JP2004261628A - Catalyst for catalytic cracking of hydrocarbons, and production method of light olefins by use of the catalyst - Google Patents

Catalyst for catalytic cracking of hydrocarbons, and production method of light olefins by use of the catalyst Download PDF

Info

Publication number
JP2004261628A
JP2004261628A JP2003016379A JP2003016379A JP2004261628A JP 2004261628 A JP2004261628 A JP 2004261628A JP 2003016379 A JP2003016379 A JP 2003016379A JP 2003016379 A JP2003016379 A JP 2003016379A JP 2004261628 A JP2004261628 A JP 2004261628A
Authority
JP
Japan
Prior art keywords
catalyst
mass
zeolite
light olefins
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003016379A
Other languages
Japanese (ja)
Inventor
Kenichi Wakui
顕一 涌井
Kanemasa Furusawa
金昌 古沢
Fumitaka Honjo
文隆 本庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP2003016379A priority Critical patent/JP2004261628A/en
Priority to PCT/JP2004/000428 priority patent/WO2004065005A1/en
Publication of JP2004261628A publication Critical patent/JP2004261628A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for producing light olefins at high yields by catalytically cracking hydrocarbons at comparatively low temperature, and a method for producing light olefins by use of the catalyst. <P>SOLUTION: This catalyst comprises 5-90 mass% of zeolite, and 10-95 mass% of clay minerals other than zeolite and/or an inorganic oxide. In the zeolite component, 30-95 mass% is pentasil zeolite having a rare-earth element deposited as an oxide, 5-70 mass% is Y zeolite (FAU type). An atomic ratio of the amount of deposition of the rare-earth element in the pentasil zeolite to the amount of aluminum in the pentasil zeolite is in the range of 0.4-20. In the method for producing light olefins, 2C or higher hydrocarbons are catalytically cracked in the presence of the catalyst. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素類の接触分解触媒、及びそれを用いた軽質オレフィン類の製造方法に関する。さらに詳しくは、本発明は、炭化水素類を接触分解させて高い収率でエチレン、プロピレンなどの軽質オレフィン類を製造し得る触媒、及び該触媒を用いて、炭化水素類を接触分解させてエチレンやプロピレンなどの軽質オレフィン類を高い収率で製造する方法に関するものである。
【従来の技術】
エチレンやプロピレンなどの軽質オレフィン類は、各種化学製品の基礎原料として、極めて重要な化合物である。従来、これらの軽質オレフィン類の製造方法としては、エタン、プロパン、ブタンなどのガス状炭化水素類、あるいはナフサなどの液状炭化水素類を原料とし、外熱式の管状炉内で水蒸気雰囲気下に加熱分解する方法が広く実施されている。
【0002】
しかしながら、このような方法では、軽質オレフィン類の収率を高めるために、800℃以上の高温を必要とする上、装置の材料として高価なものを使用しなければならないなど、経済的に不利な点を有している。
したがって、触媒を用いた炭化水素類の接触分解法が、これまで種々検討されてきた。それらの中でも、固体酸、特にZSM−5などのペンタシル型ゼオライトを触媒として用いる場合、500〜700℃程度の反応温度で、比較的高いエチレン、プロピレン収率(それぞれ原料炭化水素類に対し約10〜30質量%程度)が得られるため、該触媒を用いる技術が数多く提案されている。例えば、特定の酸量や酸強度を有するZSM―5型触媒による接触分解方法(例えば特許文献1、特許文献2参照)、銅、コバルトなどの遷移金属を含有させたZSM−5型触媒による接触分解方法(例えば、特許文献3、特許文献4参照)、希土類元素(RE)を含有するZSM−5型触媒による接触分解方法(例えば特許文献5、特許文献6、特許文献7、特許文献8、特許文献9参照)が開示されている。
【0003】
しかしながら、ZSM−5などのペンタシル型ゼオライトは、細孔径が0.5〜0.6nm程度と比較的小さいために、分子量が大きい原料や分岐の多い原料は細孔内に入りにくく、したがって、重質の原料は分解しにくいという欠点を有している。
これに対して、Y型ゼオライト(FAU型ゼオライト)に代表される比較的細孔径の大きなゼオライト(細孔径約0.7nm以上)では、上記のような分子量の大きい原料や、分岐の多い原料も分解することができるために、ガソリン製造を主な目的とした流動床接触分解反応器の触媒として広く使用されてきた。さらに、このようなY型を主体とした触媒(USY,RE−Y,RE−USY)を用いた接触分解の際に、ZSM−5などのペンタシル型ゼオライトを共存させて分解を行うことにより、ガソリン留分と同時にオレフィン類(主に、プロピレン、ブテン)の生成量が増大することが知られている(例えば、非特許文献1参照)。
【0004】
また、流動床反応器で、窒素量100質量ppm以下、初留点230℃以上の炭化水素原料を、Y型とZSM−5型の両方の成分を有するゼオライト触媒により接触分解する方法が開示されている(例えば、特許文献10参照)。しかしながら、この場合、通常のZSM−5型ゼオライトとY型ゼオライトを共に用いているため、水素移行反応が抑制されておらず、重質分やパラフィンが生成しやすく、オレフィン収率はあまり高くない(原料に対し、エチレン収率:約10質量%、プロピレン収率:約20質量%)。
【0005】
さらに、ゼオライト以外の粘土鉱物10〜70質量%、無機酸化物5〜85質量%及びゼオライト1〜50質量%を含み、ゼオライトの0〜25質量%がY型ゼオライトで、かつ75〜100質量%がペンタシル型のリン含有ゼオライトである触媒による接触分解方法が開示されている(例えば、特許文献11参照)。しかしながらこのようなリンを含有した触媒は、ゼオライトの酸性度が弱められることが一般に知られており(例えば、非特許文献2、特許文献12参照)、オレフィン類を多く得るためには、反応温度を680〜720℃と高くする必要がある。ゼオライト触媒は、高温では脱アルミニウムによる永久劣化が促進されるために、このような高温は触媒劣化を引き起こすことから、より低温で高活性を示す触媒が求められている。
【0006】
【特許文献1】
特表平3−504737号公報
【特許文献2】
特開平6―346062号公報
【特許文献3】
特開平2―1413号公報
【特許文献4】
特開平2―184638号公報
【特許文献5】
米国特許第5,232,675号明細書
【特許文献6】
米国特許第5,380,690号明細書
【特許文献7】
欧州特許第727,404号明細書
【特許文献8】
特開平11―180902号公報
【特許文献9】
特開平11−253807号公報
【特許文献10】
特開平6―220466号公報
【特許文献11】
特開平11―192431号公報
【特許文献12】
特開昭51―57688号公報
【非特許文献1】
「ゼオライトの科学と工学」、講談社サイエンティフィク社刊、2000年169ページ
【非特許文献2】
「Journal of Catalysis」、第115巻、第291〜300ページ(1989年)
【0007】
【発明が解決しようとする課題】
本発明は、このような状況下で、炭化水素類を比較的低い温度で接触分解し、高い収率で軽質オレフィン類を製造し得る触媒、及びその触媒を用いて、炭化水素類を接触分解し、軽質オレフィン類を製造する方法を提供することを目的とするものである。
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、ゼオライトとゼオライト以外の粘土鉱物及び/又は無機酸化物を特定の割合で含み、かつ該ゼオライト成分として、希土類元素を酸化物として特定の割合で担持したペンタシル型ゼオライトと、Y型ゼオライトとを所定の割合で含有するものを用いてなる触媒により、その目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明は、
(1)ゼオライト5〜90質量%とゼオライト以外の粘土鉱物及び/又は無機酸化物10〜95質量%とからなる触媒であって、前記ゼオライト成分のうちの30〜95質量%が希土類元素を酸化物として担持したペンタシル型ゼオライトで、5〜70質量%がY型ゼオライト(FAU型)であり、かつ前記ペンタシル型ゼオライトにおける希土類元素担持量が該ペンタシル型ゼオライト中のアルミニウムに対し原子比で0.4〜20の範囲にあることを特徴とする炭化水素類の接触分解触媒、
(2)素数2以上の炭化水素類を前記(1)に記載の触媒の存在下に接触分解させることを特徴とする軽質オレフィン類の製造方法、及び
(3)接触分解の反応温度が350〜780℃である前記(2)の軽質オレフィン類の製造方法、
を提供するものである。
【0008】
【発明の実施の形態】
本発明の炭化水素類の接触分解触媒は、(A)ゼオライトと(B)ゼオライト以外の粘土鉱物及び/又は無機酸化物とからなる触媒である。
この触媒が適用される炭化水素類としては、炭素数2以上、好ましくは炭素数2〜30、より好ましくは炭素数2〜20のパラフィン又は該パラフィンを主成分(約10質量%以上)とする炭化水素類を挙げることができる。このような炭化水素類としては、例えばエタン、プロパン、ブタン、ペンタン、ヘキサンなどのパラフィン類、あるいはナフサ、軽油などの軽質炭化水素留分などが用いられる。
また、本発明の触媒は、比較的高沸点で分子量の高い炭化水素類に対しても高い活性を示す特徴を有しており、該触媒が適用される原料の炭化水素類としては、飽和炭化水素化合物に限定されるものではなく、不飽和結合を有する炭化水素化合物を含有するものも使用することができる。
【0009】
本発明の触媒における(A)成分のゼオライトは、(a)希土類元素が酸化物として担持されたペンタシル型ゼオライトと、(b)Y型ゼオライトとから構成されている。
前記(a)成分のペンタシル型ゼオライトにおける希土類元素としては特に制限はなく、どのようなものでも使用可能であるが、例えばランタン、セリウム、プラセオジム、ネオジム、サマリウム、ガドリニウム、ジスプロシウムなどを好ましく挙げることができる。これらの希土類元素は、酸化物として一種を単独で担持させてもよく、二種以上を組み合わせて担持させてもよい。
ペンタシル型ゼオライトへの前記希土類元素の担持方法としては特に制限はなく、従来公知の方法の中から、適宣選択して用いることができる。例えば酢酸塩、硝酸塩、ハロゲン化物、硫酸塩、炭酸塩などの塩類、あるいはアルコキシド、アセチルアセトナトなどを用い、イオン交換法、含浸法、水熱合成法、その他の方法により、所望の希土類元素を酸化物として、ペンタシル型ゼオライトに担持させる。このように、希土類元素が酸化物として担持されたペンタシル型ゼオライトは、副生物の生成原因となる水素移行反応を抑制する効果を有し、軽質オレフィン類の収率を向上させることができる。なお、希土類元素の酸化物は、ペンタシル型ゼオライトに担持された状態であることが必要であり、バインダーと共にペンタシル型ゼオライトと物理的に混合したのみでは、本発明の触媒としての効果は得られない。
【0010】
(a)成分に用いられるペンタシル型ゼオライトは、触媒活性の面から、SiO/Al(モル比)が25〜800の範囲にあることが好ましく、より好ましくは30〜600、さらに好ましくは40〜300である。また、該ペンタシル型ゼオライトに担持される希土類元素の量は、このペンタシル型ゼオライト中のアルミニウムに対し、原子比で0.4〜20の範囲で選定される。この原子比が前記0.4未満では副生成物である重質コークや芳香族成分の生成が多くなり、また前記20を超えると触媒活性が低くなり、軽質オレフィン類の収率が低下する。前記原子比の好ましい範囲は、0.6〜5であり、特に1〜3の範囲が好ましい。
この(a)成分に用いられるペンタシル型ゼオライトとしては、ZSM−5,ZSM−8、ZSM―11型などを例示することができる。
一方(b)成分のY型ゼオライトとしては特に制限はなく、どのようなものでも用いることができるが、特にUSY型、あるいはRE−USYやRE−Yなどが好適である。
【0011】
本発明の触媒においては、(A)成分のゼオライトにおける、(a)成分である希土類元素を酸化物として担持したペンタシル型ゼオライトと、(b)成分のY型ゼオライトの含有量は、(a)成分が30〜95質量%で、(b)成分が5〜70質量%である。(a)成分の含有量が前記30質量%未満では軽質オレフィン類の生成量が少なくなり、また前記95質量%を超えると分解率が低下する。
(A)成分のゼオライトにおいて好ましい(a)成分の含有量は、40〜85質量%で、(b)成分の含有量は15〜60質量%であり、より好ましい(a)成分の含有量は50〜75質量%で、(b)成分の含有量は25〜50質量%である。
本発明の触媒においては、(B)成分としてゼオライト以外の粘土鉱物のみを用いてもよいし、無機酸化物のみを用いてもよく、また粘土鉱物と無機酸化物を併用してもよい。ここで、粘土鉱物としては、例えばカオリン、ベントナイト、スメクタトイなどが挙げられ、無機酸化物としては、例えばアルミナ、シリカ、シリカアルミナなどが挙げられる。
【0012】
前記(A)成分のゼオライトと(B)成分の粘土鉱物及び/又は無機酸化物とからなる本発明の触媒においては、(A)成分のゼオライトの含有量は5〜90質量%の範囲で選定される。この含有量が前記5質量%未満では触媒活性が低すぎて軽質オレフィン類の収量が低下し、前記90質量%を超えると流動床で使用した場合に、触媒粒子の流動性が悪化する。尚、本発明の触媒において、(A)成分の好ましい含有量は5〜50質量%であり、特に10〜40質量%の範囲が好適である。
本発明の触媒は、例えば所定量の希土類元素を酸化物として担持したペンタシル型ゼオライトとY型ゼオライトを、粘土鉱物及び/又は無機酸化物若しくはその前駆体と共に、それぞれ所定の割合で均質に混合し、スプレー乾燥法などで乾燥処理することによって、粒子状に成形することにより、調製することができる。
【0013】
本発明の軽質オレフィン類の製造方法においては、このようにして得られた触媒の存在下に、前述の炭素数2以上の炭化水素類を接触分解させることにより、軽質オレフィン類を製造する。ここで、軽質オレフィン類とは、エチレンやプロピレンなどを指す。
この方法における接触分解反応の様式については特に制限はなく、例えば固定床、移動床、流動床などの形式の反応器を使用し、前述の触媒を充填した触媒層へ炭化水素類を供給することにより、接触分解反応が行われる。特に、連続再生式の流動床あるいは移動床を用いた接触分解反応が好ましい。
【0014】
原料の炭化水素類は、必要に応じ、窒素、水素、ヘリウムあるいは水蒸気などで、希釈して用いることができる。接触分解の反応温度は、通常350〜780℃、好ましくは500〜750℃、より好ましくは600〜700℃の範囲で選定される。この反応温度が前記350℃未満では十分な触媒活性が得られにくく、一回通過当たりの軽質オレフィン類の収量が低くて実用的でなく、また前記780℃を超えるとメタンやコークの副生量が急増するおそれが生じる。反応圧力は常圧、減圧あるいは加圧のいずれでも実施できるが、通常は常圧ないしやや加圧の条件が採用される。
以上のような条件下に本発明の方法を実施すれば、従来の方法に比べて比較的低い温度で炭化水素類を効率よく分解することができ、エチレンやプロピレンなどの軽質オレフィン類を高い収率で製造することができる。
【0015】
【実施例】
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
実施例1
〔触媒Aの調製〕
ゼオライトとして、粉末状のプロトン型ZSM−5ゼオライト(SiO/Al(モル比)50、比表面積380m/g(N吸着法による測定値))を用い、特開平11−180902号公報記載の方法に従って、ランタン酸化物をLaとして10質量%含むZSM−5ゼオライト(10%La/ZSM−5と記す。)を調製した。ZSM−5ゼオライト中のアルミニウムに対するLaの原子比は1.1であった。
次いで、この10%La/ZSM−5と、東ソー(株)製、USYゼオライト(HSZ−330HUA)、カオリン及びシリカアルミナを、それぞれ15質量%、5質量%、50質量%及び5質量%の割合で混合し、このものを、アルミナゾル20質量%(固形分として)とシリカゾル5質量%(固形分として)と共にイオン交換水に加え、スラリーを調製した。このスラリーをスプレードライヤーにて噴霧乾燥処理し、流動床型触媒に成形して触媒(以下触媒Aという。)を調製した。
【0016】
〔接触分解反応〕
次に、触媒Aを100%スチームで800℃にて6時間処理し、擬似平衡化させた。下記組成のナフサを原料とし、流動床型反応器を使用して、擬似平衡化させた触媒Aの存在下に、反応温度600℃、圧力140kPa、接触時間0.8秒、スチーム/炭化水素(質量比)0.5、および触媒/炭化水素(質量比)20の条件で接触分解反応を実施した。結果を表1に示す。
〔原料ナフサ組成〕
留分: 7.2質量% C留分:52.3質量%
留分:35.7質量% C留分: 4.8質量%
比重:0.65(15/4℃) 分岐/直鎖比:0.73
芳香族化合物:2質量%
比較例1
〔触媒Bの調製〕
USYゼオライトを用いずに、10%La/ZSM−5を20質量%、カオリンを50質量%、シリカアルミナを5質量%、アルミナゾルを20質量%及びシリカゾルを5質量%として触媒を調製した以外は、実施例1と同様にして触媒(以下触媒Bという。)を調製した。
〔接触分解反応〕
実施例1に記載したと同様に触媒Bの存在下に、上記組成のナフサの接触分解反応を行った。結果を表1に示す。
【0017】
実施例2
ナフサの代わりに軽油(蒸留範囲:240〜365℃、比重0.853(15/4℃)を用い、反応温度630℃、圧力140kPa、接触時間1秒、スチーム/炭化水素(質量比)0.5、および触媒/炭化水素(質量比)25とした以外は、実施例1と同様の条件で接触分解反応を実施した。結果を表1に示す。
実施例3
〔触媒Cの調製〕
10%La/ZSM−5を18質量%、USYゼオライト(HSZ−330HUA)を12質量%、カオリンを40質量%、シリカアルミナを5質量%、アルミナゾルを20質量%及びシリカゾルを5質量%とした以外は実施例1と同様にして触媒(以下触媒Cという。)を調製した。
【0018】
〔接触分解反応〕
次に、触媒Cを100%スチームで800℃にて6時間処理し、擬似平衡化させた。軽油(蒸留範囲:240〜365℃、比重0.853(15/4℃))を原料とし、流動床反応器を使用して、擬似平衡化させた触媒Cの存在下に反応温度630℃、圧力140kPa、接触時間1秒、スチーム/炭化水素(質量比)0.5、および触媒/炭化水素(質量比)25の条件で接触分解反応を実施した。結果を表1に示す。
実施例4
〔触媒Dの調製〕
シリカアルミナを用いずに、10%La/ZSM−5を20質量%、USYゼオライト(HSZ−330HUA)5質量%、カオリンを40質量%、アルミナゾルを30質量%及びシリカゾルを5質量%とした以外は、実施例1と同様の方法で触媒(以下触媒Dという。)を調製した。
〔接触分解反応〕
次に、触媒Dを100%スチームで800℃にて6時間処理し、擬似平衡化させた。軽油(蒸留範囲:240〜365℃、比重0.853(15/4℃))を原料とし、流動床反応器を使用して、擬似平衡化させた触媒Dの存在下で、反応温度630℃、圧力140kPa、接触時間1秒、スチーム/炭化水素(質量比)0.5、および触媒/炭化水素(質量比)25の条件で接触分解反応を実施した。結果を表1に示す。
【0019】
比較例2
ナフサの代わりに軽油(蒸留範囲:240〜365℃、比重0.853(15/4℃))を原料とし、反応温度630℃、圧力140kPa、接触時間1秒、スチーム/炭化水素(質量比)0.5、および触媒/炭化水素(質量比)25の条件とした以外は比較例1と同様に接触分解反応を実施した。結果を表1に示す。
【0020】
【表1】

Figure 2004261628
【0021】
実施例1と比較例1、及び実施例2〜4と比較例2を比べて分かるように、Y型ゼオライトを含まない触媒を用いた場合には、C留分以上の生成物が多く、エチレン、プロピレンの軽質オレフィン類の収率が低い。これに対し、本発明の希土類元素の酸化物を担持したペンタシル型ゼオライトとY型ゼオライトを含有させた触媒を用いた場合は、高いエチレン、プロピレン収率が得られる。
【0022】
【発明の効果】
本発明よれば、炭化水素類を比較的低い温度で接触分解し、エチレン、プロピレンなどの軽質オレフィン類を高い収率で製造し得る触媒、及びその触媒を用いて炭化水素類を接触分解し、高い収率でエチレンやプロピレンなどの軽質オレフィン類を製造する方法を提供することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalytic cracking catalyst for hydrocarbons and a method for producing light olefins using the catalyst. More specifically, the present invention provides a catalyst capable of producing light olefins such as ethylene and propylene in a high yield by catalytically cracking hydrocarbons, and using the catalyst to catalytically crack hydrocarbons to produce ethylene. The present invention relates to a method for producing light olefins such as propylene and propylene in a high yield.
[Prior art]
Light olefins such as ethylene and propylene are extremely important compounds as basic raw materials for various chemical products. Conventionally, as a method for producing these light olefins, gaseous hydrocarbons such as ethane, propane, and butane, or liquid hydrocarbons such as naphtha are used as raw materials, and in a steam furnace in an externally heated tubular furnace. Thermal decomposition methods are widely practiced.
[0002]
However, such a method requires a high temperature of 800 ° C. or higher in order to increase the yield of light olefins, and requires an expensive material for the apparatus, which is economically disadvantageous. Have a point.
Therefore, various catalytic cracking methods for hydrocarbons using a catalyst have been studied so far. Among them, when a solid acid, particularly a pentasil-type zeolite such as ZSM-5, is used as a catalyst, a relatively high ethylene and propylene yield (each about 10 to raw material hydrocarbons) is obtained at a reaction temperature of about 500 to 700 ° C. To about 30% by mass), and many techniques using the catalyst have been proposed. For example, a catalytic cracking method using a ZSM-5 type catalyst having a specific acid amount and acid strength (for example, see Patent Documents 1 and 2), a contact using a ZSM-5 type catalyst containing a transition metal such as copper or cobalt, or the like. Cracking methods (for example, see Patent Documents 3 and 4) and catalytic cracking methods using a ZSM-5 type catalyst containing a rare earth element (RE) (for example, Patent Document 5, Patent Document 6, Patent Document 7, Patent Document 8, Patent Document 9) is disclosed.
[0003]
However, a pentasil-type zeolite such as ZSM-5 has a relatively small pore diameter of about 0.5 to 0.6 nm, so that a material having a large molecular weight or a material having many branches hardly enters the pores. Quality raw materials have the disadvantage of being difficult to decompose.
On the other hand, in a zeolite having a relatively large pore diameter (a pore diameter of about 0.7 nm or more) represented by a Y-type zeolite (FAU-type zeolite), a raw material having a large molecular weight as described above and a raw material having many branches are also used. Due to their ability to be cracked, they have been widely used as catalysts in fluidized bed catalytic cracking reactors primarily for gasoline production. Furthermore, in the catalytic cracking using such a Y-type-based catalyst (USY, RE-Y, RE-USY), the cracking is carried out in the presence of a pentasil-type zeolite such as ZSM-5, It is known that the production amount of olefins (mainly, propylene and butene) increases simultaneously with the gasoline fraction (for example, see Non-Patent Document 1).
[0004]
Also disclosed is a method for catalytically cracking a hydrocarbon raw material having a nitrogen content of 100 mass ppm or less and an initial boiling point of 230 ° C. or more in a fluidized bed reactor with a zeolite catalyst having both Y-type and ZSM-5-type components. (For example, see Patent Document 10). However, in this case, since both normal ZSM-5 type zeolite and Y type zeolite are used, the hydrogen transfer reaction is not suppressed, heavy components and paraffins are easily generated, and the olefin yield is not very high. (Ethylene yield: about 10% by mass, propylene yield: about 20% by mass, based on raw materials).
[0005]
Furthermore, it contains 10 to 70% by mass of clay minerals other than zeolite, 5 to 85% by mass of inorganic oxide and 1 to 50% by mass of zeolite, wherein 0 to 25% by mass of zeolite is Y-type zeolite and 75 to 100% by mass. Is a pentasil type phosphorus-containing zeolite, and a catalytic cracking method using a catalyst is disclosed (for example, see Patent Document 11). However, such a phosphorus-containing catalyst is generally known to reduce the acidity of zeolite (see, for example, Non-Patent Document 2 and Patent Document 12). Must be as high as 680 to 720 ° C. At high temperatures, zeolite catalysts promote permanent deterioration due to dealumination, and such high temperatures cause catalyst deterioration. Therefore, catalysts that exhibit high activity at lower temperatures are required.
[0006]
[Patent Document 1]
Japanese Patent Publication No. 3-504737 [Patent Document 2]
Japanese Patent Application Laid-Open No. Hei 6-346062 [Patent Document 3]
Japanese Patent Laid-Open No. 2-1413 [Patent Document 4]
Japanese Patent Application Laid-Open No. 2-184638 [Patent Document 5]
US Patent No. 5,232,675 [Patent Document 6]
US Patent No. 5,380,690 [Patent Document 7]
European Patent No. 727,404 [Patent Document 8]
JP-A-11-180902 [Patent Document 9]
JP-A-11-253807 [Patent Document 10]
JP-A-6-220466 [Patent Document 11]
JP-A-11-192431 [Patent Document 12]
JP-A-51-57688 [Non-Patent Document 1]
"Science and Engineering of Zeolite", Kodansha Scientific, 169 pages, 2000 [Non-Patent Document 2]
"Journal of Catalysis", Vol. 115, pp. 291-300 (1989)
[0007]
[Problems to be solved by the invention]
Under such circumstances, the present invention provides a catalyst capable of catalytically cracking hydrocarbons at a relatively low temperature to produce light olefins in a high yield, and catalytically cracking hydrocarbons using the catalyst. It is another object of the present invention to provide a method for producing light olefins.
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to achieve the above object, and as a result, have found that zeolite and clay minerals other than zeolite and / or inorganic oxides are contained in a specific ratio, and a rare earth element is oxidized as the zeolite component. It has been found that a catalyst using a pentasil-type zeolite supported at a specific ratio and a Y-type zeolite at a predetermined ratio can achieve the object. The present invention has been completed based on such findings.
That is, the present invention
(1) A catalyst comprising 5 to 90% by mass of zeolite and 10 to 95% by mass of a clay mineral and / or inorganic oxide other than zeolite, wherein 30 to 95% by mass of the zeolite component oxidizes rare earth elements. The pentasil-type zeolite supported as a material is 5 to 70% by mass of a Y-type zeolite (FAU type), and the amount of the rare-earth element supported on the pentasil-type zeolite is 0.1% in atomic ratio with respect to aluminum in the pentasil-type zeolite. A catalyst for catalytic cracking of hydrocarbons, which is in the range of 4 to 20;
(2) A method for producing light olefins, which comprises catalytically cracking hydrocarbons having a prime number of 2 or more in the presence of the catalyst according to (1), and (3) a reaction temperature of catalytic cracking of 350 to (2) the method for producing light olefins at 780 ° C.,
Is provided.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The catalyst for catalytic cracking of hydrocarbons of the present invention is a catalyst comprising (A) zeolite and (B) a clay mineral and / or inorganic oxide other than zeolite.
As the hydrocarbons to which this catalyst is applied, paraffins having 2 or more carbon atoms, preferably 2 to 30 carbon atoms, more preferably 2 to 20 carbon atoms or the paraffin as a main component (about 10 mass% or more) Hydrocarbons can be mentioned. Examples of such hydrocarbons include paraffins such as ethane, propane, butane, pentane, and hexane, and light hydrocarbon fractions such as naphtha and light oil.
In addition, the catalyst of the present invention has a feature of exhibiting high activity even for hydrocarbons having a relatively high boiling point and high molecular weight. The compound is not limited to a hydrogen compound, and a compound containing a hydrocarbon compound having an unsaturated bond can also be used.
[0009]
The zeolite of the component (A) in the catalyst of the present invention comprises (a) a pentasil type zeolite in which a rare earth element is supported as an oxide, and (b) a Y type zeolite.
The rare earth element in the pentasil-type zeolite of the component (a) is not particularly limited, and any rare earth element can be used. it can. One of these rare earth elements may be supported alone as an oxide, or two or more may be supported in combination.
The method for supporting the rare earth element on the pentasil-type zeolite is not particularly limited, and may be appropriately selected from conventionally known methods. For example, using salts such as acetates, nitrates, halides, sulfates, and carbonates, or alkoxides, acetylacetonate, and the like, ion exchange, impregnation, hydrothermal synthesis, and other methods can be used to form the desired rare earth element. The oxide is supported on a pentasil-type zeolite. As described above, the pentasil-type zeolite in which the rare earth element is supported as an oxide has an effect of suppressing a hydrogen transfer reaction that causes generation of by-products, and can improve the yield of light olefins. The oxide of the rare earth element needs to be supported on the pentasil-type zeolite, and the effect of the catalyst of the present invention cannot be obtained only by physically mixing the pentasil-type zeolite with the binder. .
[0010]
The pentasil-type zeolite used as the component (a) preferably has a SiO 2 / Al 2 O 3 (molar ratio) in the range of 25 to 800, more preferably 30 to 600, and still more preferably, from the viewpoint of catalytic activity. Is 40 to 300. The amount of the rare earth element supported on the pentasil-type zeolite is selected in the range of 0.4 to 20 in atomic ratio with respect to aluminum in the pentasil-type zeolite. When the atomic ratio is less than 0.4, the production of heavy coke and aromatic components as by-products increases, and when the atomic ratio exceeds 20, the catalytic activity decreases, and the yield of light olefins decreases. A preferable range of the atomic ratio is 0.6 to 5, and a range of 1 to 3 is particularly preferable.
Examples of the pentasil type zeolite used for the component (a) include ZSM-5, ZSM-8, and ZSM-11.
On the other hand, the Y-type zeolite of the component (b) is not particularly limited, and any type can be used, and particularly, USY type, RE-USY, RE-Y, and the like are preferable.
[0011]
In the catalyst of the present invention, in the zeolite of the component (A), the contents of the pentasil type zeolite supporting the rare earth element as the component (a) as an oxide and the Y type zeolite of the component (b) are (a) The component is 30 to 95% by mass, and the component (b) is 5 to 70% by mass. When the content of the component (a) is less than 30% by mass, the amount of light olefins produced is reduced, and when it exceeds 95% by mass, the decomposition rate is reduced.
In the zeolite of the component (A), the preferred content of the component (a) is 40 to 85% by mass, the content of the component (b) is 15 to 60% by mass, and the more preferred content of the component (a) is The content of the component (b) is 50 to 75% by mass, and the content of the component (b) is 25 to 50% by mass.
In the catalyst of the present invention, as the component (B), only a clay mineral other than zeolite may be used, only an inorganic oxide may be used, or a clay mineral and an inorganic oxide may be used in combination. Here, examples of the clay mineral include kaolin, bentonite, and smectite, and examples of the inorganic oxide include alumina, silica, and silica-alumina.
[0012]
In the catalyst of the present invention comprising the component (A) zeolite and the component (B) clay mineral and / or inorganic oxide, the content of the component (A) zeolite is selected within a range of 5 to 90% by mass. Is done. If the content is less than 5% by mass, the catalytic activity is too low, and the yield of light olefins decreases. If the content exceeds 90% by mass, the fluidity of the catalyst particles deteriorates when used in a fluidized bed. In the catalyst of the present invention, the content of the component (A) is preferably from 5 to 50% by mass, and particularly preferably from 10 to 40% by mass.
The catalyst of the present invention is obtained by, for example, uniformly mixing a pentasil-type zeolite and a Y-type zeolite carrying a predetermined amount of a rare earth element as an oxide together with a clay mineral and / or an inorganic oxide or a precursor thereof at a predetermined ratio. It can be prepared by forming into particles by drying treatment by a spray drying method or the like.
[0013]
In the method for producing light olefins of the present invention, the above-mentioned hydrocarbons having 2 or more carbon atoms are catalytically cracked in the presence of the catalyst thus obtained to produce light olefins. Here, the light olefins refer to ethylene, propylene, and the like.
There is no particular limitation on the mode of the catalytic cracking reaction in this method. For example, using a reactor of a type such as a fixed bed, a moving bed, or a fluidized bed, and supplying hydrocarbons to the catalyst bed filled with the catalyst described above. This causes a catalytic cracking reaction. In particular, a catalytic cracking reaction using a continuous regeneration type fluidized bed or moving bed is preferable.
[0014]
The raw material hydrocarbons can be diluted with nitrogen, hydrogen, helium, steam or the like, if necessary. The reaction temperature of the catalytic cracking is selected in the range of usually 350 to 780C, preferably 500 to 750C, more preferably 600 to 700C. If the reaction temperature is lower than 350 ° C, it is difficult to obtain sufficient catalytic activity, and the yield of light olefins per pass is low, which is not practical. If the reaction temperature is higher than 780 ° C, the amount of by-products of methane and coke is increased. May increase rapidly. The reaction can be carried out at normal pressure, reduced pressure or increased pressure, but usually at normal pressure or slightly increased pressure.
When the method of the present invention is carried out under the above conditions, hydrocarbons can be efficiently decomposed at a relatively low temperature as compared with the conventional method, and light olefins such as ethylene and propylene can be obtained at a high yield. Can be manufactured at a rate.
[0015]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
[Preparation of Catalyst A]
As a zeolite, powdery proton-type ZSM-5 zeolite (SiO 2 / Al 2 O 3 (molar ratio) 50, specific surface area 380 m 2 / g (measured value by N 2 adsorption method)) was used, and JP-A-11-180902 was used. ZSM-5 zeolite containing 10% by mass of lanthanum oxide as La (hereinafter, referred to as 10% La / ZSM-5) was prepared according to the method described in Japanese Patent Application Laid-Open No. H10-260,036. The atomic ratio of La to aluminum in the ZSM-5 zeolite was 1.1.
Subsequently, the 10% La / ZSM-5 and 15 mass%, 5 mass%, 50 mass%, and 5 mass% of the USY zeolite (HSZ-330HUA), kaolin, and silica alumina manufactured by Tosoh Corporation are respectively used. The mixture was added to ion-exchanged water together with 20% by mass (as a solid content) of alumina sol and 5% by mass (as a solid content) of silica sol to prepare a slurry. The slurry was spray-dried with a spray drier and formed into a fluidized bed catalyst to prepare a catalyst (hereinafter referred to as catalyst A).
[0016]
(Catalytic cracking reaction)
Next, the catalyst A was treated with 100% steam at 800 ° C. for 6 hours to make pseudo equilibrium. Using a naphtha having the following composition as a raw material, a reaction temperature of 600 ° C., a pressure of 140 kPa, a contact time of 0.8 second, and a steam / hydrocarbon mixture were used in a fluidized bed reactor in the presence of pseudo-equilibrated catalyst A. The catalytic cracking reaction was carried out under the conditions of (mass ratio) 0.5 and catalyst / hydrocarbon (mass ratio) 20. Table 1 shows the results.
[Raw material naphtha composition]
C 4 fraction: 7.2% by weight C 5 fraction: 52.3% by weight
C 6 fraction: 35.7% by mass C 7 fraction: 4.8% by mass
Specific gravity: 0.65 (15/4 ° C) Branching / linear ratio: 0.73
Aromatic compound: 2% by mass
Comparative Example 1
[Preparation of catalyst B]
Except that the catalyst was prepared without using USY zeolite, using 20% by mass of 10% La / ZSM-5, 50% by mass of kaolin, 5% by mass of silica alumina, 20% by mass of alumina sol and 5% by mass of silica sol. A catalyst (hereinafter referred to as catalyst B) was prepared in the same manner as in Example 1.
(Catalytic cracking reaction)
In the same manner as described in Example 1, a catalytic cracking reaction of naphtha having the above composition was carried out in the presence of catalyst B. Table 1 shows the results.
[0017]
Example 2
Gas oil (distillation range: 240 to 365 ° C, specific gravity 0.853 (15/4 ° C)) is used in place of naphtha, reaction temperature 630 ° C, pressure 140 kPa, contact time 1 second, steam / hydrocarbon (mass ratio) 0.1. The catalytic cracking reaction was carried out under the same conditions as in Example 1 except that the ratio was 5, and the catalyst / hydrocarbon (mass ratio) was 25. The results are shown in Table 1.
Example 3
[Preparation of catalyst C]
18% by mass of 10% La / ZSM-5, 12% by mass of USY zeolite (HSZ-330HUA), 40% by mass of kaolin, 5% by mass of silica alumina, 20% by mass of alumina sol and 5% by mass of silica sol. A catalyst (hereinafter, referred to as catalyst C) was prepared in the same manner as in Example 1 except for the above.
[0018]
(Catalytic cracking reaction)
Next, the catalyst C was treated with 100% steam at 800 ° C. for 6 hours to make a pseudo equilibrium. Starting from light oil (distillation range: 240-365 ° C, specific gravity 0.853 (15/4 ° C)), using a fluidized bed reactor, in the presence of pseudo-equilibrated catalyst C, at a reaction temperature of 630 ° C, The catalytic cracking reaction was carried out under the conditions of a pressure of 140 kPa, a contact time of 1 second, a steam / hydrocarbon (mass ratio) of 0.5, and a catalyst / hydrocarbon (mass ratio) of 25. Table 1 shows the results.
Example 4
[Preparation of catalyst D]
Without using silica-alumina, except that 10% La / ZSM-5 was 20% by mass, USY zeolite (HSZ-330HUA) was 5% by mass, kaolin was 40% by mass, alumina sol was 30% by mass, and silica sol was 5% by mass. Prepared a catalyst (hereinafter referred to as catalyst D) in the same manner as in Example 1.
(Catalytic cracking reaction)
Next, the catalyst D was treated with 100% steam at 800 ° C. for 6 hours to make pseudo equilibrium. Starting from light oil (distillation range: 240-365 ° C., specific gravity 0.853 (15/4 ° C.)), using a fluidized-bed reactor, in the presence of pseudo-equilibrated catalyst D, the reaction temperature is 630 ° C. , A pressure of 140 kPa, a contact time of 1 second, a steam / hydrocarbon (mass ratio) of 0.5, and a catalyst / hydrocarbon (mass ratio) of 25 under the conditions of a catalytic cracking reaction. Table 1 shows the results.
[0019]
Comparative Example 2
Gas oil (distillation range: 240-365 ° C, specific gravity 0.853 (15/4 ° C)) is used as a raw material instead of naphtha, reaction temperature is 630 ° C, pressure is 140 kPa, contact time is 1 second, steam / hydrocarbon (mass ratio) The catalytic cracking reaction was carried out in the same manner as in Comparative Example 1 except that the conditions were 0.5 and the catalyst / hydrocarbon (mass ratio) was 25. Table 1 shows the results.
[0020]
[Table 1]
Figure 2004261628
[0021]
As can be seen by comparing the comparative example 2 Example 1 Comparative Example 1, and Example 2-4, in the case of using a catalyst not containing Y-type zeolites, many C 5 fraction or more products, The yield of light olefins such as ethylene and propylene is low. On the other hand, when the catalyst containing the pentasil-type zeolite and the Y-type zeolite supporting the oxide of the rare earth element of the present invention is used, a high ethylene and propylene yield can be obtained.
[0022]
【The invention's effect】
According to the present invention, hydrocarbons are catalytically cracked at a relatively low temperature, ethylene, a catalyst capable of producing light olefins such as propylene in a high yield, and catalytically cracking hydrocarbons using the catalyst, It is possible to provide a method for producing light olefins such as ethylene and propylene with a high yield.

Claims (3)

ゼオライト5〜90質量%とゼオライト以外の粘土鉱物及び/又は無機酸化物10〜95質量%とからなる触媒であって、前記ゼオライト成分のうちの30〜95質量%が希土類元素を酸化物として担持したペンタシル型ゼオライトで、5〜70質量%がY型ゼオライト(FAU型)であり、かつ前記ペンタシル型ゼオライトにおける希土類元素担持量が該ペンタシル型ゼオライト中のアルミニウムに対し原子比で0.4〜20の範囲にあることを特徴とする炭化水素類の接触分解触媒。A catalyst comprising 5 to 90% by mass of a zeolite and 10 to 95% by mass of a clay mineral and / or an inorganic oxide other than zeolite, wherein 30 to 95% by mass of the zeolite component supports a rare earth element as an oxide. 5 to 70% by mass of a Y-type zeolite (FAU type), and the amount of the rare earth element carried in the pentasil-type zeolite is 0.4 to 20 in terms of atomic ratio with respect to aluminum in the pentasil-type zeolite. A catalyst for catalytic cracking of hydrocarbons, wherein 炭素数2以上の炭化水素類を、請求項1記載の触媒の存在下に接触分解させることを特徴とする軽質オレフィン類の製造方法。A method for producing light olefins, comprising catalytically cracking a hydrocarbon having 2 or more carbon atoms in the presence of the catalyst according to claim 1. 接触分解の反応温度が350〜780℃である請求項2記載の軽質オレフィン類の製造方法。The process for producing light olefins according to claim 2, wherein the reaction temperature of the catalytic cracking is 350 to 780C.
JP2003016379A 2003-01-24 2003-01-24 Catalyst for catalytic cracking of hydrocarbons, and production method of light olefins by use of the catalyst Pending JP2004261628A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003016379A JP2004261628A (en) 2003-01-24 2003-01-24 Catalyst for catalytic cracking of hydrocarbons, and production method of light olefins by use of the catalyst
PCT/JP2004/000428 WO2004065005A1 (en) 2003-01-24 2004-01-20 Catalyst for catalytic cracking of hydrocarbon and process for producing light olefin with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003016379A JP2004261628A (en) 2003-01-24 2003-01-24 Catalyst for catalytic cracking of hydrocarbons, and production method of light olefins by use of the catalyst

Publications (1)

Publication Number Publication Date
JP2004261628A true JP2004261628A (en) 2004-09-24

Family

ID=32767472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003016379A Pending JP2004261628A (en) 2003-01-24 2003-01-24 Catalyst for catalytic cracking of hydrocarbons, and production method of light olefins by use of the catalyst

Country Status (2)

Country Link
JP (1) JP2004261628A (en)
WO (1) WO2004065005A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190520A (en) * 2006-01-20 2007-08-02 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Catalytic cracking catalysts of heavy oil, and production method of olefin and fuel oil
JP2008518760A (en) * 2004-11-05 2008-06-05 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット Catalysts for light olefins and LPG in fluid catalytic reactors
JP2012505949A (en) * 2008-10-17 2012-03-08 エスケー イノベーション カンパニー リミテッド Process for producing high added value aromatics and olefins from light cycle oils in fluidized bed catalytic cracking process
RU2473385C1 (en) * 2011-08-25 2013-01-27 Окрытое акционерное общество "Газпромнефть-Омский НПЗ" Micropsherical catalyst for oil fractions cracking and method of its making
WO2014057931A1 (en) * 2012-10-10 2014-04-17 コスモ石油株式会社 Catalyst for catalytic cracking of hydrocarbon oil and method for catalytic cracking of hydrocarbon oil
JP2015518782A (en) * 2012-05-25 2015-07-06 サウジ アラビアン オイル カンパニー Catalyst for enhancing propylene in fluid catalytic cracking.
WO2015182329A1 (en) * 2014-05-30 2015-12-03 Jx日鉱日石エネルギー株式会社 Method for fluid catalytic cracking of heavy oil

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0718870A8 (en) 2006-11-07 2017-02-07 Saudi Arabian Oil Co advanced control of severe fluid catalytic cracking process to maximize propylene production of an oil feedstock
US9764314B2 (en) 2006-11-07 2017-09-19 Saudi Arabian Oil Company Control of fluid catalytic cracking process for minimizing additive usage in the desulfurization of petroleum feedstocks

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3758403A (en) * 1970-10-06 1973-09-11 Mobil Oil Olites catalytic cracking of hydrocarbons with mixture of zsm-5 and other ze
US3748251A (en) * 1971-04-20 1973-07-24 Mobil Oil Corp Dual riser fluid catalytic cracking with zsm-5 zeolite
CN1034586C (en) * 1993-11-05 1997-04-16 中国石油化工总公司 Catalytic conversion method of low-carbon olefines high-output
DE69832938T2 (en) * 1997-10-15 2006-08-10 China Petro-Chemical Corp. Cracking catalyst for the production of light olefins and its production
JP3072348B2 (en) * 1997-12-16 2000-07-31 工業技術院長 Method for producing lower olefin

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518760A (en) * 2004-11-05 2008-06-05 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット Catalysts for light olefins and LPG in fluid catalytic reactors
JP4714589B2 (en) * 2006-01-20 2011-06-29 石油コンビナート高度統合運営技術研究組合 Heavy oil catalytic cracking catalyst and process for producing olefin and fuel oil
KR101370204B1 (en) * 2006-01-20 2014-03-05 석유 콤비나트 고도통합운영기술연구조합 Catalytic cracking catalyst for heavy oil and production process for olefin and fuel oil
JP2007190520A (en) * 2006-01-20 2007-08-02 Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai Catalytic cracking catalysts of heavy oil, and production method of olefin and fuel oil
US8912377B2 (en) 2008-10-07 2014-12-16 Sk Innovation Co., Ltd. Method for producing high value aromatics and olefin from light cycle oil produced by a fluidized catalytic cracking process
JP2012505949A (en) * 2008-10-17 2012-03-08 エスケー イノベーション カンパニー リミテッド Process for producing high added value aromatics and olefins from light cycle oils in fluidized bed catalytic cracking process
RU2473385C1 (en) * 2011-08-25 2013-01-27 Окрытое акционерное общество "Газпромнефть-Омский НПЗ" Micropsherical catalyst for oil fractions cracking and method of its making
JP2015518782A (en) * 2012-05-25 2015-07-06 サウジ アラビアン オイル カンパニー Catalyst for enhancing propylene in fluid catalytic cracking.
JP2014076420A (en) * 2012-10-10 2014-05-01 Cosmo Oil Co Ltd Catalyst and method for catalytic cracking of hydrocarbon oil
WO2014057931A1 (en) * 2012-10-10 2014-04-17 コスモ石油株式会社 Catalyst for catalytic cracking of hydrocarbon oil and method for catalytic cracking of hydrocarbon oil
AU2013327877B2 (en) * 2012-10-10 2016-11-24 Cosmo Oil Co., Ltd. Catalyst for catalytic cracking of hydrocarbon oil and method for catalytic cracking of hydrocarbon oil
US10610856B2 (en) 2012-10-10 2020-04-07 Cosmo Oil Co., Ltd. Catalyst for catalytic cracking of hydrocarbon oil and method for catalytic cracking of hydrocarbon oil
WO2015182329A1 (en) * 2014-05-30 2015-12-03 Jx日鉱日石エネルギー株式会社 Method for fluid catalytic cracking of heavy oil
JP2015224338A (en) * 2014-05-30 2015-12-14 Jx日鉱日石エネルギー株式会社 Fluid catalytic cracking method for heavy oil

Also Published As

Publication number Publication date
WO2004065005A1 (en) 2004-08-05

Similar Documents

Publication Publication Date Title
KR100572842B1 (en) Production of catalysts for olefin conversion
JP4714589B2 (en) Heavy oil catalytic cracking catalyst and process for producing olefin and fuel oil
KR100803993B1 (en) Production of propylene
RU2418842C2 (en) Procedure for catalytic conversion of hydrocarbons
EP1791642B1 (en) Solid acid catalyst for producing light olefins and process using the same
JP4864179B2 (en) Production of olefins
Wei et al. Production of light olefins and aromatic hydrocarbons through catalytic cracking of naphtha at lowered temperature
JP4048459B2 (en) Production of olefins
JP4036553B2 (en) Production of olefins
TW592816B (en) Crystalline microporous oxide catalysts having increased Lewis acidity and methods for the preparation thereof
JP5860516B2 (en) Additives having a complex system of zeolite and process for preparation
PL196540B1 (en) Method of obtaining a fuel, constituting a fraction of diesel oil, by oligomerisation of individual olefins or their mixtures
JP2004511416A (en) Improved zeolites and molecular sieves and their use
JP4452021B2 (en) Hydrocarbon catalytic cracking process
EP2450104A1 (en) Catalyst for producing monocyclic aromatic hydrocarbons, and method for producing monocyclic aromatic hydrocarbons
US20140364666A1 (en) Catalyst for producing monocyclic aromatic hydrocarbons, and method for producing monocyclic aromatic hydrocarbons
JP2004261628A (en) Catalyst for catalytic cracking of hydrocarbons, and production method of light olefins by use of the catalyst
JP4394992B2 (en) Catalyst composition for increasing gasoline octane number and / or lower olefin and fluid catalytic cracking process of hydrocarbons using the same
WO2001090034A1 (en) Process for the production of propylene from olefinic streams
EP2868374A1 (en) Catalytic cracking of organic compounds, using a modified y zeolite
JP4159853B2 (en) Catalyst for catalytic cracking of hydrocarbon and catalytic cracking method using the same
JP2024506852A (en) YNU-5 zeolite, its preparation and use
JP2023550599A (en) Catalysts containing phosphorus-stabilized MSE framework-type zeolites, their preparation and their use in fluid catalytic applications
JP5587761B2 (en) Monocyclic aromatic hydrocarbon production method
JP2019524425A (en) Mesoporous ZSM-22 to produce more propylene

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050816

A131 Notification of reasons for refusal

Effective date: 20080408

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080701