JP2004261765A - Porous hollow-fiber membrane of polyetherimide based resin - Google Patents

Porous hollow-fiber membrane of polyetherimide based resin Download PDF

Info

Publication number
JP2004261765A
JP2004261765A JP2003056821A JP2003056821A JP2004261765A JP 2004261765 A JP2004261765 A JP 2004261765A JP 2003056821 A JP2003056821 A JP 2003056821A JP 2003056821 A JP2003056821 A JP 2003056821A JP 2004261765 A JP2004261765 A JP 2004261765A
Authority
JP
Japan
Prior art keywords
fiber membrane
polyetherimide
hollow fiber
porous hollow
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003056821A
Other languages
Japanese (ja)
Other versions
JP4013791B2 (en
Inventor
Masaharu Saito
昌晴 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2003056821A priority Critical patent/JP4013791B2/en
Publication of JP2004261765A publication Critical patent/JP2004261765A/en
Application granted granted Critical
Publication of JP4013791B2 publication Critical patent/JP4013791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous hollow-fiber membrane of polyetherimide based resin having a mesh-shaped cross sectional structure in the membrane cross section of a hollow fiber membrane observed by an SEM and having both properties of strength and flexibility as a result of improvement in strength. <P>SOLUTION: The porous hollow-fiber membrane of polyetherimide based resin is prepared by dry and wet spinning of a dope liquid made by adding polyvinylpyrrolidone to a polyetherimide based resin consisting of a polyetherimide resin of 10-90 wt% and a polyetherimide-siloxane block copolymer of 90-10 wt%. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ポリエーテルイミド系樹脂多孔質中空糸膜に関する。さらに詳しくは、SEM観察された中空糸膜の膜横断面が網目状の断面構造を有するポリエーテルイミド系樹脂多孔質中空糸膜に関する。
【0002】
【従来の技術】
近年、多孔質中空糸膜を用いた除湿・加湿方法が注目されている。この多孔質中空糸膜方式は、メンテナンスフリーであるばかりではなく、駆動に電源を必要としないなど多くの利点を有している。水蒸気を選択的に透過させる膜として、何種類かのものが既に市販されているが、それぞれ素材および透過原理を異にしている。
【0003】
例えば、ポリイミド樹脂を素材に用い、溶解拡散法によってこのような操作を行う膜においては、耐熱性や強度にはすぐれているものの、水蒸気透過係数が低いという問題がみられる。また、フッ素系イオン交換膜を素材に用い、イオン水和法を原理としている膜は、水蒸気透過係数は高いものの耐熱性に乏しく、膜自体が非常に高価であるという問題を有する。
【0004】
一方、ポリエーテルイミドを素材とし、毛管凝縮法で除湿・加湿を行う膜は、耐熱性と水蒸気透過性との両立を図ることができるが、膜の絶対強度が弱く、特に柔軟性に乏しいため、多量の気体の除湿・加湿を行う際、多孔質中空糸膜が切断されるという問題がみられる。
【0005】
近年、燃料電池スタックの除湿・加湿に多孔質中空糸膜が用いられるようになってきているが、自動車搭載用燃料電池では4000NL/分程度の多量の空気加湿が必要となる。また、定置用では、加湿の駆動源に温水が使用される場合が多く、特に多孔質中空糸膜には耐久性と耐熱性の付与が必要とされる。さらに、固体高分子型燃料電池の場合には、実稼動温度は約60〜80℃で水蒸気飽和状態での雰囲気となるため、ポリエーテルイミド樹脂は耐熱性にすぐれ、加水分解し難い樹脂素材ではあるものの、湿潤加熱下では伸びや柔軟性の低下が著しく、中空糸膜の切断に至る事態もみられ、強度的な面での改善が強く望まれているのが現状である。
【0006】
【発明が解決しようとする課題】
本発明の目的は、SEM観察された中空糸膜の膜横断面が網目状の断面構造を有し、強度的に改善された結果、強度と柔軟性とが両立したポリエーテルイミド系樹脂多孔質中空糸膜を提供することにある。
【0007】
【課題を解決するための手段】
かかる本発明の目的は、ポリエーテルイミド樹脂10〜90重量%およびポリエーテルイミド−シロキサンブロック共重合体90〜10重量%よりなるポリエーテルイミド系樹脂にポリビニルピロリドンを添加したドープ液を乾湿式紡糸して得られたポリエーテルイミド系樹脂多孔質中空糸膜によって達成される。
【0008】
【発明の実施の形態】
ポリエーテルイミドとしては、次の一般式で表されるくり返し単位

Figure 2004261765
を有するものが用いられ、実際には市販品、例えば次の一般式で表されるくり返し単位
Figure 2004261765
を有するGEポリマー社製品ウルテム1000などをそのまま用いることができる。ポリエーテルイミドは、イミド系の素材でありながらそれら自体が溶媒に溶解する性質を有しているため、乾湿式法による中空糸膜の製膜が容易であり、しかも耐薬品性の点ですぐれている。
【0009】
かかるポリエーテルイミドとブレンドして用いられるポリエーテルイミド−シロキサンブロック共重合体は、ポリエーテルイミドとポリシロキサンとのブロック共重合体であって、ポリシロキサンがポリジメチルシロキサンの場合、次のようなくり返し単位▲1▼および▲2▼のブロック共重合体である。
▲1▼
Figure 2004261765
▲2▼
Figure 2004261765
実際には、市販品、例えばGEポリマー社製品シルテムSTM1500等をそのまま用いることができる。
【0010】
このポリエーテルイミド−シロキサンブロック共重合体は、柔軟性にすぐれ電線被覆用等に用いられており、また耐熱性(Tg=168℃)もあることから本用途目的での使用に適しているが、その機械的強度はポリエーテルイミド樹脂の約1/4程度と弱く、したがって柔軟性のある膜は得られるものの、破断強度に弱い膜しか与えない。本発明においては、ポリエーテルイミド樹脂10〜90重量%、好ましくは20〜60重量%とポリエーテルイミド−シロキサンブロック共重合体90〜10重量%、好ましくは80〜40重量%とをブレンドして用いることにより、SEM観察された中空糸膜の膜横断面が網目状の断面構造を有し、強度的に改善された結果、強度と柔軟性とが両立したポリエーテルイミド系樹脂多孔質中空糸膜を得ることができる。
【0011】
ポリマーブレンドを成功させるためには、一般に相溶化剤(コンパティビライザー)が用いられるが、この相溶化剤はブレンドされるポリマー同士によって異なる。相溶化剤を用いないポリマーブレンドでは、混合のエントロピーの寄与が少ないため、その多くは相分離を起し、このように相溶していないポリマーブレンドを溶解させたドープ液から得られた膜は海島構造を呈し、強度的にすぐれていないばかりか、膜として機能しないものとなるのが一般的である。
【0012】
本発明においては、かかるポリマーブレンドにおける相溶化剤として、親水性高分子であるポリビニルピロリドンが有効であることを見出している。ポリビニルピロリドンは、製膜に際してよく用いられる添加剤であって、膜への親水性の付与や細孔径の制御のために用いられ、特にポリスルホン樹脂系膜には一般的に使用されている添加剤であり、ポリエーテルイミド除湿中空糸膜の場合にも中空糸膜の内表面側を被覆するために用いられている(特開平11−76778号公報、特許第3,360,580号公報)。しかしながら、このポリビニルピロリドンをポリマーブレンドの相溶化剤として用いられた事例はみられない。
【0013】
ポリエーテルイミドとポリエーテルイミド−シロキサンブロック共重合体とを、これらのそれぞれを溶解し得る有機溶媒に溶解させ、混合を試みると、必ず溶液の状態で相分離が起ること後記比較例2に示される如くである。したがって、このようなドープ液を用いて紡糸を行っても、膜として機能するものは得られないが、この混合系に相溶化剤であるポリビニルピロリドンを添加すると、分離していた2相が1相となったドープ液が得られる。
【0014】
ポリビニルピロリドンとしては、その分子量が約10,000〜1,200,000、好ましくは約10,000〜50,000のものが、ポリマーブレンド100重量部当り約25〜100重量部、好ましくは30〜80重量部の割合で用いられる。この添加割合がこれよりも少ないと所望の相溶化効果が得られず、この添加割合が多い程膜横断面内のボイド層の形成抑制効果も得られ、網目状を形成し易くなるが、これ以上の割合で添加して用いると、ブレンドポリマーの溶解性が損われたり、ドープ液の粘度上昇によって湿式紡糸性が損われるようになり、所望の加湿膜が得られなくなる。
【0015】
ポリマーブレンドが完全に行われているか否かを判断する方法として、SEM法、示差走査熱量計法、X線回折法などの方法が知られているが、本発明で用いられるドープ液から紡糸された多孔質中空糸膜のSEM観察を行ってみると、膜横断面は海島構造でははく、液・液相分離現象のスピノーダル分解(溶液が熱力学的に不安定になったときに相分離を起す現象)から得られたきれいな網目構造が認められる(図1参照)。ドープ液調製時のブレンドポリマー同士の相溶性については、ドープ液に光を照射した際の光の散乱度合いによって評価することができ、ポリビニルピロリドンを添加したこのブレンドポリマー系ドープ液には、膜の紡糸上問題となるような液−液の相分離に由来する濁りは観察されなかった。
【0016】
また、ポリビニルピロリドンの添加には、他に2つの効果がみられる。ポリエーテルイミド樹脂を有機溶媒に溶解したドープ液を紡糸しただけでは、膜の断面構造においてフィンガーライクと呼ばれるボイド層の存在が確認される(図2参照)。ボイド層の存在は、液体をロ過する際膜の透過係数を大きくするなどの利点がある反面、膜の柔軟性や機械的強度には劣るものとなるなどの欠点がみられる。本発明の目的とする加湿用途に用いられる膜は、水蒸気を選択的に透過させる膜であり、液体の場合のようにロ過抵抗が大きくないため、膜断面構造がボイド層を呈する必要がなく、柔軟性の得られる網目構造を有する膜断面構造であることが理想的である。
【0017】
ポリビニルピロリドンを添加することにより、ドープ液の相図が変化し、その添加比率によって得られる膜の断面構造が網目構造を呈するようになってくる。すなわち、ポリビニルピロリドンの添加により、膜への柔軟性と強度の両方の付与が可能となる。また、ドープ液自体の親水性が増すために、乾湿式法中空糸膜外表面においても比較的大きな細孔を得ることができ、柔軟性に寄与しているものと考えられる。さらに、水蒸気透過係数の増加や中空糸膜同士の固着防止にも役立つことになる。
【0018】
ポリビニルピロリドン添加によるもう一つの利点として、膜への親水性の付与がある。ポリビニルピロリドンは水溶性のポリマーであり、親水性に富む素材であって、これをドープ液中に添加することにより、そのドープ液から製膜された膜は高い親水性を示すようになり、水蒸気選択透過膜においては、この親水性は重要な項目となる。先にも述べたように、多孔質中空糸膜の水蒸気透過機構は毛管凝縮と呼ばれるものによっており、その原理はケルビンの式により整理されている。この式からも明らかなように、水蒸気の透過性を高めるためには、膜表面の水に対する接触角が重要な因子となる。すなわち、親水性が高いと少ない水蒸気量でも毛管凝縮を呈することとなり、より多くの水蒸気を分離できることとなる。
【0019】
ポリビニルピロリドンについてさらに付け加えると、これは物理的、化学的操作により架橋させることが可能であり、親水性を維持したまま水への不溶化を行うことができる。一般的に簡便な手法としては、約155℃以上の雰囲気下での架橋が提案されており、本発明の多孔質中空糸膜についても紡糸後に本手法による架橋が可能である。
【0020】
以上の各ポリマー成分は、ポリエーテルイミドが約7〜13重量%、好ましくは約8〜10重量%、ポリエーテルイミド−シロキサンブロック共重合体が約8〜13重量%、好ましくは約10〜12重量%、ポリビニルピロリドンが約7〜15重量%、好ましくは約10〜12重量%を占め、残余が水溶性有機溶媒よりなるドープ液として調製されて用いられる。水溶性有機溶媒としては、例えばジメチルアセトアミド、ジエチルアセトアミド、ジメチルホルムアミド、ジエチルホルムアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド等の非プロトン性極性溶媒が用いられ、好ましくはジメチルアセトアミドが用いられる。
【0021】
ドープ液の多孔質中空糸膜への紡糸は、2重環状ノズルを用い、必要に応じて水またはこれを主成分とする芯液と共に、水またはこれを主成分とする凝固浴中に乾湿式紡糸することにより行われる。凝固した多孔質中空糸膜は、例えば121℃の加圧水で洗浄した後、約50〜120℃のオーブン中で乾燥せしめる。
【0022】
【発明の効果】
本発明に係るポリエーテルイミド系樹脂多孔質中空糸膜は、ポリエーテルイミド樹脂とポリエーテルイミド−シロキサンブロック共重合体というそれぞれの特徴を有する異材質の樹脂を相溶化剤(コンパティビライザー)としてのポリビニルピロリドンを用いて相溶化させ、各樹脂の長所を併せ持つ多孔質中空糸膜、すなわちSEM観察された多孔質中空糸膜が網目状の断面構造を有し、強度的に改善された結果、強度と柔軟性とが両立した多孔質中空糸膜として得られる。
【0023】
かかる特徴を有する本発明のポリエーテルイミド系樹脂多孔質中空糸膜は、加湿膜として、特に燃料電池用加湿膜として、高温の水蒸気飽和条件下でもその耐久性を長時間維持できるという効果を奏する。
【0024】
【実施例】
次に、実施例について本発明を説明する。
【0025】
実施例
Figure 2004261765
以上の各成分を室温下で攪拌混合し、均一な液体であるドープ液を得た。このドープ液を芯液である水と共に2重環状ノズルから、乾湿式紡糸法により水凝固浴中へ吐出し、得られた中空糸膜を121℃の加圧水中で1時間洗浄した後、60℃のオーブン中で乾燥させた。
【0026】
この多孔質中空糸膜の膜横断面をSEM観察すると、網目状の断面構造を有していた(図1参照)。また、ファンを用いた耐折試験(一定の長さの中空糸膜を吊した状態で、中空糸膜の下端面に接するファンを回転させて中空糸膜を振動させ、耐折性を確認する試験)を行い、ファン回転数100,000回でも膜の切断がみられないことを確認した。
【0027】
比較例1
ポリエーテルイミド樹脂(ウルテム1000)20重量部およびジメチルアセトアミド80重量部よりなるドープ液を用い、実施例と同様にして中空糸膜を得た。得られた中空糸膜の膜横断面をSEM観察すると、ボイドを多数有する断面構造を有していた(図2参照)。また、ファンを用いた耐折試験では、約1000回のファン回転数で膜の切断が認められた。
【0028】
比較例2
実施例において、ポリビニルピロリドンを用いず、ジメチルアセトアミド量を80重量部に変更すると、そこで調製されたドープ液は2層に分離した液体となり、その後の乾湿式紡糸ができなかった。
【図面の簡単な説明】
【図1】実施例で得られたポリエーテルイミド系多孔質中空糸膜のSEM膜横断面である。
【図2】比較例1で得られたポリエーテルイミド系多孔質中空糸膜のSEM膜横断面である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polyetherimide-based resin porous hollow fiber membrane. More specifically, the present invention relates to a porous hollow fiber membrane of a polyetherimide-based resin having a cross-sectional structure in which the cross section of the hollow fiber membrane observed by SEM has a mesh shape.
[0002]
[Prior art]
In recent years, a dehumidification / humidification method using a porous hollow fiber membrane has attracted attention. This porous hollow fiber membrane system is not only maintenance-free, but also has many advantages such as not requiring a power supply for driving. Several types of membranes for selectively transmitting water vapor are already on the market, but each has a different material and a different transmission principle.
[0003]
For example, a film using a polyimide resin as a material and performing such an operation by a solution diffusion method has a problem that the water vapor transmission coefficient is low, although the heat resistance and the strength are excellent. Further, a membrane using a fluorine-based ion exchange membrane as a material and based on the ion hydration method has a problem in that although it has a high water vapor transmission coefficient, it has poor heat resistance, and the membrane itself is very expensive.
[0004]
On the other hand, a film made of polyetherimide and subjected to dehumidification and humidification by a capillary condensation method can achieve both heat resistance and water vapor permeability, but the absolute strength of the film is weak, and particularly the flexibility is poor. When a large amount of gas is dehumidified and humidified, the problem that the porous hollow fiber membrane is cut off is observed.
[0005]
In recent years, porous hollow fiber membranes have been used for dehumidification and humidification of fuel cell stacks. However, a large amount of air humidification of about 4000 NL / min is required for automotive fuel cells. In addition, for stationary use, hot water is often used as a drive source for humidification, and in particular, it is necessary to impart durability and heat resistance to a porous hollow fiber membrane. Furthermore, in the case of a polymer electrolyte fuel cell, since the actual operating temperature is about 60 to 80 ° C. and the atmosphere is in a steam-saturated state, the polyetherimide resin is excellent in heat resistance and is hardly hydrolyzed. However, under wet heating, the elongation and flexibility are remarkably reduced, and there are cases where the hollow fiber membrane is cut off, and improvement in strength is strongly desired at present.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a polyetherimide-based resin porous material having a cross-sectional structure of a hollow fiber membrane observed by SEM, which has a network-like cross-sectional structure and is improved in strength. An object of the present invention is to provide a hollow fiber membrane.
[0007]
[Means for Solving the Problems]
An object of the present invention is to dry-wet spin a dope obtained by adding polyvinylpyrrolidone to a polyetherimide resin comprising 10 to 90% by weight of a polyetherimide resin and 90 to 10% by weight of a polyetherimide-siloxane block copolymer. This is achieved by a polyetherimide-based resin porous hollow fiber membrane obtained as described above.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Polyetherimide is a repeating unit represented by the following general formula
Figure 2004261765
Is used, and is actually a commercially available product, for example, a repeating unit represented by the following general formula
Figure 2004261765
Can be used as it is, such as Ultem 1000 manufactured by GE Polymer. Polyetherimide is an imide-based material, but has the property of dissolving itself in a solvent, making it easy to form a hollow fiber membrane by a dry-wet method and excellent in chemical resistance. ing.
[0009]
The polyetherimide-siloxane block copolymer used by blending with such a polyetherimide is a block copolymer of a polyetherimide and a polysiloxane, and when the polysiloxane is polydimethylsiloxane, the following: It is a block copolymer of repeating units (1) and (2).
▲ 1 ▼
Figure 2004261765
▲ 2 ▼
Figure 2004261765
In practice, a commercially available product, for example, Siltem STM1500 manufactured by GE Polymer can be used as it is.
[0010]
This polyetherimide-siloxane block copolymer has excellent flexibility and is used for covering electric wires and has heat resistance (Tg = 168 ° C.), so it is suitable for use for the purpose of this application. However, its mechanical strength is as weak as about 1/4 of that of polyetherimide resin, so that although a flexible film can be obtained, only a film having low breaking strength is given. In the present invention, 10 to 90% by weight, preferably 20 to 60% by weight, of a polyetherimide resin is blended with 90 to 10% by weight, preferably 80 to 40% by weight of a polyetherimide-siloxane block copolymer. By using this, the cross section of the hollow fiber membrane observed by SEM has a network-like cross-sectional structure, and as a result, the strength is improved, and as a result, the polyetherimide resin porous hollow fiber has both strength and flexibility. A membrane can be obtained.
[0011]
In order to successfully polymer blend, a compatibilizer is generally used, but the compatibilizer differs depending on the polymer to be blended. In polymer blends that do not use compatibilizers, the contribution of entropy of mixing is small, so that most of them cause phase separation, and a film obtained from a dope solution in which an incompatible polymer blend is dissolved is It generally has a sea-island structure and is not only excellent in strength but also does not function as a membrane.
[0012]
In the present invention, it has been found that polyvinylpyrrolidone, which is a hydrophilic polymer, is effective as a compatibilizer in such a polymer blend. Polyvinylpyrrolidone is an additive that is often used in film formation, and is used for imparting hydrophilicity to the film and controlling the pore size, and is particularly an additive generally used for polysulfone resin-based films. It is also used in the case of a polyetherimide dehumidified hollow fiber membrane to cover the inner surface side of the hollow fiber membrane (Japanese Patent Application Laid-Open No. 11-76778 and Japanese Patent No. 3,360,580). However, there is no case where this polyvinylpyrrolidone was used as a compatibilizer for a polymer blend.
[0013]
When the polyetherimide and the polyetherimide-siloxane block copolymer are dissolved in an organic solvent capable of dissolving each of them and mixing is attempted, phase separation always occurs in a solution state. As shown. Therefore, even if spinning is performed using such a dope solution, one that functions as a membrane cannot be obtained. However, when polyvinylpyrrolidone, which is a compatibilizer, is added to this mixed system, the separated two phases become one. A dope solution in phase is obtained.
[0014]
Polyvinylpyrrolidone having a molecular weight of about 10,000 to 1,200,000, preferably about 10,000 to 50,000, is used in an amount of about 25 to 100 parts by weight, preferably 30 to 100 parts by weight, per 100 parts by weight of the polymer blend. Used in a proportion of 80 parts by weight. If this addition ratio is smaller than this, the desired compatibilizing effect cannot be obtained, and as this addition ratio is higher, the effect of suppressing the formation of the void layer in the film cross section is obtained, and the network shape is easily formed. When used in the above proportions, the solubility of the blend polymer is impaired, or the wet spinnability is impaired due to an increase in the viscosity of the dope solution, and a desired humidified film cannot be obtained.
[0015]
Methods such as SEM, differential scanning calorimetry, and X-ray diffraction are known as methods for judging whether or not the polymer blending has been completed, but spinning from a dope solution used in the present invention is known. SEM observation of the porous hollow fiber membrane shows that the cross section of the membrane is not sea-island, but spinodal decomposition of the liquid-liquid phase separation phenomenon (phase separation occurs when the solution becomes thermodynamically unstable). Is observed (see FIG. 1). The compatibility between the blended polymers during the preparation of the dope solution can be evaluated by the degree of light scattering when the dope solution is irradiated with light, and the blend polymer-based dope solution to which polyvinylpyrrolidone is added has a film No turbidity due to liquid-liquid phase separation, which is a problem in spinning, was observed.
[0016]
The addition of polyvinylpyrrolidone has two other effects. Only by spinning a dope solution obtained by dissolving a polyetherimide resin in an organic solvent, the existence of a void layer called fingerlike is confirmed in the cross-sectional structure of the film (see FIG. 2). The presence of the void layer has the advantage of increasing the permeability coefficient of the membrane when filtering the liquid, but has the disadvantage that the flexibility and mechanical strength of the membrane are inferior. The film used for the purpose of humidification for the purpose of the present invention is a film that selectively permeates water vapor, and has a low drop resistance as in the case of a liquid, so that the film cross-sectional structure does not need to exhibit a void layer. Ideally, the membrane cross-sectional structure has a network structure that provides flexibility.
[0017]
By adding polyvinylpyrrolidone, the phase diagram of the dope solution changes, and the cross-sectional structure of the obtained film has a network structure depending on the addition ratio. That is, the addition of polyvinylpyrrolidone makes it possible to impart both flexibility and strength to the film. In addition, since the hydrophilicity of the dope solution itself increases, relatively large pores can be obtained even on the outer surface of the dry-wet method hollow fiber membrane, which is considered to contribute to flexibility. Furthermore, it also helps to increase the water vapor transmission coefficient and prevent the hollow fiber membranes from sticking to each other.
[0018]
Another advantage of the addition of polyvinylpyrrolidone is imparting hydrophilicity to the membrane. Polyvinylpyrrolidone is a water-soluble polymer, a material having a high hydrophilicity.By adding this to a dope solution, a film formed from the dope solution becomes highly hydrophilic, and water vapor is added. In the permselective membrane, this hydrophilicity is an important item. As described above, the water vapor permeation mechanism of the porous hollow fiber membrane is based on what is called capillary condensation, and the principle is organized by Kelvin's equation. As is clear from this equation, the contact angle of the membrane surface with water is an important factor in increasing the permeability of water vapor. That is, when the hydrophilicity is high, capillary condensation is exhibited even with a small amount of water vapor, and more water vapor can be separated.
[0019]
In addition to polyvinylpyrrolidone, it can be crosslinked by physical and chemical operations, and can be insolubilized in water while maintaining hydrophilicity. In general, as a simple method, crosslinking in an atmosphere of about 155 ° C. or more has been proposed, and the porous hollow fiber membrane of the present invention can be crosslinked by this method after spinning.
[0020]
Each of the above polymer components comprises about 7 to 13% by weight of polyetherimide, preferably about 8 to 10% by weight, and about 8 to 13% by weight of polyetherimide-siloxane block copolymer, preferably about 10 to 12% by weight. % By weight, polyvinylpyrrolidone accounts for about 7 to 15% by weight, preferably about 10 to 12% by weight, and the remainder is used as a dope solution composed of a water-soluble organic solvent. As the water-soluble organic solvent, for example, an aprotic polar solvent such as dimethylacetamide, diethylacetamide, dimethylformamide, diethylformamide, N-methyl-2-pyrrolidone, and dimethylsulfoxide is used, and dimethylacetamide is preferably used.
[0021]
The spinning of the dope solution into the porous hollow fiber membrane is carried out by using a double annular nozzle and, if necessary, in a coagulation bath mainly composed of water or a coagulation bath mainly composed of water or a core liquid mainly composed of water. This is performed by spinning. The solidified porous hollow fiber membrane is washed with pressurized water at 121 ° C., for example, and then dried in an oven at about 50 to 120 ° C.
[0022]
【The invention's effect】
The polyetherimide-based resin porous hollow fiber membrane according to the present invention uses, as a compatibilizer, resins of different materials having respective characteristics of a polyetherimide resin and a polyetherimide-siloxane block copolymer. Compatible using polyvinylpyrrolidone of, a porous hollow fiber membrane having the advantages of each resin, that is, the porous hollow fiber membrane observed by SEM has a network-shaped cross-sectional structure, as a result of improved strength, A porous hollow fiber membrane having both strength and flexibility is obtained.
[0023]
The polyetherimide-based resin porous hollow fiber membrane of the present invention having such features has an effect that its durability can be maintained for a long time even under high-temperature steam saturation conditions as a humidifying membrane, particularly as a humidifying membrane for a fuel cell. .
[0024]
【Example】
Next, the present invention will be described with reference to examples.
[0025]
Example
Figure 2004261765
The above components were stirred and mixed at room temperature to obtain a uniform liquid dope solution. This dope solution was discharged from a double annular nozzle together with water as a core liquid into a water coagulation bath by a dry-wet spinning method, and the obtained hollow fiber membrane was washed in pressurized water at 121 ° C. for 1 hour, and then washed at 60 ° C. Dried in oven.
[0026]
When the cross section of the porous hollow fiber membrane was observed by SEM, it had a network-like cross-sectional structure (see FIG. 1). In addition, a folding test using a fan (while a hollow fiber membrane of a certain length is suspended, a fan in contact with the lower end surface of the hollow fiber membrane is rotated to vibrate the hollow fiber membrane to confirm folding resistance) Test) was performed, and it was confirmed that the membrane was not cut even at a fan rotation speed of 100,000 times.
[0027]
Comparative Example 1
Using a dope solution composed of 20 parts by weight of a polyetherimide resin (Ultem 1000) and 80 parts by weight of dimethylacetamide, a hollow fiber membrane was obtained in the same manner as in the example. When the cross section of the obtained hollow fiber membrane was observed by SEM, it had a cross-sectional structure having many voids (see FIG. 2). Further, in a folding endurance test using a fan, the film was cut at a fan rotation speed of about 1000 times.
[0028]
Comparative Example 2
In the examples, when polyvinylpyrrolidone was not used and the amount of dimethylacetamide was changed to 80 parts by weight, the dope solution prepared therefrom became a liquid separated into two layers, and the subsequent dry-wet spinning could not be performed.
[Brief description of the drawings]
FIG. 1 is a cross section of an SEM membrane of a polyetherimide-based porous hollow fiber membrane obtained in an example.
FIG. 2 is an SEM membrane cross section of the polyetherimide-based porous hollow fiber membrane obtained in Comparative Example 1.

Claims (5)

ポリエーテルイミド樹脂10〜90重量%およびポリエーテルイミド−シロキサンブロック共重合体90〜10重量%よりなるポリエーテルイミド系樹脂にポリビニルピロリドンを添加したドープ液を乾湿式紡糸して得られたポリエーテルイミド系樹脂多孔質中空糸膜。Polyether obtained by dry-wet spinning a dope solution obtained by adding polyvinylpyrrolidone to a polyetherimide-based resin comprising 10 to 90% by weight of a polyetherimide resin and 90 to 10% by weight of a polyetherimide-siloxane block copolymer. An imide resin porous hollow fiber membrane. ポリエーテルイミド系樹脂100重量部当り25〜100重量部のポリビニルピロリドンを添加したドープ液が用いられた請求項1記載のポリエーテルイミド系樹脂多孔質中空糸膜。The porous hollow fiber membrane of claim 1, wherein a dope solution containing 25 to 100 parts by weight of polyvinylpyrrolidone per 100 parts by weight of polyetherimide resin is used. SEM観察された中空糸膜の膜横断面が網目状の断面構造を有する請求項1記載のポリエーテルイミド系樹脂多孔質中空糸膜。2. The porous hollow fiber membrane of claim 1, wherein the cross section of the hollow fiber membrane observed by SEM has a network-like cross-sectional structure. 加湿膜として用いられる請求項1または3記載のポリエーテルイミド系樹脂多孔質中空糸膜。The porous hollow fiber membrane according to claim 1 or 3, which is used as a humidifying membrane. 燃料電池用加湿膜として用いられる請求項4記載のポリエーテルイミド系樹脂多孔質中空糸膜。The porous hollow fiber membrane of claim 4, which is used as a humidifying membrane for a fuel cell.
JP2003056821A 2003-03-04 2003-03-04 Polyetherimide resin porous hollow fiber membrane Expired - Fee Related JP4013791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003056821A JP4013791B2 (en) 2003-03-04 2003-03-04 Polyetherimide resin porous hollow fiber membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003056821A JP4013791B2 (en) 2003-03-04 2003-03-04 Polyetherimide resin porous hollow fiber membrane

Publications (2)

Publication Number Publication Date
JP2004261765A true JP2004261765A (en) 2004-09-24
JP4013791B2 JP4013791B2 (en) 2007-11-28

Family

ID=33120393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003056821A Expired - Fee Related JP4013791B2 (en) 2003-03-04 2003-03-04 Polyetherimide resin porous hollow fiber membrane

Country Status (1)

Country Link
JP (1) JP4013791B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086903A (en) * 2006-10-02 2008-04-17 Ube Ind Ltd ASYMMETRIC MEMBRANE FORMED BY Si ATOM CONTAINING POLYIMIDE, GAS SEPARATING MEMBRANE AND GAS SEPARATING METHOD
KR100948267B1 (en) 2007-11-14 2010-03-18 한국원자력연구원 Graft mesoporous seperator with siloxane compounds, method for preraration of grafted mesoporous seperator with siloxane compounds and lithium secondary batteries using the same
KR101278398B1 (en) 2007-08-01 2013-06-24 코오롱인더스트리 주식회사 Hollow Fiber Membrane and Method for Manufacturing The Same
JP2014512279A (en) * 2010-12-22 2014-05-22 フレゼニウス メディカル ケアー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Film without delamination
KR20200070335A (en) * 2017-10-27 2020-06-17 에누오케 가부시키가이샤 Manufacturing method of polyphenylsulfone hollow fiber membrane for humidification membrane
CN113522051A (en) * 2021-06-07 2021-10-22 中国科学院宁波材料技术与工程研究所 Hydrophilic hollow fiber membrane and preparation method and application thereof
CN113828162A (en) * 2020-06-23 2021-12-24 三达膜科技(厦门)有限公司 Preparation method of sustainable hydrophilic modified polyvinylidene fluoride hollow membrane
CN116926718A (en) * 2023-08-07 2023-10-24 有研资源环境技术研究院(北京)有限公司 Covalent organic framework hollow fiber membrane, preparation method and application thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086903A (en) * 2006-10-02 2008-04-17 Ube Ind Ltd ASYMMETRIC MEMBRANE FORMED BY Si ATOM CONTAINING POLYIMIDE, GAS SEPARATING MEMBRANE AND GAS SEPARATING METHOD
KR101278398B1 (en) 2007-08-01 2013-06-24 코오롱인더스트리 주식회사 Hollow Fiber Membrane and Method for Manufacturing The Same
KR100948267B1 (en) 2007-11-14 2010-03-18 한국원자력연구원 Graft mesoporous seperator with siloxane compounds, method for preraration of grafted mesoporous seperator with siloxane compounds and lithium secondary batteries using the same
JP2014512279A (en) * 2010-12-22 2014-05-22 フレゼニウス メディカル ケアー ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Film without delamination
US9421501B2 (en) 2010-12-22 2016-08-23 Fresenius Medical Care Deutschland Gmbh Delamination free membrane
KR20200070335A (en) * 2017-10-27 2020-06-17 에누오케 가부시키가이샤 Manufacturing method of polyphenylsulfone hollow fiber membrane for humidification membrane
KR102377158B1 (en) * 2017-10-27 2022-03-23 에누오케 가부시키가이샤 Manufacturing method of polyphenylsulfone hollow fiber membrane for humidification membrane
CN113828162A (en) * 2020-06-23 2021-12-24 三达膜科技(厦门)有限公司 Preparation method of sustainable hydrophilic modified polyvinylidene fluoride hollow membrane
CN113828162B (en) * 2020-06-23 2022-12-20 三达膜科技(厦门)有限公司 Preparation method of sustainable hydrophilic modified polyvinylidene fluoride hollow membrane
CN113522051A (en) * 2021-06-07 2021-10-22 中国科学院宁波材料技术与工程研究所 Hydrophilic hollow fiber membrane and preparation method and application thereof
CN116926718A (en) * 2023-08-07 2023-10-24 有研资源环境技术研究院(北京)有限公司 Covalent organic framework hollow fiber membrane, preparation method and application thereof
CN116926718B (en) * 2023-08-07 2024-02-27 有研资源环境技术研究院(北京)有限公司 Covalent organic framework hollow fiber membrane, preparation method and application thereof

Also Published As

Publication number Publication date
JP4013791B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
Yong et al. Properties of polyvinyl chloride (PVC) ultrafiltration membrane improved by lignin: Hydrophilicity and antifouling
JP5948638B2 (en) High performance membrane
Peyravi et al. Thin film composite membranes with modified polysulfone supports for organic solvent nanofiltration
Arthanareeswaran et al. Fabrication of cellulose acetate–zirconia hybrid membranes for ultrafiltration applications: Performance, structure and fouling analysis
JPH09136985A (en) Polymer solution for asymmetrical single film, asymmetrical single film made thereof and production thereof
US6887408B2 (en) Porous poly(aryl ether ketone) membranes, processes for their preparation and use thereof
Nasrollahi et al. Novel polymeric additives in the preparation and modification of polymeric membranes: A comprehensive review
JP2014094374A5 (en)
CA2008328C (en) Semipermeable membrane made from a homogeneously miscible polymer blend
CN110975654B (en) In-situ grafted anti-pollution hydrophilic modified membrane and preparation method thereof
CN109351190A (en) It is a kind of to be crosslinked the compound solvent resistant nanofiltration membrane of fluorine-containing polyamide, preparation method and applications
Arthanareeswaran et al. Effect of additives concentration on performance of cellulose acetate and polyethersulfone blend membranes
Kausar Phase inversion technique-based polyamide films and their applications: a comprehensive review
CN111278543B (en) Method for producing polyphenylsulfone hollow fiber membrane for humidifying membrane
WO2015141653A1 (en) Composite separation membrane
JP4991686B2 (en) Method for producing composite hollow fiber membrane
JP4013791B2 (en) Polyetherimide resin porous hollow fiber membrane
Wang et al. Enhanced antifouling performance of hybrid PVDF ultrafiltration membrane with the dual-mode SiO2-g-PDMS nanoparticles
JP2019537636A (en) Porous articles containing polymers and additives, their preparation and their use
CN1022982C (en) Improved composite membran of poly (methyl methacrylate) blends, their manufacture and their use
CN109563228A (en) Composition and application thereof comprising aromatic polymer and fluorinated polymer
CN103143268A (en) Preparation method of polyvinylidene fluoride/polyurethane/polyvinyl chloride blend hollow fiber separation membrane
Li et al. Preparation of high flux organic solvent nanofiltration membrane based on polyimide/Noria composite ultrafiltration membrane
Qin et al. Enhancing the property of composite pervaporation desalination membrane by fabricating a less resistance substrate with porous but skinless surface structure
JP4100215B2 (en) Manufacturing method of water vapor permeable membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees