JP2004261485A - Method for decomposing liquid organic compound - Google Patents

Method for decomposing liquid organic compound Download PDF

Info

Publication number
JP2004261485A
JP2004261485A JP2003056773A JP2003056773A JP2004261485A JP 2004261485 A JP2004261485 A JP 2004261485A JP 2003056773 A JP2003056773 A JP 2003056773A JP 2003056773 A JP2003056773 A JP 2003056773A JP 2004261485 A JP2004261485 A JP 2004261485A
Authority
JP
Japan
Prior art keywords
photocatalyst
pcb
liquid organic
organic compound
decomposing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003056773A
Other languages
Japanese (ja)
Inventor
Hideharu Osada
秀晴 長田
Tatsutoshi Shimabara
辰利 島原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osada Giken Co Ltd
Original Assignee
Osada Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osada Giken Co Ltd filed Critical Osada Giken Co Ltd
Priority to JP2003056773A priority Critical patent/JP2004261485A/en
Priority to EP03021658A priority patent/EP1403357A3/en
Priority to US10/671,514 priority patent/US20040073078A1/en
Publication of JP2004261485A publication Critical patent/JP2004261485A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for decomposing liquid organic compound such as PCB (polychlorinated biphenyl). <P>SOLUTION: The method is to apply the liquid organic compound to a photocatalyst powder from the upper side. The photocatalyst powder is irradiated with electromagnetic waves, is supplied with oxygen, and is stirred while the photocatalyst is heated to 50-350°C. The decomposing method has the following advantages. (1) PCB and other organic compounds can be decomposed easily. (2) A construction cost and a running cost are inexpensive compared to those of a critical water method and a high temperature incineration method. (3) The apparatus is small and hardly takes up space. (4) The operation and management are easy because of the low temperature and pressure. (5) The method is most suitable for smaller businesses which store PCB but hardly process and move PCB. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、液状有機物の分解方法に関するものである。
【0002】
【従来の技術】
現在、以前から備蓄されているPCBの処理が問題となっている。
PCBは、ポリクロロビフェニールの略称であり、2つのフェニル基に2つ以上の塩素が結合した化合物で塩素の数や結合位置によって多数の化合物が存在する。このPCBは、熱に対して安定であり、電気絶縁性に優れている等の特性により、かつてトランス、コンデンサー等の電気機器に、またノンカーボン紙や種々の媒体として非常に多量に使用されていた。
【0003】
PCBは、上記した化合物によって大きな差があるが、全体として非常に毒性が強い。最も強いものはダイオキシンに匹敵し、ダイオキシン類に含めて考えられている。
通常、PCBは上記した種々の化合物の混合物であることが多い。
【0004】
これらのPCBは、すでに製造、使用、輸入が禁止されている。しかしながら、適切な処理方法が確立されていないため、ほとんどが保有者によって保管されたままの状態である。勿論、使用せず、保管しているのであるから問題はないが、保管設備の老朽化によるPCBの漏洩、更に地震等の災害による保管設備の破壊による漏洩等の危険性は常に存在しているのである。
【0005】
そこで、順次保管PCBを処理していくことが望まれるのは当然であるが、政府も法令によって処理を義務化してきている。
【0006】
現在、PCBの処理方法としては、高温燃焼方式、化学分解方式、超臨界水酸化法、光触媒方式等が知られている。
【0007】
【発明が解決しようとする課題】
しかしながら、高温燃焼方式では、1400℃程度まで昇温しなければならず、非常なエネルギーを要するばかりか、その設備も非常に高額なものとなる。更に、その運転や管理も難しい。化学分解方式も管理や制御が難しい。
また、超臨界水酸化法では超高圧の臨界水が必要であり非常に高価な設備となる。更に、光触媒方式は液体PCB中に光触媒粉体を混合攪拌するものであるが、これも完全ではなかった。
【0008】
【課題を解決するための手段】
以上のような状況に鑑み、本発明者は鋭意研究の結果本発明液状有機物の分解方法を完成させたものであり、その特徴とするところは、液状有機物を、光触媒粉体の上方から噴霧又は散布する方法であって、該光触媒粉体には電磁波を照射し、且つ酸素を供給し、更に光触媒粉体を50〜350℃に加熱しつつ攪拌する点にある。
【0009】
本発明でいう液状有機物とは、有機物自体が液体であればそれ自身でよく、溶剤によって溶解したものでもよい。粘度が高い液体を溶剤によって粘度調整したものでもよい。
また、完全に溶解したものでなく、懸濁液や乳化物でもよい。また、細かい粉砕物(繊維屑や粉砕物等)が混合されていても構わない。要するに液体として適用できる状態であればよい。粘度は、水程度が好ましいが、特に限定するものでなく適用できればよい。
ここに分解できないもの(有機でも無機でも)や、分解が非常に遅いものを含んでいてもよい。それらは、最後でスクリーニングして除去してもよい。
【0010】
有機物とは、前記したPCBばかりでなく、ダイオキシン類、その他の有機物であればよい。油脂類、界面活性剤、その他工業廃水(有機溶媒等)等でもよく、特別限定するものではない。
【0011】
光触媒とは、電磁波の照射によって励起され付近の分子を分解、酸化する触媒をいう。その代表的なものがアナターゼ型結晶構造の酸化チタンである。勿論、これに限定するものではない。粉体のサイズは自由であるが、一般には小さい方が効率がよい。50nm以下が好ましい。また、比表面積は、30m/g以上がよく、効率と耐熱性から35〜75m/gがより好適である。
【0012】
この光触媒は、担体に担持させてもよい。例えば、シリカゲルや活性炭、その他の多孔質等通常に担体として使用されるものでよい。また、石粉やマイクロバルーン等に担持させてもよい。この担体のサイズは自由であるが、数μm〜1mm程度が舞い上がり等の取り扱い上好適であった。
【0013】
上方から適用するとは、光触媒が充填されているところに、上方から液体を噴霧し、散布し、又は滴下等することによって、光触媒層の表面に液体を付着させることをいう。噴霧等する量は、光触媒の移送量や攪拌程度によっても異なるが、比較的少量にするのがよい。例えば、PCBの20%溶液(有機溶剤で希釈)の場合、深さ5cm程度に充填した光触媒層の1m当たり1〜200g/分程度が好適であった。勿論、分解する有機物の種類にもよる。
【0014】
この光触媒層には、電磁波を照射する。電磁波は、紫外線、可視光その他光触媒が励起するものでよい。酸素を供給するのは活性酸素源としてであり、空気でよい。通常、系は有害物を含むため、完全クローズであるため、ブロア等で空気を強制導入する。電磁波の照射は、通常の装置を用いればよい。例えば、紫外線ランプ、殺菌灯、マイクロ波発生装置等である。
【0015】
光触媒層は、当然電磁波を効率よく受けるためには広い面積に充填することが望ましい。また、連続処理を行なうためには、ベルトコンベア方式が望ましい。攪拌しつつ、移送され、触媒表面に付着物がなくなったものを元の位置に戻す方式がよい。光触媒表面にカーボン等の分解物が付着している場合には、この元の位置に戻す間で、再生(加熱等)を行なうのがよい。
【0016】
本発明においては、これだけでなく、更に光触媒粉体を50〜350℃に加熱するのである。加熱することによって、光触媒効果が向上することを見出した。常温(20℃)と比較して、100℃以上になると相当効果が向上した。
150〜250℃が種々の経費等と比較して最も効率がよかった。
【0017】
加熱の方法はどのようなものでもよい。電気ヒーターや、ガスや石油のバーナー等どのようなものでもよい。赤外線を用いるものや電磁誘導を用いるものでもよい。しかし、温度制御できるものがよく電気ヒーターが最もよいと思われる。
【0018】
また、この光触媒層の上方にオゾンを供給してもよい。これは、オゾンの酸化力によって、有機物が分解されガス化したもので、まだ完全酸化又は完全分解されていないものは、当然光触媒粒子表面から離脱する。このような離脱したものは、中間体のようなものでそれ自身有害なものや、再度有害物を合成するもの等がある。しかし、光触媒表面から一定距離以上離れると光触媒の酸化分解能が届かないことが多い。よって、光触媒だけでは完全に無害化することは難しい。
【0019】
これを防止し、補うものがこのオゾンである。当然気体であるため、分解発生した気体と同じように流動する。オゾンは非常に強い酸化力を有するため、光触媒によって部分酸化されたものや、分解されたものをより酸化し、分解する。
【0020】
オゾンの濃度としては、数ppm〜数百ppmで十分であるが、特に部分酸化物や未酸化物等が多い場合には、より高濃度にしてもよい。オゾンは、系外で発生させて、空気等の酸素源と同様系内に強制導入してもよいし、系内に酸素があるため、系内においてオゾン発生器(紫外線ランプや放電方式)で発生させてもよい。
【0021】
光触媒を充填する厚み(深さ)は、混合効率や電磁波照射装置の数や強さにもよるが、電磁波が届きやすく、混合も容易なように50mm程度以下が好適であった。上下多段にするか、長いものにすれば容器の触媒充填容積は十分に確保できる。
【0022】
本発明の有機物の分解の反応工程は、すでに公知の酸化分解反応であり、特別なものではない。光触媒の酸化力による有機物の分解反応であり、それぞれの有機物について反応機構が明らかにされている。オゾンによる反応も同様であり、すでに公知の機構である。
【0023】
【発明の実施の形態】
以下図面に示す実施の形態に基づいて、本発明をより詳細に説明する。
図1は、本発明液状有機物の分解方法の1例を示す概略断面図である。反応器1の下層に光触媒粉体2が充填されている。この粉体層の中に攪拌装置3が設けられている。下方には触媒層を加熱する加熱装置4(ガスバーナー)が設けられている。上方の天井部分に、紫外線ランプ5が多数設けられ触媒層に紫外線を照射する。液状有機物導入口6、空気導入口7、オゾン導入口8が触媒層2の上方に設けられ、それぞれから液状有機物、空気、オゾンが導入される。
【0024】
この反応器1に、液状有機物が噴霧され、光触媒層の上方に付着する。触媒層は紫外線の照射により励起し、空気中の酸素等を活性化し、それによって噴霧した有機物が分解され、気化し光触媒から離脱する。光触媒層は、約200℃に加熱され攪拌されている。光触媒層から離脱した気体でまだ分解又は酸化の余地のあるものは、導入されているオゾンによって酸化、分解される。
【0025】
オゾンは気化したものだけでなく、光触媒層に付着したものも酸化するが、それも問題はない。
【0026】
これで導入された有機物は基本的にすべて気化するが、気化しにくく、光触媒表面に付着したまま残るようなものが多くなれば、そのような触媒は再生すればよい。再生は、350〜450℃に加熱するだけで可能である。
【0027】
この加熱による再生を連続工程に組み込むことも可能である。光触媒をベルトコンベア等で移動させながら有機物の分解を行ない、触媒層を連続的に系外に出し、そこで再生(加熱)し再度系内(反応器内)に戻す方式である。
【0028】
【発明の効果】
本発明分解方法には次のような大きな利点がある。
(1) PCBその他の有機物が簡単に分解できる。
(2) 臨界水方式や高温焼却方式と比較して、建設費やランニングコストが安価である。
(3) 装置が小さく、場所をとらない。
(4) 温度や圧力が低いため、運転や管理が容易である。
(5) 中小企業でPCBを保管し、処理も移動もできないところには最適である。
【図面の簡単な説明】
【図1】本発明方法を実施する装置の1例を示す断面図である。
【符号の説明】
1 反応器
2 光触媒層
3 攪拌装置
4 加熱装置
5 紫外線ランプ
6 有機物導入口
7 空気導入口
8 オゾン導入口
[0001]
[Industrial applications]
The present invention relates to a method for decomposing a liquid organic substance.
[0002]
[Prior art]
Currently, there is a problem with the processing of PCBs that have been stored for a long time.
PCB is an abbreviation of polychlorobiphenyl, and is a compound in which two or more chlorines are bonded to two phenyl groups, and there are many compounds depending on the number and positions of the chlorines. Due to its properties such as stability against heat and excellent electrical insulation, this PCB has been used in very large quantities in electrical equipment such as transformers and capacitors, and as non-carbon paper and various media. Was.
[0003]
PCBs vary greatly depending on the compounds described above, but are very toxic as a whole. The strongest are comparable to dioxins and are considered to be included in dioxins.
Usually, the PCB is often a mixture of the various compounds described above.
[0004]
These PCBs have already been banned from being manufactured, used or imported. However, most of them are still kept by the holders because appropriate treatment methods have not been established. Of course, there is no problem because they are not used and stored, but there is always a risk of leakage of PCBs due to aging storage facilities and leakage due to destruction of storage facilities due to disasters such as earthquakes. It is.
[0005]
Therefore, it is natural that it is desired to sequentially process the stored PCBs, but the government has obligated the processing by law.
[0006]
Currently, high-temperature combustion, chemical decomposition, supercritical water oxidation, and photocatalytic methods are known as PCB treatment methods.
[0007]
[Problems to be solved by the invention]
However, in the high-temperature combustion system, the temperature must be raised to about 1400 ° C., which requires not only extremely energy but also very expensive equipment. Furthermore, its operation and management are also difficult. The chemical decomposition method is also difficult to manage and control.
Further, the supercritical water oxidation method requires ultrahigh-pressure critical water, which is a very expensive facility. Furthermore, the photocatalyst method involves mixing and stirring a photocatalyst powder in a liquid PCB, but this is not perfect.
[0008]
[Means for Solving the Problems]
In view of the above situation, the present inventor has completed the method for decomposing the liquid organic substance of the present invention as a result of earnest research, and the feature thereof is that the liquid organic substance is sprayed or sprayed from above the photocatalytic powder. A method of spraying, wherein the photocatalyst powder is irradiated with an electromagnetic wave, oxygen is supplied, and the photocatalyst powder is stirred while being heated to 50 to 350 ° C.
[0009]
The liquid organic substance referred to in the present invention may be the organic substance itself as long as it is a liquid, or may be a substance dissolved by a solvent. A liquid having a high viscosity may be adjusted in viscosity with a solvent.
Further, a suspension or an emulsion may be used instead of a completely dissolved one. Further, fine pulverized materials (such as fiber waste and pulverized materials) may be mixed. In short, any state that can be applied as a liquid may be used. The viscosity is preferably about water, but is not particularly limited as long as it can be applied.
Here, those that cannot be decomposed (organic or inorganic) and those that decompose very slowly may be included. They may be screened at the end and removed.
[0010]
The organic substance may be not only the above-mentioned PCB but also dioxins and other organic substances. Fats and oils, surfactants, and other industrial wastewaters (such as organic solvents) may be used, and are not particularly limited.
[0011]
The photocatalyst is a catalyst that is excited by irradiation of electromagnetic waves to decompose and oxidize nearby molecules. A typical example is titanium oxide having an anatase type crystal structure. Of course, it is not limited to this. Although the size of the powder is free, the smaller the powder, the better the efficiency. It is preferably 50 nm or less. The specific surface area, 30 m 2 / g or more is good, between 35 and 75 2 / g from the efficiency and heat resistance is more preferable.
[0012]
This photocatalyst may be supported on a carrier. For example, silica gel, activated carbon, other porous materials such as those generally used as carriers may be used. Further, it may be carried on stone powder, micro balloons or the like. Although the size of this carrier is free, about several μm to 1 mm was suitable for handling such as rising.
[0013]
Applying from above means that the liquid is attached to the surface of the photocatalyst layer by spraying, spraying, or dropping the liquid from above on the place where the photocatalyst is filled. The amount to be sprayed or the like varies depending on the transfer amount of the photocatalyst and the degree of stirring, but it is preferable that the amount is relatively small. For example, in the case of a 20% solution of PCB (diluted with an organic solvent), the photocatalyst layer filled to a depth of about 5 cm is preferably about 1 to 200 g / min per 1 m2. Of course, it depends on the type of organic matter to be decomposed.
[0014]
This photocatalyst layer is irradiated with electromagnetic waves. The electromagnetic wave may be ultraviolet light, visible light, or other light that is excited by a photocatalyst. The oxygen is supplied as a source of active oxygen, and may be air. Usually, since the system contains harmful substances and is completely closed, air is forcibly introduced with a blower or the like. Irradiation with an electromagnetic wave may use a usual apparatus. For example, an ultraviolet lamp, a germicidal lamp, a microwave generator, and the like.
[0015]
Naturally, the photocatalyst layer is desirably filled in a wide area in order to receive electromagnetic waves efficiently. In order to perform continuous processing, a belt conveyor system is desirable. A method in which the catalyst is transferred while stirring, and the catalyst surface is free of deposits, and returned to its original position is preferable. When a decomposition product such as carbon is attached to the surface of the photocatalyst, regeneration (heating or the like) is preferably performed while returning to the original position.
[0016]
In the present invention, in addition to this, the photocatalyst powder is further heated to 50 to 350 ° C. It has been found that the photocatalytic effect is improved by heating. Compared with normal temperature (20 ° C.), when the temperature was 100 ° C. or more, the considerable effect was improved.
150-250 ° C. was the most efficient compared with various expenses.
[0017]
Any heating method may be used. Any electric heater or gas or oil burner may be used. A device using infrared rays or a device using electromagnetic induction may be used. However, the one that can control the temperature is good and the electric heater seems to be the best.
[0018]
Further, ozone may be supplied above the photocatalyst layer. In this case, organic substances are decomposed and gasified by the oxidizing power of ozone, and those that have not yet been completely oxidized or completely decomposed are naturally separated from the surface of the photocatalytic particles. Such desorbed substances include intermediates, which are harmful by themselves, and those which synthesize harmful substances again. However, when the photocatalyst is separated from the photocatalyst surface by a certain distance or more, the oxidation resolution of the photocatalyst often does not reach. Therefore, it is difficult to completely detoxify it using only a photocatalyst.
[0019]
The ozone prevents and compensates for this. Since it is a gas, it flows in the same manner as the gas generated by decomposition. Since ozone has a very strong oxidizing power, it partially oxidizes and decomposes by a photocatalyst to further oxidize and decompose.
[0020]
A concentration of ozone of several ppm to several hundred ppm is sufficient, but may be higher especially when there are many partial oxides and non-oxides. Ozone may be generated outside the system and forced into the system in the same way as an oxygen source such as air, or because there is oxygen in the system, an ozone generator (ultraviolet lamp or discharge system) is used in the system. May be generated.
[0021]
The thickness (depth) at which the photocatalyst is filled depends on the mixing efficiency and the number and strength of the electromagnetic wave irradiation devices, but is preferably about 50 mm or less so that the electromagnetic waves can easily reach and the mixing is easy. If the number of stages is increased or decreased, or the length is increased, a sufficient catalyst filling volume of the container can be secured.
[0022]
The reaction step for decomposing organic substances according to the present invention is a known oxidative decomposition reaction, and is not special. This is a decomposition reaction of organic substances by the oxidizing power of the photocatalyst, and the reaction mechanism of each organic substance has been clarified. The same applies to the reaction with ozone, which is a known mechanism.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings.
FIG. 1 is a schematic sectional view showing one example of the method for decomposing a liquid organic substance of the present invention. The lower layer of the reactor 1 is filled with the photocatalyst powder 2. A stirring device 3 is provided in the powder layer. A heating device 4 (gas burner) for heating the catalyst layer is provided below. A large number of ultraviolet lamps 5 are provided on the upper ceiling to irradiate the catalyst layer with ultraviolet rays. A liquid organic matter inlet 6, an air inlet 7, and an ozone inlet 8 are provided above the catalyst layer 2, and liquid organic matter, air, and ozone are introduced from each of them.
[0024]
Liquid organic matter is sprayed on the reactor 1 and adheres above the photocatalyst layer. The catalyst layer is excited by the irradiation of ultraviolet rays to activate oxygen and the like in the air, whereby the sprayed organic matter is decomposed, vaporized and separated from the photocatalyst. The photocatalyst layer is heated and stirred at about 200 ° C. The gas that has left the photocatalytic layer and still has room for decomposition or oxidation is oxidized and decomposed by the introduced ozone.
[0025]
Ozone not only vaporizes but also oxidizes those adhering to the photocatalytic layer, but this is not a problem.
[0026]
Basically, all the introduced organic substances are vaporized, but if there are many substances that are difficult to vaporize and remain attached to the photocatalyst surface, such a catalyst may be regenerated. Regeneration is possible only by heating to 350-450 ° C.
[0027]
The regeneration by heating can be incorporated in a continuous process. In this method, organic matter is decomposed while moving the photocatalyst on a belt conveyor or the like, and the catalyst layer is continuously taken out of the system, where it is regenerated (heated) and returned to the inside of the system (inside the reactor).
[0028]
【The invention's effect】
The decomposition method of the present invention has the following significant advantages.
(1) PCB and other organic substances can be easily decomposed.
(2) Construction costs and running costs are lower than those of the critical water method and the high temperature incineration method.
(3) The equipment is small and takes up little space.
(4) Operation and management are easy because the temperature and pressure are low.
(5) Ideal for small and medium enterprises that store PCBs and cannot process or move them.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an apparatus for performing the method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reactor 2 Photocatalyst layer 3 Stirrer 4 Heating device 5 Ultraviolet lamp 6 Organic substance inlet 7 Air inlet 8 Ozone inlet

Claims (2)

液状有機物を、光触媒粉体の上方から適用する方法であって、該光触媒粉体には電磁波を照射し、且つ酸素を供給し、更に光触媒粉体を50〜350℃に加熱しつつ攪拌することを特徴とする液状有機物の分解方法。A method in which a liquid organic substance is applied from above a photocatalyst powder, wherein the photocatalyst powder is irradiated with electromagnetic waves and supplied with oxygen, and further stirred while heating the photocatalyst powder to 50 to 350 ° C. A method for decomposing a liquid organic substance, comprising: 該光触媒粉体にオゾンをも供給するものである請求項1記載の液状有機物の分解方法。2. The method according to claim 1, wherein ozone is also supplied to the photocatalyst powder.
JP2003056773A 2002-09-27 2003-03-04 Method for decomposing liquid organic compound Pending JP2004261485A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003056773A JP2004261485A (en) 2003-03-04 2003-03-04 Method for decomposing liquid organic compound
EP03021658A EP1403357A3 (en) 2002-09-27 2003-09-26 Method for decomposing organic substance
US10/671,514 US20040073078A1 (en) 2002-09-27 2003-09-29 Method for decomposing organic substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003056773A JP2004261485A (en) 2003-03-04 2003-03-04 Method for decomposing liquid organic compound

Publications (1)

Publication Number Publication Date
JP2004261485A true JP2004261485A (en) 2004-09-24

Family

ID=33120362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003056773A Pending JP2004261485A (en) 2002-09-27 2003-03-04 Method for decomposing liquid organic compound

Country Status (1)

Country Link
JP (1) JP2004261485A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194545A (en) * 2006-05-12 2008-08-28 Osada Giken Co Ltd Method for oxidizing or decomposing target substance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194545A (en) * 2006-05-12 2008-08-28 Osada Giken Co Ltd Method for oxidizing or decomposing target substance

Similar Documents

Publication Publication Date Title
EP1945330B1 (en) Combined treatment of gaseous effluents by cold plasma and photocatalysis
KR101567334B1 (en) Plasma absorption deodor apparatus
US20020187082A1 (en) Photocatalyst coated magnetic composite particle
CN108064191B (en) Remediation of contaminated soil and water using improved activators
KR20140108667A (en) Process for treating effluents in a bed of microbeads by cold plasma and photocatalysis
CN103977678A (en) Method for processing organic waste gas through optical microwave catalytic oxidation
JP2009240862A (en) Gas purifying apparatus
JP2007222696A (en) Catalyst column for micro-wave reaction and decomposition treatment method using it
WO2012133006A1 (en) Method for treating organic halogen compound
Liang et al. Combination of spontaneous polarization plasma and photocatalyst for toluene oxidation
WO1991009823A1 (en) Photocatalytic process for degradation of organic materials in a vaporized or gaseous state
Horikoshi et al. Novel designs of microwave discharge electrodeless lamps (MDEL) in photochemical applications. Use in advanced oxidation processes
KR20150011062A (en) Deodorizing apparatus using ceramic membrane and plasma
JP2004261485A (en) Method for decomposing liquid organic compound
KR101918938B1 (en) Volatile Organic Compounds decompose device
JP2002153834A (en) Treatment method and treatment equipment for making ash and soil pollution-free
JP2008194616A (en) Photocatalyst functional coating and water-treating method using it
JPH10202257A (en) Photocatalytic water treating device and photocatalytic water treating method
JP2008194545A (en) Method for oxidizing or decomposing target substance
JP2005048160A (en) Method for decomposing organic material
Jou et al. Using a microwave-induced method to regenerate platinum catalyst
JP3933604B2 (en) Decomposition method of organic halogen compounds
JP2001300257A (en) Treatment device and decomposing method of waste gas by plasma decomposition process
JP2000007586A (en) Decomposition treatment of organochlorine-based gas and apparatus therefor
Zhu et al. Synthesis of a Fe/AC Fenton‐like catalyst and heterogeneous catalysis in decolorization of Sunset Yellow by pulsed high‐voltage discharge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090714