微生物種により異なり、一概に規定できないが、塩水(原水)の場合には、該塩水の塩濃度を10質量%以上とすることで、塩水に侵入した微生物を充分に死滅させることが可能である。すなわち、高い塩濃度の塩水では、微生物は、その細胞外との浸透圧差により細胞内の水分が高濃度原水中に引き出され、細菌などの微生物が死滅すると考えられる。   In general, microorganisms such as bacteria have an environment suitable for growth and survival, and particularly at a salt concentration, there is a limit at which the microorganisms can survive or proliferate. If the salt concentration is increased, the growth of microorganisms such as bacteria is suppressed, and if the salt concentration is further increased, the microorganisms cannot survive. The limit of the salt concentration at which microorganisms can survive or proliferate depends on the type of microorganism such as bacteria and cannot be unconditionally specified, but in the case of salt water (raw water), the salt concentration of the salt water should be 10% by mass or more. Thus, the microorganisms that have invaded the salt water can be sufficiently killed. That is, in salt water having a high salt concentration, it is considered that the microorganisms such as bacteria are killed by extracting the water in the cells into the high concentration raw water due to the osmotic pressure difference between the outside of the cells and the microorganisms.

原水が海水、特に海洋深層水の場合には、元々海洋深層水中に内在している細菌などの微生物が、原水として採取した海洋深層水中に静菌状態で存在しており、該微生物は塩水環境に対しても順応しており、塩水である海洋深層水に馴化しているものと考えられる。そのために、上記したような塩濃度(10質量%)の海洋深層水中において、微生物が生存し得るため、海洋深層水の塩濃度を15質量%あるいは20質量%の如くさらに高くすることによって、海洋深層水中の細菌などの微生物を実質的に死滅させることができることが判った。細菌などの微生物を死滅させることを前提にした原水の塩濃度は、10質量%〜塩の飽和溶解度、好ましくは15質量%〜塩の飽和溶解度、さらに好ましくは20質量%〜塩の飽和溶解度の範囲である。このようにして本発明では、上記したように塩素殺菌や殺菌剤、静菌剤などを使用しないで、海洋深層水を無菌状態で脱塩し、有価物を含む脱塩水を得ることができる。さらに、必要に応じて紫外線照射を行ない微生物の殺菌を徹底することもできる。   When the raw water is seawater, particularly deep ocean water, microorganisms such as bacteria originally existing in the deep ocean water are present in a bacteriostatic state in the deep ocean water collected as raw water, and the microorganisms are in a saltwater environment. It is thought that it has acclimated to the saltwater, deep ocean water. Therefore, microorganisms can survive in the deep sea water having the above-mentioned salt concentration (10% by mass). Therefore, by increasing the salt concentration of the deep sea water to 15% by mass or 20% by mass, It has been found that microorganisms such as bacteria in deep water can be substantially killed. The salt concentration of the raw water on the premise of killing microorganisms such as bacteria is from 10% by mass to the saturated solubility of the salt, preferably from 15% by mass to the saturated solubility of the salt, more preferably from 20% by mass to the saturated solubility of the salt. Range. Thus, in the present invention, as described above, the deep sea water can be desalinated under aseptic conditions without using chlorine sterilization, disinfectants, bacteriostats and the like, and demineralized water containing valuables can be obtained. Further, if necessary, ultraviolet irradiation may be performed to thoroughly sterilize microorganisms.

次に本発明の脱塩方法の具体的な実施の態様を示す。
(A)少なくとも水溶性の塩を含む原水から水分を除去して、上記原水を濃縮する第一工程、次いで第一工程で濃縮された原水をモザイク荷電膜を用いて常圧または加圧下で脱塩する第二工程を行なうことにより脱塩水が得られる。この第一工程と第二工程は1サイクルのみ行なってもよいし、多数回繰り返し行なってもよい。また、上記の原水の濃縮は、例えば、逆浸透膜濃縮装置または遠心式薄膜真空蒸留装置のような減圧蒸留装置を用いて行なうことができる。また、上記方法において原水の濃縮によって得られた水(例えば、蒸留水)は、脱塩時の透析槽水として使用したり、また、得られた脱塩水の塩濃度や有価物の濃度の調整のために使用することができる。
Next, specific embodiments of the desalting method of the present invention will be described.
(A) The first step of concentrating the raw water by removing water from the raw water containing at least a water-soluble salt, and then removing the raw water concentrated in the first step under normal pressure or pressure using a mosaic charged membrane. Desalted water is obtained by performing the second step of salting. The first step and the second step may be performed only one cycle, or may be repeatedly performed many times. The concentration of the raw water can be performed using, for example, a reduced-pressure distillation apparatus such as a reverse osmosis membrane concentrator or a centrifugal thin-film vacuum distillation apparatus. In addition, water (eg, distilled water) obtained by concentrating raw water in the above method can be used as dialysis tank water during desalination, or adjustment of the salt concentration of valuable demineralized water or the concentration of valuables. Can be used for

(B)本発明の方法を実施する前処理として、モザイク荷電膜を用いて、原水、特に1%以上の塩を含有する原水を常圧または加圧下で脱塩することにより、塩濃度が低下した脱塩水を調製する工程、次いでこの脱塩水を原水として、該脱塩水から水分を除去して、上記脱塩水を濃縮する第一工程を行ない、次いで第二工程を行なうことにより脱塩水が得られる。例えば、海洋深層水を原水とした場合、海洋深層水をそのままモザイク荷電膜を用いて脱塩し、次いで得られた脱塩水を逆浸透膜や減圧蒸留装置を用いて濃縮し、さらに第二工程を実施する。これを繰り返すことで海洋深層水が元々含有していた有価物をそのまま含有している脱塩水を得ることができる。   (B) As a pre-treatment for carrying out the method of the present invention, the salt concentration is reduced by desalinating raw water, particularly raw water containing 1% or more salt under normal pressure or pressure using a mosaic charged membrane. A step of preparing demineralized water, followed by removing water from the demineralized water using the demineralized water as raw water, performing a first step of concentrating the demineralized water, and then performing a second step to obtain demineralized water. Can be For example, when the deep sea water is used as raw water, the deep sea water is directly desalted using a mosaic charged membrane, and the obtained demineralized water is then concentrated using a reverse osmosis membrane or a vacuum distillation apparatus. Is carried out. By repeating this, it is possible to obtain demineralized water containing the valuables originally contained in the deep ocean water.

(C)「原水中の有価物の濃縮を目的とした場合」
有価物を含む原水からナノフィルトレーション膜で、原水中の塩および水分を系外に取り出して原水中の有価物の濃度を高める工程、次いで該有価物の濃度が高められた原水を、モザイク荷電膜を用いて脱塩する工程を行なうことにより、塩濃度が低くかつ有価物の濃度が高い脱塩水が得られる。例えば、海洋深層水からナノフィルトレーション膜により塩および水分を分離して、有価物濃度が高い海洋深層水とし、これをモザイク荷電膜で脱塩することにより有価物濃度が高くかつ脱塩された海洋深層水が得られる。
(C) "When the purpose is to concentrate valuables in raw water"
A step of extracting salt and water in the raw water out of the system by using a nanofiltration membrane from the raw water containing valuables to increase the concentration of the valuables in the raw water, and then mosaicing the raw water with the increased concentration of the valuables. By performing the step of desalination using a charged membrane, desalinated water having a low salt concentration and a high concentration of valuables can be obtained. For example, salt and water are separated from deep sea water by a nanofiltration membrane to obtain deep sea water with a high concentration of valuable substances, which is then desalinated with a mosaic charged membrane to have a high concentration of valuable substances and desalination. Deep sea water is obtained.

(D)「原水中の有価物の濃縮を目的とした場合」
有価物を含む原水(例えば、海洋深層水)からナノフィルトレーション膜で、原水中の塩および水分を系外に取り出して、原水中の有価物の濃度を高める工程、次いで該有価物の濃度が高い原水をナノフィルトレーション膜を用いて、該原水に純水を加えながら水および塩を系外に取り出し、有価物の濃度が高く塩濃度が低い脱塩水を得る。
(D) "For the purpose of concentrating valuable resources in raw water"
A step of taking out salts and moisture in the raw water from the raw water (for example, deep sea water) containing the valuables with a nanofiltration membrane to increase the concentration of the valuables in the raw water, and then the concentration of the valuables Water and salt are taken out of the system while adding pure water to the raw water using a nanofiltration membrane using a nanofiltration membrane to obtain demineralized water having a high concentration of valuable substances and a low salt concentration.

(E)上記の方法で得られた脱塩水、または有価物を含む脱塩水を濃縮したり、淡水で希釈したりして、有価物の濃度の調整を行い、有価物を含有する脱塩水を得ることができる。
上記のA〜Eの方法は、それぞれ1サイクルのみで行なってもよく、さらに複数回繰り返して行なってもよい。
(E) The demineralized water obtained by the above method or the demineralized water containing valuables is concentrated or diluted with fresh water to adjust the concentration of valuables, and the demineralized water containing valuables is removed. Obtainable.
Each of the above-mentioned methods A to E may be performed only in one cycle, or may be repeatedly performed a plurality of times.

前記第一工程である濃縮工程では、蒸留により水を除去する方法や、逆浸透膜を用いて水を分離する方法が使用される。蒸留法として、常圧蒸留法のほか、蒸留しようとする原水が温度に対して敏感な物質を含有する場合には減圧蒸留法が好ましい。例えば、高速旋回式、流下膜式、汲み上げ散布式、掻面式などの固定伝熱面方式の真空蒸留装置や、遠心式薄膜真空蒸留装置(Centrifugal-flow thin-film vacuum evaporator)などの回転伝熱面方式の真空蒸留装置などが使用される。これらについては公知の装置が使用できるが、後述するように、原水を加温して濃縮する場合には、高濃度の原水による装置の錆の発生や腐食に留意して装置の材質を選択することが必要である。   In the concentration step as the first step, a method of removing water by distillation or a method of separating water using a reverse osmosis membrane is used. As the distillation method, in addition to the atmospheric distillation method, the vacuum distillation method is preferable when the raw water to be distilled contains a substance sensitive to temperature. For example, rotary transfer such as a fixed-surface heat transfer type vacuum distillation apparatus such as a high-speed swirling type, a falling film type, a pumping and spraying type, and a scraping type, and a centrifugal-flow thin-film vacuum evaporator. A hot surface type vacuum distillation apparatus or the like is used. Known devices can be used for these, but as will be described later, when heating and concentrating raw water, the material of the device is selected in consideration of rust generation and corrosion of the device due to high-concentration raw water. It is necessary.

モザイク荷電膜を用いる脱塩方法としては、常圧での脱塩透析法および加圧によるピエゾ脱塩透析法が使用される。また、これらの方法における原水と透析槽水の接触の方式も、回分(バッチ)方式あるいは連続方式、循環方式あるいは一過方式、対向流方式あるいは平行流方式など、種々の方式が使用できる。これらの方式において、高い塩濃度の原水を脱塩する場合には、透析槽水として淡水(真水)を使用する代わりに、低い塩濃度の塩水を使用することによって、透析槽水として使用する真水の使用量を削減することができる。   As a desalting method using a mosaic charged membrane, a desalting dialysis method under normal pressure and a piezo desalting dialysis method using pressure are used. Various methods such as a batch (batch) method, a continuous method, a circulation method or a transient method, a counter flow method or a parallel flow method can be used as a method of contacting raw water and dialysis tank water in these methods. In these systems, when desalting raw water having a high salt concentration, instead of using fresh water (fresh water) as the dialysis tank water, fresh water used as the dialysis tank water is used by using salt water having a low salt concentration. Can be reduced.

本発明における脱塩水または有価物を含有する脱塩水の製造装置は、所望の設計に従って、原水貯槽、前処理装置、減圧濃縮装置、逆浸透膜濃縮装置、ナノフィルトレーション膜濃縮装置、モザイク荷電膜脱塩装置、電気透析装置、透析塩水受槽、透析淡水受槽、脱塩水受槽など、およびそれらに付属する設備群から選択され、組み合わせて構成される。   According to a desired design, the apparatus for producing demineralized water or demineralized water containing valuables according to the present invention includes a raw water storage tank, a pretreatment apparatus, a vacuum concentrator, a reverse osmosis membrane concentrator, a nanofiltration membrane concentrator, a mosaic charge It is selected from a membrane desalination device, an electrodialysis device, a dialysis salt water receiving tank, a dialysis fresh water receiving tank, a deionized water receiving tank, etc., and a group of equipment attached thereto, and is configured in combination.

各装置に使用する材質は、特に遠心式薄膜真空蒸留装置のような蒸発濃縮工程で高濃度塩水と接触する装置または部材、例えば、塩水を加熱するのための熱交換器、塩水の蒸発装置面、配管などの如く、塩水による錆や腐食に留意して選択することが必要である。これらの材質として好ましいのはSUS316L、NAS354N(高ニッケルオーステナイトステンレス鋼)、ハステロイC−22(ニッケル・クロム・モリブデン系合金)、チタンおよびガラス(グラスライニング)などである。   The material used for each device is a device or a member that comes into contact with high-concentration salt water in the evaporative concentration process such as a centrifugal thin-film vacuum distillation device, for example, a heat exchanger for heating salt water, and a surface of a salt water evaporator. It is necessary to pay attention to rust and corrosion due to salt water, as in the case of pipes and piping. Preferred as these materials are SUS316L, NAS354N (high nickel austenitic stainless steel), Hastelloy C-22 (nickel-chromium-molybdenum alloy), titanium and glass (glass lining).

本発明の脱塩方法および脱塩装置は、例えば、飲料用水、純水、超純水、工業用水などの水処理工業における各種塩水の脱塩、発酵工業および食品工業などの生化学関連工業において発生する各種塩水の脱塩、塩を含む医薬品原料の脱塩、化学工業、金属工業などの塩を含む工業排水の脱塩、色素製造工業における塩を含む染料および顔料の脱塩などに有用である。   The desalination method and desalination apparatus of the present invention can be used, for example, in drinking water, pure water, ultrapure water, desalination of various types of salt water in the water treatment industry such as industrial water, biochemical related industries such as fermentation industry and food industry. It is useful for desalination of various kinds of salt water generated, desalination of pharmaceutical raw materials containing salts, desalination of industrial wastewater containing salts in the chemical industry, metal industry, etc., and desalination of dyes and pigments containing salts in the pigment manufacturing industry. is there.

特に本発明に使用するモザイク荷電膜による脱塩方法は、原水を加熱することもなく、また、脱塩時に熱が発生することもないので、有価物を含む海洋深層水の脱塩、熱の影響を受けやすい食品工業や発酵工業分野における各種塩水の脱塩に有用である。このような塩水の脱塩を、従来の電気透析法を用いて行なうと、処理時の発熱による有価物(目的物質)が分解したり変質したりする。また、イオン交換膜を用いる脱塩では、イオン的吸着によりイオン交換膜が汚染されるという問題があった。本発明によれば上記従来技術の課題が解決される。   In particular, the desalination method using a mosaic charged membrane used in the present invention does not heat the raw water and does not generate heat at the time of desalination. It is useful for desalination of various types of salt water in the food and fermentation industries, which are easily affected. When such salt water is desalted by using a conventional electrodialysis method, valuable resources (target substances) are decomposed or deteriorate due to heat generated during the treatment. In addition, in desalination using an ion exchange membrane, there is a problem that the ion exchange membrane is contaminated by ionic adsorption. According to the present invention, the above-mentioned problems of the prior art are solved.

有価物や有価ミネラル分を含む海洋深層水は、アトピー性皮膚炎やアレルギー反応のときに増加する好酸球に対して有効性があるとされ、また、繊維芽細胞への生理活性および皮膚の保湿、抗菌機能についても有効性があると言われている。このような有効性は、財団法人高知県産業振興センター発行の平成10年度 科学技術総合研究委託費地域先導研究 研究成果報告書「室戸海洋深層水の特性把握および機能解明」(平成11年3月)、および平成10〜12年度 科学技術総合研究委託費地域先導研究 研究成果報告書「3年間全体の室戸海洋深層水の特性把握および機能解明」(平成13年3月)に報告されており、本発明の方法によって得られる海洋深層水由来の有価物を含有する脱塩水、特にその濃縮水は、特に、皮膚疾患、皮膚欠陥、皮膚欠損など、損傷皮膚細胞の治癒のための湿潤水、湿布液、ゲル貼布の含浸液、培養皮膚の培地の培養液成分として有効である。   Deep sea water containing valuables and valuable minerals is said to be effective against eosinophils that increase during atopic dermatitis and allergic reactions, and also has a physiological activity on fibroblasts and It is said that the moisturizing and antibacterial functions are also effective. Such effectiveness is described in the 1998 Kochi Prefectural Industrial Promotion Center's Science and Technology Comprehensive Research Outsourcing Area Leading Research Research Results Report, "Characterization and Function Elucidation of Muroto Deep Ocean Water" (March 1999) ), And the 1998-2012 Science and Technology Comprehensive Research Outsourcing Regional Leadership Research Results Report, "Grading the Characteristics and Functions of Muroto Deep Sea Water for the Three Years" (March 2001) The desalinated water containing valuables derived from deep sea water obtained by the method of the present invention, particularly the concentrated water thereof, is particularly suitable for moist water, poultice for healing damaged skin cells such as skin diseases, skin defects, and skin defects. It is effective as a liquid, an impregnating liquid for a gel patch, and a culture liquid component of a culture skin medium.

本発明の最も具体的な実施形態は下記の通りであるが、本発明は下記の実施形態に限定されるものではない。
(1)海洋深層水を、塩濃度が10質量%〜塩の飽和溶解度になるまで減圧蒸留により濃縮する工程、該濃縮された海洋深層水を塩濃度が0.5〜12質量%になるまでモザイク荷電膜により脱塩する工程、該脱塩水を塩濃度が10質量%〜塩の飽和溶解度になるまで減圧蒸留により再度濃縮する工程、および該濃縮された海洋深層水を塩濃度が0.1〜1.0質量%になるまでモザイク荷電膜により再度脱塩する工程を含む海洋深層水の脱塩方法。
The most specific embodiments of the present invention are as follows, but the present invention is not limited to the following embodiments.
(1) a step of concentrating the deep sea water by distillation under reduced pressure until the salt concentration becomes 10% by mass to the saturated solubility of the salt, and the concentrated deep sea water is concentrated until the salt concentration becomes 0.5 to 12% by mass. A step of desalting with a mosaic charged membrane, a step of reconcentrating the demineralized water by distillation under reduced pressure until the salt concentration reaches 10% by mass to a saturated solubility of salt, and a step of concentrating the concentrated deep sea water with a salt concentration of 0.1%. A method for desalinating deep ocean water, comprising the step of desalinating again with a mosaic charged membrane until the water content reaches 1.0% by mass.

(2)海洋深層水を、塩濃度が5〜7質量%になるまで逆浸透膜により濃縮する工程、該濃縮された海洋深層水を塩濃度が10質量%〜塩の飽和溶解度になるまで減圧蒸留によりさらに濃縮する工程、該濃縮水を塩濃度が0.1〜1.0質量%になるまでモザイク荷電膜により脱塩する工程を含む海洋深層水の脱塩方法。(3)海洋深層水を、容積が、1/5〜1/50になるまでナノフィルトレーション膜により濃縮する工程、および該濃縮された海洋深層水を塩濃度が0.1〜1.0質量%になるまでモザイク荷電膜により脱塩する工程を含む海洋深層水の脱塩方法。
なお、上記例示の各実施形態おける各工程は、必要に応じてそれぞれ2回以上繰り返して行なうことができる。
(2) a step of concentrating the deep sea water with a reverse osmosis membrane until the salt concentration becomes 5 to 7% by mass, and reducing the concentrated deep sea water until the salt concentration becomes 10% by mass to the saturated solubility of salt. A method for desalinating deep sea water comprising the steps of further concentrating by distillation and desalting the concentrated water with a mosaic charged membrane until the salt concentration becomes 0.1 to 1.0% by mass. (3) a step of concentrating the deep ocean water by a nanofiltration membrane until the volume becomes 1/5 to 1/50, and a step wherein the concentrated deep ocean water has a salt concentration of 0.1 to 1.0. A method for desalinating deep sea water, comprising the step of desalting with a mosaic charged membrane until the amount of the salt reaches mass%.
In addition, each process in each of the above-described exemplary embodiments can be repeated twice or more as necessary.

次に実施例を挙げて本発明をさらに具体的に説明する。なお、文中の「部」および「%」は特に断りのない限り質量基準である。
実施例1
(1)有価物を含有する原水の脱塩装置の構成
原水貯槽、前処理装置、減圧蒸留濃縮装置、蒸留淡水受槽、塩水受槽、モザイク荷電膜脱塩装置、脱塩水受槽、透析水槽用の水貯槽、透析水受槽およびそれらに付属する設備を設置して脱塩装置を構成した。
Next, the present invention will be described more specifically with reference to examples. Note that “parts” and “%” in the text are based on mass unless otherwise specified.
Example 1
(1) Structure of desalination equipment for raw water containing valuables Water for raw water storage tanks, pretreatment equipment, vacuum distillation concentrators, distilled fresh water receiving tanks, salt water receiving tanks, mosaic charged membrane desalination equipment, desalinated water receiving tanks, dialysis water tanks A desalination device was constructed by installing a storage tank, a dialysis water receiving tank, and equipment attached to them.

(2)海洋深層水の減圧蒸留による濃縮
減圧蒸留装置として遠心式薄膜真空蒸留装置を使用した。この装置は、蒸発機としてSUS316Lを使用した回転式蒸発面板を有し、蒸発面板を高速回転させることによって、中央の配管より流出された海洋深層水を遠心力で薄膜にして蒸発させる方式である。原水としての海洋深層水(塩濃度約3.5%)2,000kgを上記減圧蒸留装置に仕込み、装置内を約4kPaに減圧し、およそ30℃〜40℃にて減圧蒸留をした。該蒸留は、液量がほぼ3分の1の700kgになるまで行なった。得られた濃縮原水(濃縮液)の塩濃度はほぼ10%であった。また、蒸留水(淡水)の採取量は約1,300kgであった。該濃縮液中の全有機炭素(TOC)値を測定した。濃縮前の原水のTOC値は1ppmであるのに対して、濃縮液のTOC値は2.9ppmであった。
(2) Concentration of Deep Ocean Water by Vacuum Distillation A centrifugal thin-film vacuum distillation apparatus was used as a vacuum distillation apparatus. This apparatus has a rotary evaporating face plate using SUS316L as an evaporator, and by rotating the evaporating face plate at high speed, the deep sea water discharged from the central pipe is thinned by centrifugal force and evaporated. . 2,000 kg of deep sea water (salt concentration: about 3.5%) as raw water was charged into the above-mentioned vacuum distillation apparatus, the pressure inside the apparatus was reduced to about 4 kPa, and vacuum distillation was performed at about 30 ° C to 40 ° C. The distillation was carried out until the liquid volume was reduced to approximately one third, 700 kg. The salt concentration of the obtained concentrated raw water (concentrated liquid) was approximately 10%. The amount of distilled water (fresh water) collected was about 1,300 kg. The total organic carbon (TOC) value in the concentrate was measured. The TOC value of the concentrated water was 2.9 ppm, while the TOC value of the raw water before concentration was 1 ppm.

(3)モザイク荷電膜による濃縮海洋深層水(濃縮原水)の脱塩
平膜型モザイク荷電膜脱塩装置を準備した。原水の入る原水槽、透析水の入る透析水槽を交互に配列し、各原水槽と各透析水槽の間にそれぞれ脱塩有効面積が0.1m2の平膜モザイク荷電膜を合計で100枚をパッキングで挟んで固定した。各原水槽および各透析水槽を、それぞれパラレルに連結し、それぞれ原水貯槽からポンプで送液される原水、および透析水貯槽からポンプで送液される透析水が、上記の複数の原水槽および複数の透析水槽間を循環するように配管した。原水槽に原水として上記(2)で得た塩濃度10%の濃縮液700kgを入れた。上記の透析水槽には脱イオン水を入れて循環流水して脱塩を行なった。原水の塩濃度の変化を、原水の電気伝導度の変化を測定してモニターした。脱塩は、原水の塩濃度がほぼ2%になるまで行った。この時点での透析槽水中のTOC値は0ppmを示し、原水中の有機有価物は殆ど透析されなかった。
(3) Desalination of concentrated deep seawater (concentrated raw water) using a mosaic charged membrane A flat membrane type mosaic charged membrane desalination apparatus was prepared. A raw water tank containing raw water and a dialysis water tank containing dialysis water are alternately arranged, and a total of 100 flat membrane mosaic charged membranes each having an effective desalination area of 0.1 m 2 are provided between each raw water tank and each dialysis water tank. It was fixed by packing. Each raw water tank and each dialysis water tank are connected in parallel, and the raw water pumped from the raw water storage tank and the dialysis water pumped from the dialysis water storage tank are respectively connected to the plurality of raw water tanks and the plural The piping was circulated between the dialysis water tanks. The raw water tank was charged with 700 kg of the 10% salt concentration concentrate obtained in (2) above as raw water. The above-mentioned dialysis water tank was filled with deionized water and circulated to carry out desalination. The change in the salt concentration of the raw water was monitored by measuring the change in the electric conductivity of the raw water. Desalting was performed until the salt concentration of the raw water became approximately 2%. At this time, the TOC value in the dialysis bath water was 0 ppm, and organic valuables in the raw water were hardly dialyzed.

なお、上記で使用したモザイク荷電膜の調製は、特開2000−309654公報の記載に基づいて下記のようにして行った。カチオン性ミクロゲルとして4−ビニルピリジン:ジビニルベンゼン(モル比10:1)架橋共重合体(平均粒子径は約350nm)を、アニオン性ミクロゲルとしてスチレン:アクリロニトリル:ヒドロキシエチルメタクリレート:ジビニルベンゼン(モル比41.6:7.1:8.1:8.7)架橋共重合体のスルホン化物のソーダ塩(平均粒子径は約240nm)を準備した。上記カチオン性ミクロゲル、上記アニオン性ミクロゲルおよび別に用意したアクリロニトリル−ブタジエン樹脂の水素添加物からなる組成物(質量比3:7:10)を含む塗布液を、乾燥膜厚が約30μmになるようにポリエステル不織布に均一に塗布および乾燥し、その後該膜をヨウ化メチル雰囲気に放置して、上記4−ビニルピリジンのピリジン単位を第4級ピリジニウム塩単位とし、洗浄などの後処理を行ってポリエステル不織布で補強されたモザイク荷電膜を得た。   In addition, the preparation of the mosaic charged film used above was performed as follows based on the description of JP-A-2000-309654. 4-vinylpyridine: divinylbenzene (molar ratio: 10: 1) cross-linked copolymer (average particle diameter: about 350 nm) as a cationic microgel, and styrene: acrylonitrile: hydroxyethyl methacrylate: divinylbenzene (molar ratio: 41) as an anionic microgel. .6: 7.1: 8.1: 8.7) A soda salt of a sulfonated cross-linked copolymer (average particle size: about 240 nm) was prepared. A coating liquid containing the above-mentioned cationic microgel, the above-mentioned anionic microgel, and a separately prepared hydrogenated acrylonitrile-butadiene resin composition (mass ratio 3: 7: 10) was coated so that the dry film thickness became about 30 μm. The polyester non-woven fabric is uniformly coated and dried on a polyester non-woven fabric, and then left in a methyl iodide atmosphere, and the pyridine unit of 4-vinylpyridine is converted to a quaternary pyridinium salt unit. To obtain a mosaic charged membrane reinforced with.

(4)減圧蒸留による二次濃縮およびモザイク荷電膜による二次脱塩
上記(3)で得られた塩濃度2%の塩水700kgを減圧蒸留装置に仕込み、上記(2)と同様にして減圧蒸留により二次濃縮を行なった。該蒸留は、液量が、ほぼ5分の1の140kgになるまで行なった。得られた濃縮液の塩濃度はほぼ10%であった。次いで上記(3)と同様にしてモザイク荷電膜脱塩装置で二次脱塩を行った。該二次脱塩は原水の塩濃度が0.28%になるまで行なった。該脱塩水のTOC値はほぼ14ppmの値を示した。該脱塩時の透析槽水中のTOC値は、1〜0ppmの値を示した。また、最終的に得られた脱塩水の量は、原水である最初の海洋深層水の14.3分の1となった。
(4) Secondary concentration by vacuum distillation and secondary desalination by mosaic charged membrane 700 kg of the salt water having a salt concentration of 2% obtained in the above (3) is charged into a vacuum distillation apparatus, and vacuum distillation is performed in the same manner as in the above (2). To perform secondary concentration. The distillation was performed until the liquid volume was reduced to approximately 1/5, that is, 140 kg. The obtained concentrate had a salt concentration of about 10%. Next, secondary desalination was performed using a mosaic charged membrane desalination apparatus in the same manner as in (3) above. The secondary desalting was performed until the salt concentration of the raw water became 0.28%. The TOC value of the demineralized water showed a value of approximately 14 ppm. The TOC value in the dialysis tank water at the time of desalting showed a value of 1 to 0 ppm. The amount of demineralized water finally obtained was 14.3 times less than the original deep sea water, which is raw water.

(5)水希釈による濃縮倍率の調整
上記(4)で得られた塩濃度0.28%の脱塩水140kgに、上記(2)で得られた海洋深層水由来の蒸留水60kgを加えて希釈した。希釈液の塩濃度は0.2%で、有効な生理活性を示す可溶性有価物をTOC値でほぼ10ppm含有している。
(5) Adjustment of concentration ratio by water dilution To 140 kg of demineralized water having a salt concentration of 0.28% obtained in (4) above, 60 kg of distilled water derived from deep sea water obtained in (2) above was added for dilution. did. The diluent has a salt concentration of 0.2%, and contains about 10 ppm of TOC value of a soluble valuable material exhibiting effective physiological activity.

(6)透析槽水の濃縮
さらに、前記(3)のモザイク荷電膜脱塩装置で使用した透析槽水(該透析槽水は原水から脱塩された塩を含んでいる)を、さらに電気透析装置や濃縮装置を使用して濃縮し、塩水および海洋深層水由来の食塩を得た。
(6) Concentration of dialysis tank water Further, the dialysis tank water used in the mosaic charged membrane desalination apparatus of (3) (the dialysis tank water contains salts desalted from raw water) is further electrodialyzed. Concentration was performed using an apparatus or a concentrator to obtain salt water and salt derived from deep sea water.

実施例2
(1)有価物を含有する原水の脱塩装置の構成
原水貯槽、前処理装置、減圧蒸留濃縮装置、蒸留淡水受槽、塩水受槽、モザイク荷電膜脱塩装置、脱塩水受槽、透析水槽用の水貯槽、透析水受槽、紫外線照射殺菌装置およびそれらに付属する設備を設置して構成した。
Example 2
(1) Structure of desalination equipment for raw water containing valuables Water for raw water storage tanks, pretreatment equipment, vacuum distillation concentrators, distilled fresh water receiving tanks, salt water receiving tanks, mosaic charged membrane desalination equipment, desalinated water receiving tanks, dialysis water tanks A storage tank, a dialysis water receiving tank, an ultraviolet irradiation sterilizer and equipment attached thereto were installed and configured.

(2)海洋深層水の減圧蒸留による濃縮
減圧蒸留装置として実施例1と同じ装置を使用した。原水として海洋深層水2,000kgを減圧蒸留装置に仕込み、装置内を約4kPaに減圧し、およそ30℃〜40℃にて減圧蒸留をした。蒸留は、液量がほぼ8分の1の269kgになるまで行なった。蒸留によって濃縮された液の塩濃度はほぼ26%であった。また、蒸留水(淡水)の採取量は約1,731kgであった。上記濃縮水のTOC値は7.4ppmであった。濃縮水中の生菌数を測定したところ実質的に零であった。
(2) Concentration by vacuum distillation of deep sea water The same apparatus as in Example 1 was used as a vacuum distillation apparatus. As a raw water, 2,000 kg of deep-sea water was charged into a vacuum distillation apparatus, the pressure in the apparatus was reduced to about 4 kPa, and vacuum distillation was performed at about 30 ° C to 40 ° C. Distillation was performed until the liquid amount was reduced to about 8 of 269 kg. The salt concentration of the liquid concentrated by distillation was approximately 26%. The amount of distilled water (fresh water) collected was about 1,731 kg. The TOC value of the concentrated water was 7.4 ppm. The viable cell count in the concentrated water was measured to be substantially zero.

(3)モザイク荷電膜による濃縮海洋深層水の脱塩
実施例1と同じ平膜型モザイク荷電膜脱塩装置を使用した。原水槽に、脱塩する原水として上記(2)で得た塩濃度26%の海洋深層水269kgを入れた。透析水槽には紫外線照射して殺菌された蒸留水を入れ、該蒸留水を連続流水して脱塩を行なった。脱塩は、原水の塩濃度がほぼ12%になるまで行なった。
(3) Desalination of Concentrated Deep Ocean Water by Mosaic Charged Membrane The same flat membrane type mosaic charged membrane desalination apparatus as in Example 1 was used. The raw water tank was charged with 269 kg of deep sea water having a salt concentration of 26% obtained in (2) above as raw water to be desalted. Distilled water sterilized by irradiation with ultraviolet light was put into the dialysis water tank, and the distilled water was continuously flowed to desalinate. Desalination was performed until the salt concentration of the raw water became approximately 12%.

(4)減圧蒸留による二次濃縮およびモザイク荷電膜による二次脱塩
上記(3)で得られた塩濃度12%の塩水269kgを、減圧蒸留装置に仕込み、上記(2)と同様にして減圧蒸留して二次濃縮を行なった。該蒸留は、液量がほぼ2分の1の124kgになるまで行なった。得られた濃縮液の塩濃度はほぼ26%であった。二次濃縮水中の生菌数を測定したところ実質的に零であった。次いで上記(3)と同様にしてモザイク荷電膜脱塩装置で二次脱塩を行った。二次脱塩は、液の塩濃度が0.80%になるまで行なった。該脱塩水のTOC値はほぼ16ppmの値を示した。また、上記脱塩後の液量は、原水である海洋深層水の16.1分の1になった。
(4) Secondary Concentration by Vacuum Distillation and Secondary Desalination by Mosaic Charged Membrane 269 kg of the salt water having a salt concentration of 12% obtained in the above (3) is charged into a vacuum distillation apparatus, and the pressure is reduced in the same manner as in the above (2). A second concentration was performed by distillation. The distillation was carried out until the liquid volume was almost halved to 124 kg. The salt concentration of the obtained concentrate was approximately 26%. The viable cell count in the secondary concentrated water was measured to be substantially zero. Next, secondary desalination was performed using a mosaic charged membrane desalination apparatus in the same manner as in (3) above. Secondary desalting was performed until the salt concentration of the liquid reached 0.80%. The TOC value of the demineralized water showed a value of approximately 16 ppm. In addition, the liquid volume after the desalination was reduced to 16.1 times the depth of the deep sea water as raw water.

(5)水希釈による濃縮倍率の調整
上記(4)で得られた塩濃度0.80%の脱塩水124kgに、上記(2)で得られた海洋深層水由来の蒸留水76kgを紫外線照射して殺菌した後加えて、上記脱塩水を希釈した。該希釈液は、塩濃度0.5%で、有効な生理活性を示す有価物をTOC値でほぼ10ppm含有している。この有価物を含有する脱塩水中の生菌数を測定したところ実質的に零であった。
(5) Adjustment of Concentration Ratio by Water Dilution 76 kg of distilled water derived from deep sea water obtained in the above (2) is irradiated with ultraviolet rays to 124 kg of the demineralized water having a salt concentration of 0.80% obtained in the above (4). After sterilization, the desalted water was diluted. The diluent contains about 10 ppm of TOC value of valuable substances exhibiting effective physiological activity at a salt concentration of 0.5%. The viable cell count in the deionized water containing this valuable material was substantially zero when measured.

実施例3
(1)有価物を含有する原水の脱塩装置の構成
原水貯槽、前処理装置、逆浸透膜装置、逆浸透塩水受槽、逆浸透透析淡水受槽、減圧蒸留濃縮装置、蒸留淡水受槽、塩水受槽、モザイク荷電膜脱塩装置、脱塩水受槽、透析水槽用の水貯槽、透析水受槽およびそれらに付属する設備を設置して構成した。
Example 3
(1) Configuration of the desalination device for raw water containing valuables Raw water storage tank, pretreatment device, reverse osmosis membrane device, reverse osmosis salt water receiver, reverse osmosis dialysis fresh water receiver, vacuum distillation concentrator, distilled fresh water receiver, salt water receiver, A mosaic charged membrane desalination apparatus, a desalinated water receiving tank, a water storage tank for a dialysis water tank, a dialysis water receiving tank, and equipment attached thereto were installed.

(2)海洋深層水の逆浸透膜による濃縮
濃縮装置として逆浸透膜装置を使用し、海洋深層水4,000kgを圧力60kg/cm2にて濃縮した。濃縮は、液量がほぼ2分の1の2,000kgになるまで行なった。濃縮液の塩濃度はほぼ7%であった。また、この濃縮の際の淡水の採取量は約2,000kgであった。
(2) Concentration of Deep Ocean Water by Reverse Osmosis Membrane A reverse osmosis membrane device was used as a concentration device, and 4,000 kg of deep sea water was concentrated at a pressure of 60 kg / cm 2 . Concentration was performed until the liquid volume was almost halved to 2,000 kg. The salt concentration of the concentrate was approximately 7%. The amount of fresh water collected during this concentration was about 2,000 kg.

(3)減圧蒸留による二次濃縮
上記(2)で得られた濃縮液の二次濃縮を、実施例1(2)と同様に遠心式薄膜真空蒸留装置を使用して行なった。該二次濃縮は、液量がほぼ3分の1の700kgになるまで行なった。濃縮液の塩濃度はほぼ20%であった。また、蒸留水の採取量は約1,300kgであった。
(3) Secondary concentration by distillation under reduced pressure The secondary concentration of the concentrated solution obtained in the above (2) was performed using a centrifugal thin-film vacuum distillation apparatus as in Example 1 (2). The secondary concentration was performed until the liquid volume was reduced to approximately one third, that is, 700 kg. The salt concentration of the concentrate was approximately 20%. The amount of distilled water collected was about 1,300 kg.

(4)モザイク荷電膜による濃縮海洋深層水の脱塩
上記(3)で得られた濃縮液の脱塩を、実施例1(3)と同様にモザイク荷電膜脱塩装置を用いて行なった。
(4) Desalination of Concentrated Deep Ocean Water by Mosaic Charged Membrane Desalination of the concentrated solution obtained in the above (3) was performed using a mosaic charged membrane desalination apparatus in the same manner as in Example 1 (3).

(5)減圧蒸留による二次濃縮およびモザイク荷電膜による二次脱塩
上記(4)で得られた脱塩水の二次濃縮は、実施例1(2)と同様に遠心式薄膜真空蒸留装置を使用して行ない、二次脱塩は、実施例1(3)と同様にモザイク荷電膜脱塩装置によって行なった。
(5) Secondary concentration by vacuum distillation and secondary desalination by mosaic charged membrane The secondary concentration of the demineralized water obtained in the above (4) was performed by using a centrifugal thin-film vacuum distillation apparatus as in Example 1 (2). The secondary desalination was performed using a mosaic charged membrane desalination apparatus in the same manner as in Example 1 (3).

(6)水希釈による濃縮倍率の調整
上記(5)で得られた脱塩水は、実施例1(5)と同様にして所望の濃縮倍率、塩濃度、あるいは有価物濃度にあわせて、上記(2)または(3)で得られた海洋深層水由来の蒸留水を加えて希釈した。
(6) Adjustment of Concentration Ratio by Dilution with Water The desalinated water obtained in the above (5) was prepared in the same manner as in Example 1 (5) in accordance with the desired concentration ratio, salt concentration, or valuables concentration. Distilled water derived from deep sea water obtained in 2) or 3) was added for dilution.

実施例4
(1)有価物を含有する原水の脱塩装置の構成
原水貯槽、前処理装置、ナノフィルトレーション膜装置、ナノフィルトレーション透過水受槽、モザイク荷電膜脱塩装置、脱塩水受槽、透析水槽用の水貯槽、透析水受槽、およびそれらに付属する設備を設置して構成した。
Example 4
(1) Configuration of desalination equipment for raw water containing valuables Raw water storage tank, pretreatment equipment, nanofiltration membrane equipment, nanofiltration permeated water receiving tank, mosaic charged membrane desalination equipment, desalinated water receiving tank, dialysis water tank A water storage tank for dialysis, a dialysis water receiving tank, and equipment attached to them are installed and configured.

(2)海洋深層水のナノフィルトレーション膜による脱塩および濃縮
ナノフィルトレーション膜装置を使用し、原水としての海洋深層水2,000kgを圧力20kg/cm2にて脱塩および濃縮を行った。脱塩および濃縮は、上記原水の液量がほぼ20分の1の100kgになるまで行なった。濃縮液の塩濃度はほぼ4%であった。
(2) Desalination and concentration of deep ocean water by nanofiltration membrane Using a nanofiltration membrane device, 2,000 kg of deep ocean water as raw water is desalted and concentrated at a pressure of 20 kg / cm 2 . Was. Desalting and concentration were performed until the liquid volume of the raw water reached 100 kg, which was approximately 1/20. The salt concentration of the concentrate was approximately 4%.

(3)モザイク荷電膜による濃縮海洋深層水の脱塩
上記(2)で得られた濃縮液の脱塩を、実施例1(3)と同様にモザイク荷電膜脱塩装置によって行ない、脱塩水を得た。
(3) Desalination of concentrated deep seawater by mosaic charged membrane Desalination of the concentrated solution obtained in the above (2) is performed by a mosaic charged membrane desalination apparatus in the same manner as in Example 1 (3), and demineralized water is removed. Obtained.

(4)水希釈による濃縮倍率の調整
上記(3)で得られた脱塩水を、実施例1(5)と同様にして所望の濃縮倍率、塩濃度、あるいは有価物濃度になるように、海洋深層水由来の淡水を加えて希釈した。該淡水の代わりに、上記(2)で得られたナノフィルトレーション膜透過塩水、実施例1(4)の遠心式薄膜真空蒸留装置あるいは実施例3(2)の逆浸透膜装置により蒸留あるいは透過して得られた海洋深層水由来の淡水も使用できる。
(4) Adjustment of Concentration Ratio by Water Dilution The desalinated water obtained in the above (3) was treated with marine water in the same manner as in Example 1 (5) so that the desired concentration ratio, salt concentration, or valuable substance concentration was obtained. It was diluted by adding fresh water derived from deep water. Instead of the fresh water, the nanofiltration permeated salt water obtained in the above (2), the centrifugal thin-film vacuum distillation apparatus of Example 1 (4) or the reverse osmosis membrane apparatus of Example 3 (2) was used. Freshwater derived from deep seawater obtained by permeation can also be used.

本発明の産業上の利用可能性は次の通りである。
(1)原水の脱塩を、工業的かつ経済的に行なうことができる。
(2)モザイク荷電膜を用いる脱塩方法において、透析槽水の使用量が少なく、かつ脱塩時間も短くすることができる。さらに、濃縮時に得られた水を透析槽水として使用することができる。
(3)有価物を含む原水の脱塩において、原水中の有価物を損なうことなく脱塩することができる。
The industrial applicability of the present invention is as follows.
(1) Desalination of raw water can be performed industrially and economically.
(2) In a desalination method using a mosaic charged membrane, the amount of dialysis tank water used is small and the desalination time can be shortened. Further, water obtained at the time of concentration can be used as dialysis tank water.
(3) In the desalination of raw water containing valuables, it is possible to desalinate the valuables in the raw water without spoiling them.

Claims (15)

少なくとも水溶性の塩を含む原水から水分を除去して、上記原水を濃縮する第一工程、および該濃縮された原水から水溶性の塩の少なくとも一部を除去する第二工程とを少なくとも含むことを特徴とする上記原水の脱塩方法。   At least comprising a first step of removing water from raw water containing at least a water-soluble salt and concentrating the raw water, and a second step of removing at least a part of a water-soluble salt from the concentrated raw water. A method for desalting raw water as described above. 前記第一工程と第二工程とを同時に行なう請求項1に記載の脱塩方法。   The desalination method according to claim 1, wherein the first step and the second step are performed simultaneously. 前記原水が、少なくとも1種のアルカリ金属イオンまたはアルカリ土類金属イオンを含む請求項1に記載の脱塩方法。   The desalination method according to claim 1, wherein the raw water contains at least one kind of alkali metal ion or alkaline earth metal ion. 前記濃縮された原水の塩濃度が、10質量%〜塩の飽和溶解度の範囲である請求項1に記載の脱塩方法。   The desalination method according to claim 1, wherein a salt concentration of the concentrated raw water ranges from 10% by mass to a saturated solubility of the salt. 前記第一工程を、蒸留および/または逆浸透膜を用いて行なう請求項1に記載の脱塩方法。   The desalination method according to claim 1, wherein the first step is performed using a distillation and / or reverse osmosis membrane. 前記第二工程を、モザイク荷電膜を用いて行なう請求項1に記載の脱塩方法。   The desalination method according to claim 1, wherein the second step is performed using a mosaic charged membrane. 前記第一工程と第二工程とを、ナノフィルトレーション膜を使用して同時に行なう請求項2に記載の脱塩方法。   The desalination method according to claim 2, wherein the first step and the second step are simultaneously performed using a nanofiltration membrane. 前記原水が、有価物を含有する請求項1に記載の脱塩方法。   The desalination method according to claim 1, wherein the raw water contains a valuable resource. 前記原水が、海水または海洋深層水である請求項1に記載の脱塩方法。   The desalination method according to claim 1, wherein the raw water is seawater or deep sea water. 海洋深層水を、塩濃度が10質量%〜塩の飽和溶解度になるまで減圧蒸留により濃縮する工程、該濃縮された海洋深層水を塩濃度が0.5〜12質量%になるまでモザイク荷電膜により脱塩する工程、該脱塩水を塩濃度が10質量%〜塩の飽和溶解度になるまで減圧蒸留により濃縮する工程、および該濃縮された海洋深層水を塩濃度が0.1〜1.0質量%になるまでモザイク荷電膜により脱塩する工程を含むことを特徴とする海洋深層水の脱塩方法。   A step of concentrating the deep ocean water by distillation under reduced pressure until the salt concentration becomes 10% by mass to the saturated solubility of the salt, and a mosaic charged membrane until the concentrated deep ocean water has a salt concentration of 0.5 to 12% by mass. , The step of concentrating the demineralized water by vacuum distillation until the salt concentration reaches 10% by mass to the saturated solubility of the salt, and the step of concentrating the concentrated deep sea water with a salt concentration of 0.1 to 1.0. A method for desalinating deep ocean water, comprising the step of desalinating to a mass% by a mosaic charged membrane. 海洋深層水を、塩濃度が5〜7質量%になるまで逆浸透膜により濃縮する工程、該濃縮された海洋深層水を塩濃度が10質量%〜塩の飽和溶解度になるまで減圧蒸留によりさらに濃縮する工程、該濃縮水を塩濃度が0.1〜1.0質量%になるまでモザイク荷電膜により脱塩する工程を含むことを特徴とする海洋深層水の脱塩方法。   A step of concentrating the deep ocean water by a reverse osmosis membrane until the salt concentration becomes 5 to 7% by mass; further, the concentrated deep sea water is subjected to vacuum distillation until the salt concentration becomes 10% by mass to the saturated solubility of the salt. A method for desalinating deep sea water, comprising a step of concentrating and a step of desalinating the concentrated water with a mosaic charged membrane until the salt concentration becomes 0.1 to 1.0% by mass. 海洋深層水を、容積が、1/5〜1/50になるまでナノフィルトレーション膜により濃縮する工程、および該濃縮された海洋深層水を塩濃度が0.1〜1.0質量%になるまでモザイク荷電膜により脱塩する工程を含むことを特徴とする海洋深層水の脱塩方法。   A step of concentrating the deep sea water by a nanofiltration membrane until the volume becomes 1/5 to 1/50, and reducing the concentrated deep sea water to a salt concentration of 0.1 to 1.0% by mass. A method for desalination of deep ocean water, comprising a step of desalination by using a mosaic charged membrane until the time comes. 請求項1〜12の何れか1項に記載の方法により得られたことを特徴とする脱塩水。   13. Demineralized water obtained by the method according to any one of claims 1 to 12. 真空蒸留装置、常圧蒸留装置、逆浸透膜装置およびナノフィルトレーション膜装置から選ばれる少なくとも1つの濃縮装置と、モザイク荷電膜脱塩装置とを組み合わせてなることを特徴とする脱塩装置。   A desalination apparatus comprising a combination of at least one concentration apparatus selected from a vacuum distillation apparatus, an atmospheric distillation apparatus, a reverse osmosis membrane apparatus, and a nanofiltration membrane apparatus, and a mosaic charged membrane desalination apparatus. 前記真空蒸留装置が、遠心式薄膜真空蒸留装置、回転伝熱面式真空蒸留装置、高速旋回式真空蒸留装置、流下膜式真空蒸留装置および掻面式真空蒸留装置から選ばれる請求項14に記載の脱塩装置。   15. The vacuum distillation apparatus according to claim 14, wherein the vacuum distillation apparatus is selected from a centrifugal thin film vacuum distillation apparatus, a rotary heat transfer surface vacuum distillation apparatus, a high-speed rotary vacuum distillation apparatus, a falling film vacuum distillation apparatus, and a scratch surface vacuum distillation apparatus. Desalination equipment.
JP2004033012A 2003-02-14 2004-02-10 Desalting method Pending JP2004261798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004033012A JP2004261798A (en) 2003-02-14 2004-02-10 Desalting method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003037170 2003-02-14
JP2004033012A JP2004261798A (en) 2003-02-14 2004-02-10 Desalting method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008191237A Division JP4972049B2 (en) 2003-02-14 2008-07-24 Desalination method

Publications (1)

Publication Number Publication Date
JP2004261798A true JP2004261798A (en) 2004-09-24

Family

ID=33133995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004033012A Pending JP2004261798A (en) 2003-02-14 2004-02-10 Desalting method

Country Status (1)

Country Link
JP (1) JP2004261798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305412A (en) * 2005-04-26 2006-11-09 Dainichiseika Color & Chem Mfg Co Ltd Mineral water, and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305412A (en) * 2005-04-26 2006-11-09 Dainichiseika Color & Chem Mfg Co Ltd Mineral water, and method for producing the same

Similar Documents

Publication Publication Date Title
JP4972049B2 (en) Desalination method
Obotey Ezugbe et al. Membrane technologies in wastewater treatment: a review
Honarparvar et al. Frontiers of membrane desalination processes for brackish water treatment: A review
Xu et al. Critical review of desalination concentrate management, treatment and beneficial use
Velizarov et al. Removal of inorganic anions from drinking water supplies by membrane bio/processes
Younos et al. Overview of desalination techniques
Sedighi et al. Environmental sustainability and ions removal through electrodialysis desalination: Operating conditions and process parameters
AU2015242989A1 (en) Electrodesalination system and method
TW201206556A (en) Systems and techniques for electrodialysis
Khaydarov et al. Solar powered direct osmosis desalination
Maheshwari et al. Advances in capacitive deionization as an effective technique for reverse osmosis reject stream treatment
Anwar et al. Membrane desalination processes for water recovery from pre-treated brewery wastewater: Performance and fouling
Hilal et al. A combined ion exchange–nanofiltration process for water desalination: III. Pilot scale studies
Ma et al. Fate of organic micropollutants in reverse electrodialysis: Influence of membrane fouling and channel clogging
Rahmah et al. Membrane technology in deep seawater exploration: A mini review
KR20080092572A (en) A method to produce electrolysis oxidation water and electrolysis reduction water from deep sea water
JP2004261798A (en) Desalting method
Cui et al. Simultaneous ion fractionation and concentration by selectrodialysis for saline wastewater valorization
JP2007075712A (en) Sterilized electrodialysis method
Di Salvo et al. Experimental analysis of a continuously operated reverse electrodialysis unit fed with wastewaters
JP3353810B2 (en) Reverse osmosis seawater desalination system
Hsiang Modeling and Optimization of the Forward Osmosis Process-Parameters Selection, Flux Prediction and Process Applications
Yuldashev et al. Direct Osmotic Desalination Technique by Solar Energy
Tan et al. Membrane processes for desalination: overview
US20220112103A1 (en) Methods and systems for wastewater treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028