JP2004261086A - Method for producing pipecolic acid - Google Patents

Method for producing pipecolic acid Download PDF

Info

Publication number
JP2004261086A
JP2004261086A JP2003055011A JP2003055011A JP2004261086A JP 2004261086 A JP2004261086 A JP 2004261086A JP 2003055011 A JP2003055011 A JP 2003055011A JP 2003055011 A JP2003055011 A JP 2003055011A JP 2004261086 A JP2004261086 A JP 2004261086A
Authority
JP
Japan
Prior art keywords
acid
amino
pipecolic acid
acetyl
pipecolic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003055011A
Other languages
Japanese (ja)
Other versions
JP4452820B2 (en
Inventor
Norikazu Nishino
憲和 西野
Saori Haranaka
沙織理 原中
Mitsuaki Moriguchi
充瞭 森口
Kenji Soda
健次 左右田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority to JP2003055011A priority Critical patent/JP4452820B2/en
Publication of JP2004261086A publication Critical patent/JP2004261086A/en
Application granted granted Critical
Publication of JP4452820B2 publication Critical patent/JP4452820B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Hydrogenated Pyridines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing pipecolic acid enabling the pipecolic acid subjected to optical resolution in high purity to be supplied at low cost. <P>SOLUTION: The method for producing an optically active pipecolic acid comprises the consecutive steps of adding an amino acylase to a solution of the racemic modification of an amino acid derivative having a halogen group on the side chain terminal, forming the optically active pipecolic acid by the enantiomer-specific action of the amino acylase while keeping the solution under the condition of the intramolecular cyclization reaction of the amino acid derivative, and extracting the optically active pipecolic acid from the solution with a solvent. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は L−ピペコリン酸およびD−ピペコリン酸を低原価で量産できるピペコリン酸の製造方法に関する。
【0002】
【従来の技術】
光学活性ピペコリン酸は、図1に示すように天然に存在する種々の有用な生理活性物質の構成要素として含まれ、また合成医薬品の原料としても重要な化合物である。天然物質の構成成分としてはFK506 (免疫抑制剤)、Rapamicin (免疫抑制剤)、や Trapoxin A (HDAC阻害剤)が、合成医薬品では VX710 (抗がん剤)や Bupivacaine (局部麻酔剤)が挙げられる。また、L−ピペコリン酸を含む天然物に Cyl−2(非特許文献1)、及び Sandramycin(非特許文献2)がある。
さらに、人工的に設計され、薬理活性を有するため有用である化合物中にも L−ピペコリン酸が構成要素として導入されている。例えば、VX710 (非特許文献3)および L−365,209(非特許文献4)が挙げられる。
D−ピペコリン酸を含む天然物には例えば、Trapoxin A(非特許文献5)と Apicidin(非特許文献6)とが挙げられる。
これらの構造を元に新規様々な薬理活性を有する医薬品の開発および製造を行なおうとする時、分子構造の組み立て上、L−ピペコリン酸または D−ピペコリン酸が必要であるが、特殊な環状イミノ酸であるピペコリン酸を完全な光学活性体で安価に入手する事が困難であり、創薬上のネックになっていた。そこで過去20年以上に渡って、主として天然物の生理活性と構造との相関解明のために、必要とされる光学活性ピペコリン酸の合成および製造が数々試みられてきた。
【0003】
(1)例えば、ピペコリン酸の製造方法として(非特許文献7)には、L− または D−リシン、或いはその他のアミノ酸からの誘導法が、また、(非特許文献8)には酵素を用いた方法として、リパーゼ、アミダ―ゼ、または酪酸ビニル存在下でアシラーゼを用いる方法が記載されている。
(2)(特許文献1)や(非特許文献9)には、比較的安価な DL−ピペコリン酸に対して酒石酸、キラルなパラジウム複核錯体、または O−フェニル乳酸を反応させ、分別沈殿による光学分割法が開示されており、ここでは、DL−ピペコリン酸を混合物媒体中で光学活性フェノキシプロピオン酸と反応させ、得られた難溶性ジアステレオマー塩を水に溶解又は懸濁し、これに当量又は過剰の酸を加えて複分解して光学的に純粋な D−ピペコリン酸又は L−ピペコリン酸を製造する方法が記載されている。
(3)(非特許文献10)には、不斉触媒を用いたり、不斉点を導入したりするなどの不斉合成法が試みられており、(非特許文献11)には、ハロゲン化アルキルに対するアミン類の分子内 SN2 反応を用いてピペリジン環を形成する方法が記載されている。
(4)(非特許文献12)には、L−リシンを原料として2種の酵素 (lysine 6−aminotransferase および L−Δ1−piperideine 6−carboxylate reductase) を応用した方法が提案されている。
【0004】
【非特許文献1】
(Hirota, A., Suzuki, A., Aizawa, K., and Tamura, S. (1973). Structure of Cyl−2, a novel cyclotetrapeptide from Cylindrocladium scoparium. Arg. Biol. Chem. 37, 955−956)、Rapamycin (Vezina, C., Kudelski, A., and Sehgal, S. N. (1975). Rapamycin (AY−22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. 28, 721−726)、FK506 (Tanaka, H., Kuroda, A., Marusawa, H., Hatanaka, H., Kino, T., Goto, T., and Hashimoto, M. (1987). Structure of FK506: a novel immunosuppressant isolated from Streptomyces. J. Am. Chem. Soc. 109, 5031−5033)
【非特許文献2】
(Boger, D. L., Chen, J. H., and Saionz, K. W. (1996). (−)−Sandramycin: Total synthesis and characterization of DNA binding properties. J. Am. Chem. Soc. 118, 1629−1644)
【非特許文献3】
(Germann, U. A., Shlyakhter, D., Mason, V. S., Zelle, R. E., Duffy, J. P., Galullo, V., Armistead, D. M., Saunders, J. O., Boger, J., and Harding, M. W. (1997). Cellular and biochemical characterization of VX−710 as a chemosensitizer: Reversal of P−glycoprotein−mediated multidrug resistance in vitro. Anticancer Drugs 8, 125−140)、Bupivacaine (Adger, B., Dyer, U., Hutton, G., and Woods, M. (1996). Stereospecific synthesis of the anaesthetic levobupivacaine. Tetrahedron Lett. 37, 6399−6402)、
【非特許文献4】
(Pettibone, D. J., Clineschmidt, B. V., Anderson, P. S., Freidinger, R. M., Lundell, G. F., Koupal, L. R., Schwartz, C. D., Williamson, J. M., Goetz, M. A., Hensens, O. D., Liesch, J. M., and Springer, J. P. (1989). A structurally unique, potent, and selective oxytocin antagonist derived from Streptomyces silvensis. Endocrinology 125, 217−222)
【非特許文献5】
(Itagaki, H., Nagashima, K., Sugita, K., Yoshida, H., Kawamura, Y., Yasuda, Y., Matsumoto, K., Ishii, K., Uotani, N., Nakai, H., Terui, A., and Yoshimatsu, S. (1990). Isolation and structural elucidation of new cyclotetrapeptides, Trapoxins A and B, having detransformation activities as antitumor agents. J. Antibiotics 43, 1524−1532)
【非特許文献6】
(Darkin−Rattray, S. J., Gurnett, A. M., Myers, R. W., Dulski, P. M., Crumley, T. M., Allocco, J. J., Cannova, C., Meinke, P. T., Colletti, S. L., Bednarek, M. A., Singh, S. B., Goetz, M. A., Dombrowski, A. W., Polishook, J. D., and Schmatz, D. M. (1996). Apicidin: A novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc. Natl. Acad. USA 93, 13143−13147, Singh, S. B., Zink, D. L., Liesch, J. M., Mosley, R. T., Dombrowski, A. W., Bills, G. F., Darkin−Rattray, S. J., Schmatz, D. M., and Goetz, M. A. (2002). Structure and chemistry of apicidins, a class of novel cyclic tetrapeptides without a terminal a−keto epoxide as inhibitors of histone deacetylase with potent antiprotozoal activities. J. Org. Chem. 67, 815−825)
【非特許文献7】
(Fujii, T. and Miyoshi, M. (1975). A novel synthesis of L−pipecolic acid. Bull. Chem. Soc. Jpn. 48, 1341−1342; Kisfaludy, L., and Korenczki, F. (1982). One−step synthesis of L−piperidine−2−carboxylic acid. Synthesis 9, 163; Ohtani, B., Tsuru, S., Nishimoto, S., and Kagiya, T. (1990). Photocatalytic one−step syntheses of cyclic imino acids by aqueous semiconductor suspensions. J. Org. Chem. 55, 5551−5553)。
【非特許文献8】
(Ng−Youn−Chen, M. C., Serreqi, A. N., Huang, Q. L., and Kazlauskas, R. J. (1994). Kinetic resolution of pipecolic acid using partially−purified lipase from Aspergillus niger. J. Org. Chem. 59, 2075−2081; Eichhorn, E., Roduit, J., Shaw, N., Heinzmann, K., and Kiener, A. (1997). Preparation of (S)−piperazine−2−carboxylic acid, (R)−piperazine−2−carboxylic acid, and (S)−piperidine−2−carboxylic acid by kinetic resolution of the corresponding racemic carboxamides with stereoselective amidases in whole bacterial cells. Tetrahedron: Asymmetry 8, 2533−2536; Sanchez−Sancho, F. and Herradon, B. (1998). Short syntheses of (S)−pipecolic acid, (R)−coniine, and (S)−d−coniceine using biocatalytically−generated chiral building blocks. Tetrahedron: Asymmetry 9, 1951−1965)
【非特許文献9】
(Portoghese, P. S., Pazdernik, T. L., Kuhn, W. L., Hite, G., Shafi’ee, A. (1968) Stereochemical studies on medicinal agents. V. Synthesis, configuration, and pharmacological activity of pipradrol enantiomers. J. Med. Chem. 11, 12−15; Hardtmann, G. E., Houlihan, W. J., and Giger, R. K. A. (1988). Trifluoromethyl substituted tetracyclic quinazolin−ones having tranquilizing activity. US patent 4760065; Hochless, D. C. R., Mayadunne, R. C., and Wild, S. B. (1995). Convenient resolution of (±)−piperidine−2−carboxylic acid ((±)−pipecolic acid) by separation of palladium(II) diastereomers containing orthometallated (S)−(−)−1−[1−(Dimethylamino)ethyl]naphthalene. Tetrahedron: Asymmetry 6, 3031−3037)
【非特許文献10】
(Berrien, J. F., Royer, J., Husson, H. P. (1994). Asymmetric synthesis. 32. A new access to enantiomerically pure (S)−(−)−pipecolic acid and 2− or 6−alkylated derivatives. J. Org. Chem. 59, 3769−3774; Foti, C., J. and Comins, D. L. (1995). Synthesis and reactions of a−(trifluromethanesulfonyloxy)enecarbamates prepared from N−acyllactams. J. Org. Chem. 60, 2656−2657; Agami, C., Kadouri−Puchot, C., and Kizirian, J. C. (2000). A new enantioselective synthesis of (2S)−pipecolic acid. Synth. Commmun. 30, 2565−2572; Ginesta, X., Pericas, M. A., Riera, A. (2002). Straightforward entry to the pipecolic acid nucleus. Enantioselective synthesis of baikiain. Tetrahedron lett. 43, 779−782)。
【非特許文献11】
(Fernandez−Garcia, C., and McKervey, M. A. (1995). A short enantioselective synthesis of pipecolic acid. Tetrahedron: Asymmetry 6, 2905−2906; Myers, A. G., Gleason, J. L., Yoon, T., and Kung, D. W. (1997). Highly practical methodology for the synthesis of D− and L−amino acids, N−protected amino acids, and N−methyl−amino acids. J. Am. Chem. Soc. 119, 656−673; Nazabadioko, S., Perez, R. J., Brieva, R., and Gotor, V. (1998). Chemoenzymatic synthesis of (S)−2−cyanopiperidine, a key intermediate in the route to (S)−pipecolic acid and 2−substituted piperidine alkaloids. Tetrahedron: Asymmetry 9, 1597−1604)。
【非特許文献12】
(Agematsu, H., and Fujii, T. (2002). Production of L−pipecolic acid by recombinant Escherichia coli at an industrial scale. Bio Industry 19, 40−47)。
【0005】
【特許文献1】
特開2000−178253号公報
【0006】
【発明が解決しようとする課題】
しかしながら、前記の従来の技術では以下のような課題があった。
(a)非特許文献7に記載のリシンなどのアミノ酸からの誘導法は、 α−位およびε−位のアミノ基の選択反応を必要とし、アミノ基の官能基変換の際に水酸化等の副反応が多く起こるため低収率、低純度であり、試薬の使用に危険が伴うなど操作上の問題があり、安価な供給が困難であるという課題があった。
(b)非特許文献8に記載のリパーゼ、アミダ―ゼ、または酪酸ビニル存在下でアシラーゼを用いる方法では、ジアステレオマー選択性が不十分である の理由で実用的な製造法となるに到らず、酵素の立体特異性の応用面で効率化を図る点で不十分であるという課題があった。
(c)特許文献1や非特許文献9などに記載の分別沈殿法では、 DL−ピペコリン酸を原料として光学分割するので、光学異性体を別途準備し、使用後それを回収する必要がある点で非効率的であるという課題があった。
(d)非特許文献10に記載の不斉合成法は、不斉点を導入する試薬そのもの が高価であり、規模も実験室レベルであるため量産性に欠け実用的ではなく 工業的な適用が困難であるという課題があった。
(e)非特許文献11に記載のアミン類の分子内 SN2 反応を用いてピペリジン環を形成する方法では、ピペリジン環のものに限定されるため直接ピペコリン酸に到らず低収率であり、また、酵素による光学分割法ではないため 不要のジアステレオマーも副生してしまい高純度のものが得られ難いという課題があった。
(f)非特許文献12の L−リシンを原料として2種の酵素を適用した方法は、L−体の立体特異性を持った酵素を用いるため、また、D−体の立体特異性を有する同様酵素が開発されていないために D−ピペコリン酸の製造には適用できないという課題があった。
【0007】
本発明は前記従来の課題を解決するためになされたもので、高純度に光学分割されたピペコリン酸を高収率で安価に供給することができるピペコリン酸の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1に記載のピペコリン酸の製造方法は、ハロゲン基を側鎖末端に有するアミノ酸誘導体のラセミ体溶液にアミノアシラーゼを添加する調整工程と、前記アミノ酸誘導体の分子内環化反応条件に前記溶液を保持させ前記アミノアシラーゼのエナンチオマー特異的作用により光学活性ピペコリン酸を生成させる生成工程と、前記溶液から前記光学活性ピペコリン酸を溶媒抽出する抽出工程と、を備えて構成されている。
これによって、高純度に光学分割されたピペコリン酸を高収率で安価に製造することができる。すなわち、ハロゲン基を側鎖末端に有するアミノ酸誘導体に光学活性なアミノアシラーゼを作用させることによって、アミノ酸誘導体をエナンチオマー特異的に加水分解させ、その直後に起こる分子内環化反応によって光学活性ピペコリン酸を効率的に生成させることができる。
【0009】
ここで、アミノ酸誘導体としては、DL−N−アセチル−2−アミノ−6−ブロモへキサン酸などのアミノアシラーゼによるエナンチオマー特異的加水分解作用により分子内環化してピペコリン酸を生成可能なラセミ体やラセミ体を光学分割されたものが適用できる。
ハロゲン基は、アミノ酸誘導体の分子内環化反応を誘発して脱離するするためのもので、臭素、塩素、ヨウ素などのハロゲン元素の他、アルキルまたはアリルスルホン酸エステルを適用することができる。なお、アミノ酸誘導体の側鎖末端とは、アミノ酸誘導体におけるα−炭素から伸長した原子団の末端をいう。
アミノアシラーゼは微生物などから抽出され、アミノ酸誘導体のアミド結合を加水分解させる酵素であり、アスペルギルスジーナス( Aspergillus genus )L−アミノアシラーゼ、アルカリジーナスキシロースオキシダンス( Alcaligenes xylosoxydans )D−アミノアシラーゼなどが含まれる。
分子内環化反応は、図3に例示されるようにアミノ酸誘導体を自己環化させて特殊なイミノ酸を生成させる反応である。アミノ酸誘導体を所定の分子内環化反応条件に保持してアミノアシラーゼの作用で加水分解させることにより自己環化させることができる。すなわち、アミノアシラーゼの酵素的エナンチオマー特異的加水分解およびこの加水分解に伴う分子内環化反応によって光学活性なピペコリン酸( L−ピペコリン酸および D−ピペコリン酸)を製造できる。
【0010】
請求項2に記載のピペコリン酸の製造方法は、請求項1に記載の発明において、前記分子内環化反応条件が、前記ラセミ体溶液におけるpH6〜9、温度が20〜50℃、保持時間が10〜30時間であるように構成されている。
これによって、アミノアシラーゼによるエナンチオマー特異的加水分解およびこれに伴う分子内環化反応を適正に維持させることができ、高純度の光学活性ピペコリン酸をさらに高収率で得ることができる。
ここで、ラセミ体溶液におけるpHが6より低くなると、特異的加水分解の反応速度などが低下する傾向が現れ、逆にpHが9を超えるとアミノアシラーゼが変性して光学活性なピペコリン酸を有効に得ることができなくなる傾向が現れるので好ましくない。
ラセミ体溶液における温度が20℃より低くなると、反応速度などが極端に低下する傾向が現れ、逆に温度が50℃を超えるとアミノアシラーゼが変性して光学活性なピペコリン酸を有効に得ることができなくなる傾向が現れるので好ましくない。
溶液における分子内環化反応の保持時間が10時間より短くなると、特異的加水分解の反応速度などが低下する傾向が現れ、逆に保持時間が30時間より長くなるとアミノアシラーゼが変性して光学活性なピペコリン酸を有効に得ることができなくなる傾向が現れるので好ましくない。
【0011】
請求項3に記載のピペコリン酸の製造方法は、請求項1又は2に記載の発明において、前記アミノ酸誘導体が DL−N−アセチル−2−アミノ−6−ブロモへキサン酸、DL−N−アセチル−2−アミノ−6−クロロヘキサン酸、DL−N−アセチル−2−アミノ−6−ヨードヘキサン酸、DL−N−アセチル−2−アミノ−6−メタンスルフォキシヘキサン酸、DL−N−アセチル−2−アミノ−6−トシルオキシヘキサン酸のいずれか1のラセミ体であって、前記アミノアシラーゼがアスペルギルス・ジーナス( Aspergillus genus )L−アミノアシラーゼ又はアルカリジーナスキシロースオキシダンス( Alcaligenes xylosoxydans )D−アミノアシラーゼであるように構成されている。
これによって、光学活性なピペコリン酸を高収率で得ることができ、酵素を用いる光学分割によって得られるアミノ酸誘導体を中間体として、簡便かつ好収率で D−および L−ピペコリン酸を製造することができる。
ここで、L−アミノアシラーゼとしては、前記以外に(Aspergillus genus, Thermococcus eitoralis)及びアシラーゼI(ブタスイ臓、Aspergillus melleus)を用いることもできる。
【0012】
請求項4に記載のピペコリン酸の製造方法は、請求項1乃至3の内いずれか1項に記載の発明において、前記抽出工程により L−ピペコリン酸が抽出除去された残溶液から D−アセチル−2−アミノ−6−ブロモへキサン酸を回収する工程と、前記回収されたD−アセチル−2−アミノ−6−ブロモへキサン酸にアルカリジーナスキシロースオキシダンス( Alcaligenes xylosoxydans )D−アミノアシラーゼを添加し、その D−エナンチオマー特異的作用により脱アセチル化させ、分子内環化させて D−ピペコリン酸を生成する工程とを備えて構成されている。
これによって、L−ピペコリン酸を抽出した残溶液を有効に用いて、付加価値の高い D−ピペコリン酸を無駄なく生成でき、生産性に優れたピペコリン酸製造システムを構成することができ、特殊なイミノ酸である光学活性なピペコリン酸の供給不足に対応して両光学異性体の供給を容易化して医療開発研究などを押し進めることができる。
【0013】
請求項5に記載のピペコリン酸の製造方法は、請求項1乃至3の内いずれか1項に記載の発明において、前記抽出工程によりD−ピペコリン酸が抽出除去された残溶液からL−アセチル−2−アミノ−6−ブロモへキサン酸を回収する工程と、前記回収されたL−アセチル−2−アミノ−6−ブロモへキサン酸にアスペルギルス・ジーナス(Aspergillus genus)L−アミノアシラーゼを添加し、そのL−エナンチオマー特異的作用により脱アセチル化させ、分子内環化させて L−ピペコリン酸を生成する工程とを備えて構成されている。
これによって、D−ピペコリン酸を抽出した残溶液を有効に用いて、付加価値の高いL−ピペコリン酸を無駄なく生成でき、生産性に優れたピペコリン酸製造システムを実現できる。
【0014】
請求項6に記載のピペコリン酸の製造方法は、請求項3乃至5の内いずれか1項に記載の発明において、前記 DL−N−アセチル−2−アミノ−6−ブロモへキサン酸が、アセタミドマロン酸ジエチルと 1, 4−ジブロモブタンを反応させてアセタミド−4−ブロモブチルマロン酸ジエチルを生成させる工程と、前記アセタミド−4−ブロモブチルマロン酸を半ケン化して加熱脱炭酸し DL−N−アセチル−2−アミノ−6−ブロモへキサン酸エチル得る工程と、前記 DL−N−アセチル−2−アミノ−6−ブロモへキサン酸エチルをケン化、結晶化させる工程とを順次実行して製造されるように構成されている。
これによって、比較的安価で入手しやすいアセタミドマロン酸ジエチルを出発原料として、ピペコリン酸製造のため中間体となるDL−N−アセチル−2−アミノ−6−ブロモへキサン酸を制御しやすい容易な工程で効率的に製造することができ、生産性に優れた製造システムを構築できる。
ここで、半ケン化の条件は、アセタミド−4−ブロモブチルマロン酸に氷冷下、1当量強のアルカリを添加する条件であり、加熱脱炭酸の条件はトルエンまたは酢酸エチル溶液を添加して加熱還流させる条件である。
【0015】
請求項7に記載のピペコリン酸の製造方法は、t−ベンジルオキシカルボニル基、t−ブトキシカルボニル基などの脱着時に前記ハロゲン基を保護して温和な条件により脱着可能なウレタン型の保護基がアミノ基に結合され側鎖末端にハロゲン基を備えたアミノ酸誘導体の溶液を前記保護基の脱着条件に保持して、この脱着に伴う前記アミノ酸誘導体の分子内環化反応によってピペコリン酸を生成させることように構成されている。
これによって、保護基の脱着や加水分解に伴う分子内環化反応によってピペコリン酸を有効に生成することができる。すなわち、図4に例示されるようにアミノ酸誘導体の保護基(アミノ基を修飾するt−ブトキシカルボニル基の部分)を所定の条件下で加水分解させ、これに続く分子内環化反応によってピペコリン酸を効率的に生成させるものである。こうして、L−ピペコリン酸および D−ピペコリン酸並びにそれらの誘導体を個別に、安価に供給することができる。
保護基はジブロモブタンとの反応時におけるアミノ酸誘導体のアミノ基を保護するために導入される官能基であって、また分子内環化反応直前までアミノ基のブロモ結合炭素との反応を抑えるための保護基であり、ベンジルオキシカルボニル基、t−ブトキシカルボニル基などが用いられる。
【0016】
請求項8に記載のピペコリン酸の製造方法は、請求項7に記載の発明において、前記保護基の脱着条件が、室温下におけるパラジウム炭を触媒とする水素添加反応条件又は、塩化水素含有ジオキサン溶液又は酢酸エチル溶液中での脱着反応条件であるように構成される。
これによって、光学活性のピペコリン酸を得るために必要な脱着条件を適正に保持させることができ、100%近い高純度のピペコリン酸を80〜90%の高収率で得ることができ、保護基を有するアミノ酸誘導体を用いて、工業的な規模でのピペコリン酸の製造を可能にする。
ここで、塩化水素の濃度は2モル濃度でアミノ酸誘導体に対し約10当量用いられる。
【0017】
請求項9に記載のピペコリン酸の製造方法は、請求項7又は8に記載の発明において、前記アミノ酸誘導体が(1)N−保護−L−2−アミノ−6−ブロモへキサン酸や(2)N−保護−D−2−アミノ−6−ブロモへキサン酸であって、(1)前記N−保護−L−2−アミノ−6−ブロモへキサン酸が、N−ベンジルオキシカルボニル−アミノマロン酸ジエチル、N−t−ブトキシカルボニル−アミノマロン酸ジエチル等の保護基を有するアミノマロン酸誘導体と 1, 4−ジブロモブタンを反応させて N−保護−アミノ−4−ブロモブチルマロン酸ジエチルを生成せしめた後、氷冷下で希薄強アルカリ水を添加して半ケン化し、次いで加熱脱炭酸して得られる DL−N−保護−2−アミノ−6−ブロモへキサン酸エチルをタンパク質分解酵素またはエステラーゼの加水分解作用によって生成されたものであり、
(2)前記N−保護−D−2−アミノ−6−ブロモへキサン酸が、前記N−保護−L−2−アミノ−6−ブロモへキサン酸の生成後の溶液から回収された N−保護− D−2−アミノ−6−ブロモへキサン酸エチルを氷冷下で希薄強アルカリ水を添加してケン化して生成されるように構成されている
これによって、光学活性ピペコリン酸( D−ピペコリン酸、L−ピペコリン酸)製造の際に(1)N−保護−L−2−アミノ−6−ブロモへキサン酸や(2) N−保護−D−2−アミノ−6−ブロモへキサン酸を中間原料として、効率的な生産システムを構成することができ、医薬品原料となるような光学活性ピペコリン酸を低原価で量産することができる。
ここで、温和な条件とは、アミノ酸誘導体の反応保持温度が0℃以下であるような条件をいい、これによって半ケン化及びケン化の程度などを制御することができる。
タンパク質分解酵素としては、エステル分解作用を有するキモトリプシン、ズブチリシン、アルカリプロテアーゼなどや、立体特異性が厳密であるエステラーゼなどが好適に用いられる。
希薄強アルカリ水としては、水酸化ナトリウムや水酸化カリウム等の約0.1N溶液が用いられる。
【0018】
【発明の実施の形態】
本発明者らは、L−ピペコリン酸および D−ピペコリン酸を構成要素として含有する生理活性天然物をリードとする抗がん剤の開発ならびに特殊人工アミノ酸の開発中に、偶然ピペコリン酸を生成する副反応を発見した。この反応を利用すれば新規にL−ピペコリン酸および D−ピペコリン酸並びにそれら誘導体を簡便に製造することができるのではないかと考え、上記課題を解決するため鋭意研究を行なった結果、図3に示すようにハロゲン基を側鎖末端に有するラセミのアミノ酸誘導体がアスペルギルスジーナス( Aspergillus genus )L−アミノアシラーゼ及び、アルカリジーナスキシロースオキシダンス( Alcaligenes xylosoxydans )D−アミノアシラーゼの作用により、定量的にL−ピペコリン酸および D−ピペコリン酸を生成することを確認した。また、アミノ基をウレタン型等の保護基で保護し、側鎖末端にハロゲン基、アルキルスルホキシ基を有するラセミ体の2−アミノヘキサン酸エステルを、スブチリシン、キモトリプシン、酸性プロテアーゼ(Aspergillus niger)、中性プロテアーゼ(Aspergillus oryzae, Bacillus subtilis)又はアルカリプロテアーゼ(Bacillus subtilis, Aspergillus melleus, Bacillus lichenifomis)等のプロテアーゼで処理した後に、保護基の除去と同時にL−ピペコリン酸および D−ピペコリン酸が生成することを確認した。本発明者らはこの酵素的エナンチオマー特異的加水分解および自動環化反応をL−ピペコリン酸および D−ピペコリン酸の簡便な製造法に利用できることを見出して本発明を完成させた。
すなわち本発明は、以下の L−ピペコリン酸および D−ピペコリン酸の製造方法を包含するものである。
[1] アセタミドマロン酸ジエチルよりN−アセチル−DL−2−アミノ−6−ハロゲノへキサン酸を原料として調製する方法。
[2] ラセミ体中のL−体にAspergillus genus L−アミノアシラーゼを、D−体にAlcaligenes xylosoxydans D−アミノアシラーゼを作用させて、L−ピペコリン酸および D−ピペコリン酸を生成せしめる方法。
[3] N−アシル−DL−2−アミノ−6−ハロゲノへキサン酸エステルにプロテアーゼを作用させた後、アシル基を除去すると同時にL−ピペコリン酸を生成させる方法。
[4] 回収した D−N−アシル−2−アミノ−6−ハロゲノへキサン酸エステルより、脱保護によってD−ピペコリン酸またはその誘導体を生成せしめる方法。
【0019】
すなわち、本実施の形態の概要は以下のとおりである。
アセタミドマロン酸ジエチルと1,4−ジブロモブタンを定法で反応させ、温和な条件でケン化反応を2回行い、得られるN−アセチル−DL−2−アミノ−6−へキサン酸をL−アミノアシラーゼによって処理すれば、酵素特異的光学分割によって生成したL−2−アミノ−6−ブロモへキサン酸は、反応溶液中で直ちにL−ピペコリン酸に変わる。続いて定量的に回収するN−アセチル−D−2−アミノ−6−へキサン酸に更にD−アミノアシラーゼを作用させ、同様にD−ピペコリン酸を得る事ができる。
【0020】
一方、図4に示すように、N−t−ブトキシカルボニル−アミノマロン酸ジエチルのように脱着可能な保護基を用いる場合、同様に1,4−ジブロモブタンと反応させ、N−t−ブトキシカルボニル−2−アミノ−4−ブロモブチルマロン酸ジエチルを得、上記と同様に半ケン化、脱炭酸のステップを経て得られるN−t−ブトキシカルボニル−DL−2−アミノ−6−ブロモヘキサン酸エチルをズブチリシン等のタンパク質分解酵素またはエステラーゼによって処理すると、エチルエステルの酵素的、立体特異的加水分解によってN−t−ブトキシカルボニル−L−2−アミノ−6−ブロモヘキサン酸と、酵素作用を受けないN−t−ブトキシカルボニル−D−2−アミノ−6−ブロモヘキサン酸エチルとが得られる。両者は容易に分離可能である。N−t−ブトキシカルボニル−D−2−アミノ−6−ブロモヘキサン酸エチルを、更にエタノール中で氷冷下ケン化を行ない、定量的にN−t−ブトキシカルボニル−D−2−アミノ−6−ブロモヘキサン酸に変換する。N−t−ブトキシカルボニル−L−2−アミノ−6−ブロモヘキサン酸を酸処理し、次いで中和すると生成したL−2−アミノ−6−ブロモヘキサン酸は自動的に分子内環化反応を起こして、L−ピペコリン酸を生成する。同様にしてD−ピペコリン酸を得る。
【0021】
ベンジルオキシカルボニル基をアミノマロン酸ジエチルのアシル保護基として用いる場合、N−ベンジルオキシカルボニル−L−2−アミノ−6−ブロモへキサン酸をメタノール中でパラジウム等の触媒存在下、接触還元すれば、生成したL−2−アミノ−6−ブロモへキサン酸は自動的に分子内環化反応により、L−ピペコリン酸を生成する。N−ベンジルオキシカルボニル−D−2−アミノ−6−ブロモへキサン酸からは同様にD−ピペコリン酸が得られる。t−ブトキシカルボニル基以外の、ベンジルオキシカルボニル基等温和に脱着可能な保護基も用い得る。また、エチルエステル以外のエステルも用い得る。
【0022】
本実施の形態において、2−アミノ−6−ハロゲノへキサン酸のアミノ保護基として、アセチル基以外にその他の置換アシル基およびウレタン型のアシル基を含む。同等の作用が得られるからである。 L−アミノアシラーゼおよび D−アミノアシラーゼのエナンチオマー特異的(光学特異性、立体特異性)加水分解活性が充分であればよい。エステラーゼ活性を示す酵素はエナンチオマー特異的(光学特異性、立体特異性)加水分解活性が充分であれば、その対象エステルの種類と本来の酵素反応の特異性を問わない。
【0023】
以上のように本実施の形態のピペコリン酸の製造方法は、DL−N−アセチル−2−アミノ−6−ブロモへキサン酸にAspergillus genus L−アミノアシラーゼを作用させ、酵素による光学分割に続いて速やかに分子内環化反応を起こさせるL−ピペコリン酸を生成させる。また、この反応から回収されるD−N−アセチル−2−アミノ−6−ブロモへキサン酸を更にAlcaligenes xylosoxydans D−アミノアシラーゼで処理すると、同様にD−ピペコリン酸が得られる。このように側鎖にブロモアルキル基を有するラセミ体アミノ酸の酵素分割を利用して、L−およびD−ピペコリン酸を高純度、高収率で合成できる優れた生産システムを構築できる。
【0024】
以下、実施例により図面を用いてさらに詳細に説明するが、本発明は以下の実施例に制限されるものではない。
(実施例1)
図2にN−アセチル−DL−2−アミノ−6−ブロモへキサン酸の合成の概要を示す。
(1)アセタミド−4−ブロモブチルマロン酸ジエチルの合成
300 ml ナスフラスコ中で脱水 エタノール (100 ml) に金属ナトリウム (2.19 g, 95 mmol) を加え 30 分間攪拌後、アセタミドマロン酸ジエチル (21.08 g, 100 mmol) を加え 30 分間加熱(120℃)下攪拌した。そこに 1, 4−ジブロモブタン (59 ml, 500 mmol) を加えて 5 時間の還流を行った。放冷後、酢酸 (0.29 ml, 5 mmol) を加え、エタノールと 1, 4−ジブロモブタンをそれぞれ留去した。酢酸エチル (300 ml) で目的物を抽出した後、シリカゲルクロマトグラフィー (φ4.7 cm x 17 cm, 酢酸エチル/ヘキサン= 1 : 1) で精製した。溶媒を留去してアセタミド−4−ブロモブチルマロン酸ジエチルの白色結晶を得た。収量 : 26.2 g、収率 : 73 %、Rf値 : 0.82(CHCl3 / MeOH = 9 : 1)。
(2)アセトアミド−4−ブロモブチルマロン酸モノエチルの合成
アセトアミド−4−ブロモブチルマロン酸ジエチル (26.2 g, 74.4 mmol) をエタノール (80 ml) に溶解し、氷冷下で 2 N 水酸化ナトリウム水溶液 (40 ml) を 30 分毎に 5 回に分けて加えた。3 時間後、反応溶液を濃縮しエーテルおよび4% 炭酸水素ナトリウム水溶液と振った。4% 炭酸水素ナトリウム水溶液をクエン酸で中和、酸性とした後、析出油状物を酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去してアセトアミド−4−ブロモブチルマロン酸モノエチルの白色結晶を得た。収量 : 20.4 g、収率 : 85%、 Rf値 : 0.64(CHCl3 / MeOH / AcOH = 90 : 10 : 2)。
(3)N−アセチル−DL−2−アミノ−6−ブロモへキサン酸エチルの合成
アセトアミド−4−ブロモブチルマロン酸モノエチル (20.4 g, 63.1 mmol) を酢酸エチル (100 ml) に溶解し、トルエンや酢酸エチル中で3時間加熱還流し脱炭酸を行った。溶液を濃縮し、エーテルに溶解させ4% 炭酸水素ナトリウム水溶液、及び飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、溶媒を留去してN−アセチル−DL−2−アミノ−6−ブロモへキサン酸エチルの油状物を得た。収量 : 17.0 g、収率 : 97%、 Rf値 : 0.62 (CHCl3 / MeOH = 9 : 1)。
(4)N−アセチル−DL−2−アミノ−6−ブロモへキサン酸の合成
N−アセチル−DL−2−アミノ−6−ブロモへキサン酸エチル (17.0 g, 60.9 mmol) をエタノール (50 ml) に溶解し、氷冷下で 2 N 水酸化ナトリウム水溶液 (25 ml) を 30 分毎に 5 回に分けて加えた。3 時間後、溶液を濃縮しエーテルおよび4% 炭酸水素ナトリウム水溶液と振った。4% 炭酸水素ナトリウム水溶液をクエン酸で中和し、酸性とした後、目的物を酢酸エチルに抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去してN−アセチル−DL−2−アミノ−6−ブロモへキサン酸の白色結晶を得た。収量 : 12.5 g、 収率 : 81%、Rf値 : 0.54 (CHCl3 / MeOH / AcOH = 90 : 10 : 2 )。
【0025】
(実施例2)
次に、L−アミノアシラーゼによるL−ピペコリン酸の合成、 N−アセチル−D−2−アミノ−6−ブロモへキサン酸の回収、およびD−アミノアシラーゼによるD−ピペコリン酸の合成について説明する。
図3はその合成などの概要を示す図である。
(1)N−アセチル−DL−2−アミノ−6−ブロモへキサン酸 (10.3 g, 41.0 mmol) を 0.1 N 水酸化ナトリウム水溶液 (約200 ml) に溶解し、pH を 7.0 に調整した。この溶液に CoCl・6HO (48 mg) および Aspergillus genus L−アミノアシラーゼ (東京化成, 2.0 g) を加え 38℃ で24 時間反応させた。反応溶液を濃縮し 1 N 塩酸を加えて pH 3 とした後、N−アセチル−D−2−アミノ−6−ブロモへキサン酸を酢酸エチルで抽出した。無水硫酸マグネシウムで乾燥後、溶媒を留去してN−アセチル−D−2−アミノ−6−ブロモへキサン酸を白色結晶として得た。収量 : 4.59 g、 収率 : 89%、Rf値 : 0.52(CHCl3 / MeOH / AcOH = 90 : 10 : 2)、 Rt : 13.38 min [B: 0%−100% 30min, (A: 100% AcCN / H2O / 0.1%TFA, B: 100% AcCN / 0.1%TFA) YMC−Pack ODS−A 150 x 4.6 mm, l = 220 nm] 。
(2)また、N−アセチル−D−2−アミノ−6−ブロモへキサン酸の抽出後の水溶液を水酸化ナトリウムで pH 7 に調整した後、溶液陽イオン交換樹脂 (Amberlite IR−120, 200 ml) カラムに投じ、1 M アンモニア水溶液で溶出した。溶出液を濃縮乾固してL−ピペコリン酸を白色結晶として得た。収量 : 1.84 g、収率 : 80%、 [α]D : −26.3 (c 1.0, H2O)、 FABHRMS : [M+H]+ (130.0842), C6H12O2N (130.0868)。
(3)N−アセチル−D−2−アミノ−6−ブロモへキサン酸 (3.5 g, 14 mmol) を 0.1 N 水酸化ナトリウム水溶液 (約7 ml) に溶解し、pH を 7.0 に調整した。この溶液に Alcaligenes xylosoxydans D−アミノアシラーゼ (45 mg/45 ml) を加え 38℃ で 3 日間反応させた。反応溶液を濃縮後、陽イオン交換樹脂 (Amberlite IR−120, 200 ml)カラムに投じ、1 M アンモニア水溶液で溶出した。溶出液を濃縮乾固してD−ピペコリン酸を白色結晶として得た。収量 : 1.55 g、収率 : 85%、[α]D : +26.3 (c 1.0, H2O)、 FABHRMS :[M+H]+ (130.0877), C6H12O2N (130.0868)。
【0026】
(実施例3)
次に、N−アシル−DL−2−アミノ−6−ハロゲノへキサン酸エステルの合成とプロテアーゼ作用および脱アシル基による L−ピペコリン酸の合成について説明する。
(1)N−t−ブトキシカルボニル−2−アミノ−4−ブロモブチルマロン酸ジエチルの合成
300 ml ナスフラスコ中で脱水 エタノール (100 ml) に金属ナトリウム (2.3 g, 100 mmol) を加え 30 分間攪拌後、N−t−ブトキシカルボニル−2−アミノマロン酸ジエチル (27.6 g, 100 mmol) を加え 30 分間加熱攪拌した。そこに 1, 4−ジブロモブタン (60 ml, 500 mmol) を加えて 5 時間の還流を行った。放冷後、クエン酸を加え中和、NaBr をろ過後、エタノールと 1, 4−ジブロモブタンをそれぞれ留去した。酢酸エチル (300 ml) で目的物を抽出、溶媒を留去しN−t−ブトキシカルボニル−2−アミノ−4−ブロモブチルマロン酸ジエチルの油状物を得た。収量 : 37.0 g、収率 : 92 %、Rf値 : 0.90(CHCl3 / MeOH = 9 : 1)。
(2)N−t−ブトキシカルボニル−2−アミノ−4−ブロモブチルマロン酸モノエチルの合成
N−t−ブトキシカルボニル−2−アミノ−4−ブロモブチルマロン酸ジエチル (37.0 g, 92 mmol) をエタノール (100 ml) に溶解し、氷冷下で 2 N 水酸化ナトリウム水溶液 (46 ml) を 30 分毎に 5 回に分けて加えた。3 時間後、反応溶液を濃縮しエーテルおよび4% 炭酸水素ナトリウム水溶液と振った。4% 炭酸水素ナトリウム水溶液をクエン酸で中和、酸性とした後、析出油状物を酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去してN−t−ブトキシカルボニル−2−アミノ−4−ブロモブチルマロン酸モノエチルの白色結晶を得た。収量 : 27.5 g、収率 : 80%、Rf値 : 0.68(CHCl3 / MeOH / AcOH = 90 : 10 : 2)。
(3)N−t−ブトキシカルボニル−DL−2−アミノ−6−ブロモへキサン酸エチルの合成
N−t−ブトキシカルボニル−2−アミノ−4−ブロモブチルマロン酸モノエチル (27.5 g, 73 mmol) をトルエン (150 ml) に溶解し、3時間加熱還流した。溶液を濃縮して、シリカゲルクロマトグラフィー (φ4.7 cm x 18 cm, 酢酸エチル/ヘキサン= 1 : 8) で精製した。溶媒を留去してN−t−ブトキシカルボニル−DL−2−アミノ−6−ブロモへキサン酸エチルの油状物を得た。収量 : 19.3 g、収率: 85%、Rf値 : 0.70 (CHCl3 / MeOH = 9 : 1)。
(4)N−t−ブトキシカルボニル−L−2−アミノ−6−ブロモへキサン酸の合成
図4にその合成方法の概要を示す。
N−t−ブトキシカルボニル−DL−2−アミノ−6−ブロモへキサン酸エチル(19.3 g, 58.6 mmol) をDMF (50 ml)、H2O (150 ml) に溶解し、1 M NH3aqでpHを8.0に調整し、subtilisin (60 mg) を加え37℃で 12 時間反応させた。エーテルおよび 4% 炭酸水素ナトリウム水溶液と振り無水硫酸マグネシウムで乾燥後、溶媒を留去してN−t−ブトキシカルボニル−L−2−アミノ−6−ブロモへキサン酸及びN−t−ブトキシカルボニル−D−2−アミノ−6−ブロモへキサン酸エチルを得た。その後4%炭酸水素ナトリウム水溶液をクエン酸で酸性とした後、析出油状物を酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去してN−t−ブトキシカルボニル−L−2−アミノ−6−ブロモへキサン酸を油状で得た。収量 : 8.0 g、収率 : 89%、 Rf値 : 0.55(CHCl3 / MeOH / AcOH = 90 : 10 : 2)。
(5)L−ピペコリン酸の合成
N−t−ブトキシカルボニル−L−2−アミノ−6−ブロモへキサン酸 (1.24 g, 4.0 mmol) を室温で2時間、2MHCl/ジオキサン(20ml, 10当量)(溶媒)で処理し、次いで溶媒を留去した後、DMF (10 ml) に溶解し氷冷下でトリエチルアミン (8 mmol, 1.1 ml) を加えてpHを 8.0 に調整し 5 時間反応させた。塩をろ過後、反応液を酢酸で中和、濃縮してアセトンを加え L−ピペコリン酸の白色結晶として得た。収量 : 494 mg、収率 : 95%。
【0027】
(実施例4)
N−アシル−D−2−アミノ−6−ハロゲノへキサン酸の合成と脱アシル基による D−ピペコリン酸の合成
(1)N−t−ブトキシカルボニル−D−2−アミノ−6−ブロモへキサン酸の合成
N−t−ブトキシカルボニル−D−2−アミノ−6−ブロモへキサン酸エチル (4.63 g, 13.6 mmol) をエタノール(20 ml)に溶解し、氷冷下で 2 N 水酸化ナトリウム水溶液 (7 ml) を30 分毎に 5 回に分けて加えた。3 時間後、反応溶液を濃縮しエーテルおよび4% 炭酸水素ナトリウム水溶液と振った。4% 炭酸水素ナトリウム水溶液をクエン酸で酸性とした後、析出油状物を酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を留去してN−t−ブトキシカルボニル−D−2−アミノ−6−ブロモへキサン酸を油状で得た。収量 : 4.33 g、収率 : 100%、 Rf値 : 0.55(CHCl3 / MeOH / AcOH = 90 : 10 : 2)。
(2)D−ピペコリン酸の合成
N−t−ブトキシカルボニル−D−2−アミノ−6−ブロモへキサン酸 (4.33 g, 14.0 mmol) を室温で2時間、2MHCl/ジオキサン(20ml, 10当量)(溶媒)で処理した後、溶媒を留去し、次いで、DMF (15 ml) に溶解し氷冷下でトリエチルアミン (28 mmol, 3.92 ml) を加えてpHを 8.0 に調整し 5 時間反応させた。塩をろ過後、反応液を酢酸で中和、濃縮してアセトンを加え D−ピペコリン酸の白色結晶として得た。収量 : 1.71 mg、収率 : 94%
【0028】
【発明の効果】
請求項1に記載のピペコリン酸の製造方法によれば、高純度に光学分割されたピペコリン酸を高収率で低原価で製造することができる。
【0029】
請求項2に記載のピペコリン酸の製造方法によれば、請求項1記載の効果に加えて、高純度の光学活性ピペコリン酸を高収率で得ることができ生産性に優れる。
【0030】
請求項3に記載のピペコリン酸の製造方法によれば、請求項1又は2に記載の効果に加えて、光学活性なピペコリン酸を高収率で得ることができ、高い生産性で低原価でD−および L−ピペコリン酸を量産することができる。
【0031】
請求項4に記載のピペコリン酸の製造方法によれば、請求項1乃至3の内いずれか1項に記載の効果に加えて、L−ピペコリン酸を抽出した残溶液を有効に用いて、付加価値の高い D−ピペコリン酸を無駄なく生成でき、生産性に優れたピペコリン酸製造システムを構成することができ、特殊なイミノ酸である光学活性なピペコリン酸の供給不足に対応して両光学異性体の供給を容易化して医療開発研究などを押し進めることができる。
【0032】
請求項5に記載のピペコリン酸の製造方法によれば、請求項1乃至3の内いずれか1項に記載の効果に加えて、D−ピペコリン酸を抽出した残溶液を有効に用いて、付加価値の高いL−ピペコリン酸を無駄なく生成でき、生産性に優れたピペコリン酸製造システムを実現できる。
【0033】
請求項6に記載のピペコリン酸の製造方法によれば、請求項3乃至5に記載の効果に加えて、比較的安価で入手しやすいアセタミドマロン酸ジエチルを出発原料として、ピペコリン酸製造のため中間体となるDL−N−アセチル−2−アミノ−6−ブロモへキサン酸を制御しやすい容易な工程で効率的に製造することができ、生産性や経済性に優れた製造システムを構築できる。
【0034】
請求項7に記載のピペコリン酸の製造方法によれば、保護基の脱着に伴う分子内環化反応によってピペコリン酸を有効に生成することができる。すなわち、アミノ酸誘導体の保護基を所定の条件下で脱着させ、これに続く分子内環化反応によってピペコリン酸を効率的に生成でき、L−ピペコリン酸および D−ピペコリン酸並びにそれらの誘導体を個別かつ、安価に製造できる。
【0035】
請求項8に記載のピペコリン酸の製造方法によれば、請求項7記載の効果に加えて、光学活性のピペコリン酸を得るために必要な脱着条件や加水分解条件を適正に保持させることができ、高純度のピペコリン酸を高収率で得ることができ、保護基を有するアミノ酸誘導体を用いて、工業的な規模でのピペコリン酸製造を可能にする。
【0036】
請求項9に記載のピペコリン酸の製造方法によれば、請求項7又は8に記載の効果に加えて、光学活性ピペコリン酸( D−ピペコリン酸、L−ピペコリン酸)製造の際に(1)N−保護−L−2−アミノ−6−ブロモへキサン酸や(2)N−保護−D−2−アミノ−6−ブロモへキサン酸を中間原料として、効率的な生産システムを構成することができ、医薬品原料となるような光学活性ピペコリン酸を安価に提供できる。
【図面の簡単な説明】
【図1】L− または D−ピペコリン酸を含む生理活性天然物および医薬品の例
【図2】N−アセチル−DL−2−アミノ−6−ブロモへキサン酸の合成のフローチャート
【図3】L−アミノアシラーゼの作用による L−ピペコリン酸の合成反応および D−アミノアシラーゼの作用による D−ピペコリン酸の合成反応のフローチャート
【図4】脱着可能保護基を用いる場合のプロテアーゼ作用を含む L− および D−ピペコリン酸の合成法のフローチャート
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing pipecolic acid, which can mass-produce L-pipecolic acid and D-pipecolic acid at low cost.
[0002]
[Prior art]
Optically active pipecolic acid is a compound that is included as a component of various useful physiologically active substances that exist naturally as shown in FIG. 1 and is also an important raw material for synthetic pharmaceuticals. Constituents of natural substances include FK506 (immunosuppressant), Rapamicin (immunosuppressant) and Trapoxin A (HDAC inhibitor), and synthetic drugs include VX710 (anticancer agent) and Bupivacaine (local anesthetic). Can be Natural products containing L-pipecolic acid include Cyl-2 (Non-Patent Document 1) and Sandramycin (Non-Patent Document 2).
Furthermore, L-pipecolic acid is introduced as a constituent element in compounds that are artificially designed and have useful pharmacological activity. For example, VX710 (Non-patent document 3) and L-365, 209 (Non-patent document 4) are mentioned.
Natural products containing D-pipecolic acid include, for example, Trapoxin A (Non-Patent Document 5) and Apicidin (Non-Patent Document 6).
When trying to develop and manufacture new drugs having various pharmacological activities based on these structures, L-pipecolic acid or D-pipecolic acid is necessary for assembling the molecular structure. It has been difficult to obtain the acid, pipecolic acid, as a completely optically active substance at low cost, which has been a bottleneck in drug discovery. Over the past two decades, many attempts have been made to synthesize and produce the required optically active pipecolic acid, mainly for elucidating the correlation between the physiological activity and structure of natural products.
[0003]
(1) For example, as a method for producing pipecolic acid (Non-patent Document 7), a method for deriving L- or D-lysine or other amino acids is used, and for (Non-patent Document 8), an enzyme is used. For example, a method using acylase in the presence of lipase, amidase or vinyl butyrate is described.
(2) (Patent Document 1) and (Non-Patent Document 9) disclose that relatively inexpensive DL-pipecolic acid is reacted with tartaric acid, a chiral palladium binuclear complex, or O-phenyllactic acid, and is subjected to optical separation by fractional precipitation. A resolution method is disclosed, in which DL-pipecolic acid is reacted with an optically active phenoxypropionic acid in a mixture medium, and the resulting sparingly soluble diastereomer salt is dissolved or suspended in water and the equivalent or A method for producing optically pure D-pipecolic acid or L-pipecolic acid by metathesis by adding an excess acid is described.
(3) (Non-Patent Document 10) attempts to use an asymmetric synthesis method such as using an asymmetric catalyst or introducing an asymmetric point. A method for forming a piperidine ring using an intramolecular SN2 reaction of amines to alkyl is described.
(4) (Non-Patent Document 12) proposes a method in which L-lysine is used as a raw material and two kinds of enzymes (lysine 6-aminotransferase and L-Δ1-piperideine 6-carboxylate reductase) are applied.
[0004]
[Non-patent document 1]
(Hirota, A., Suzuki, A., Aizawa, K., and Tamura, S. (1973). Structure of Cyl-2, anovectrom.com.com. , Rapamycin (Vezina, C., Kudelski, A., and Sehgal, SN (1975). Rapamycin (AY-22, 989), a new antimicrobial antibiotic antioxidant antibiotics. principal.J. Antibiot. 28, 721-726), FK506 (Tanaka, H., Kuroda, A., Marusawa, H., Hatanaka, H., Kino, T., Goto, T., and Hashimoto, 87). Structure of FK506: a novel immunosuppressed isolated from Streptomyces. J. Am. Chem. Soc. 109, 5031-5033)
[Non-patent document 2]
(Boger, D.L., Chen, JH, and Saionz, KW (1996). (-)-Sandramycin: Total synthesis and characterization of DNA binding proofing. , 1629-1644)
[Non-Patent Document 3]
(Germann, U.A., Shlyakhter, D., Mason, V.S., Zelle, R.E., Duffy, J.P., Galullo, V., Armistad, D.M., Saunders. O., Boger, J., and Harding, M. W. (1997) Cellular and biochemical characterization of VX-710 as a chemosensitizer:.. Reversal of P-glycoprotein-mediated multidrug resistance in vitro Anticancer Drugs 8, 125-140 ), Bupivacaine (Adger, B., Dyer, U., Hut) on, G., and Woods, M. (1996). Stereospecific synthesis of the anaesthetic levobupivacaine. Tetrahedron Lett. 37, 6399-6402),
[Non-patent document 4]
(Pettibone, DJ, Clineschmidt, BV, Anderson, PS, Freidinger, RM, Lundell, GF, Koupal, L.R., Schwartz, C.W. Williamson, J.M., Goetz, M.A., Hensens, O.D., Liesch, J.M., and Springer, J.P. (1989). from Streptomyces silvensis. Endocrinology 125, 217-222)
[Non-Patent Document 5]
(Itagaki, H., Nagashima, K., Sugita, K., Yoshida, H., Kawamura, Y., Yasuda, Y., Matsumoto, K., Ishii, K., N.K., K., N., K., K., K., K., K., K., K., K., N., K., K., N., K., K., K., K., K., K., K., Ishii, K., K., K., K., K., Ishii, K., K., K., Ishii, K., K., Ishii, K., Nishi, K., K., Ishii, K., K., Ishii, K., K., Ishii, K., Ishii, K., Ishii, K., Ishii, K., Ishii, K., Ishii, K., Ishii, K., Ishii, K.I. , Terui, A., and Yoshimatsu, S. (1990). Isolation and structural elucidation of new cyclotetrapeptides, Trapoxins A and B, having detransformation activities as antitumor agents. J. Antibiotics 43, 1524-1532)
[Non-Patent Document 6]
(Darkin-Rattray, SJ, Gurnett, A.M., Myers, R.W., Dulski, P.M., Crumley, T.M., Allocco, J.J., Cannova, C., Meinke, PT, Colletti, SL, Bednarek, M.A., Singh, S.B., Goetz, M.A., Dombrowski, A.W., Polishook, J.D. Schmatz, DM (1996) Apicidin: A novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc. Natl. Acad. , Singh, SB, Zink, DL, Liesch, JM, Mosley, RT, Dombrowski, AW, Bills, GFF, Darkin-Rattray, S.T. ., Schmatz, D. M., and Goetz, M. A. (2002). Structure and chemistry of apicidins, a class of novel cyclic tetrapeptides without a terminal a-keto epoxide as inhibitors of histone deacetylase with potent antiprotozoal activities. J Org. Chem. 67, 815-825).
[Non-Patent Document 7]
(Fujii, T. and Miyoshi, M. (1975). A novel synthesis of L-pipecolic acid. Bull. Chem. Soc. Jpn. 48, 1341-1342; Kisdal, Kisdal. One-step synthesis of L-piperidine-2-carboxylic acid. Synthesis 9, 163; Ohtani, B., Tsuru, S., Nishimoto, S., N., and a. Cyclic imino acids by aqueous semiconductor su J. Org. Chem. 55, 5551-5553).
[Non-Patent Document 8]
(Ng-Youn-Chen, MC, Serreqi, AN, Huang, QL, and Kazlauskas, RJ (1994). Kinetic resolution erosion guidance pediatric amica diponic acidification radicolysis pidalicoradicolysis, pi. J. Org.Chem.59, 2075-2081; Eichhorn, E., Roduit, J., Shaw, N., Heinzmann, K., and Kidner, A. (1997). 2-carboxylic acid, (R) -piperazine-2-carboxylic acid, and ( . S) -piperidine-2-carboxylic acid by kinetic resolution of the corresponding racemic carboxamides with stereoselective amidases in whole bacterial cells Tetrahedron:. Asymmetry 8, 2533-2536; Sanchez-Sancho, F. and Herradon, B. (1998) Short syntheses of (S) -pipecolic acid, (R) -coninee, and (S) -d-coneinee using biocatalytically-generalized chiral building block. . Tetrahedron: Asymmetry 9, 1951-1965)
[Non-Patent Document 9]
(Portogese, P.S., Pazdernik, T.L., Kuhn, W.L., Hite, G., Shafi'ee, A. (1968) Stereochemical slogistics on medical physic. J. Med. Chem. 11, 12-15; activity of pi pradrol enantiomers; Hardtmann, GE, Houlihan, WJ, and git ol, ti, ut, ti, ut, ti, ti, ut, ti, ut, ti, and so on. having tranqui US Patent 4760065; Hochless, DCR, Mayadune, RC, and Wild, SB (1995). ) -Pipecolic acid) by separation of palladium (II) diastereomers containing orthometallated (S)-(-)-1- (1- (Dimethylamino) ethyl1 phthalanethanol.
[Non-Patent Document 10]
(Berien, JF, Royer, J., Husson, HP (1994). Asymmetric synthesis. 32. A new access to enantiomerically pure (S)-(-)-pidicolicolic acid). J. Org. Chem. 59, 3769-3774; Foti, C., J. and Commins, D.L. (1995). Synthetic and reference reactions of refaction-of-reactions-of-reactions-of-reaction-of-reactions. Org.Chem.60, 2656-265. Agami, C., Kadouri-Puchot, C., and Kizirian, J.C. (2000) A new enantioselective synthesis of (2S) -pipelic acid.30th. , Pericas, MA, Riera, A. (2002) Straightforward entry to the pipecolic acid nucleus, Enantioselective synthesizing of the biopsy.
[Non-Patent Document 11]
(Fernandez-Garcia, C., and McKervey, M.A. (1995). A short enantioselective synthesis of piperic acid, Acid. Gy. A. Gy. John, T., and Kung, D.W. (1997) Highly practical methodology for the synthesis of D-and L-amino acids, N-protected amines, N-protected amines. Soc.119, 656-673; Ko, S., Perez, R. J., Brieva, R., and Gotor, V. (1998) Chemoenzymatic synthesis of (S) -2-cyanoepidemic edipea epidemate and 2-substituted pipeline alkaloids. Tetrahedron: Asymmetry 9, 1597-1604).
[Non-Patent Document 12]
(Agematsu, H., and Fujii, T. (2002). Production of L-pipecolic acid by recombinant Escherichia coli at an industrial scale.
[0005]
[Patent Document 1]
JP 2000-178253 A
[0006]
[Problems to be solved by the invention]
However, the conventional technique has the following problems.
(A) The method for deriving from an amino acid such as lysine described in Non-Patent Document 7 requires a selective reaction of amino groups at the α-position and ε-position. Since there are many side reactions, the yield is low, the purity is low, there is a problem in operation such as the use of reagents is dangerous, and there has been a problem that it is difficult to supply inexpensively.
(B) The method using acylase in the presence of lipase, amidase or vinyl butyrate described in Non-Patent Document 8 is a practical production method because of insufficient diastereomeric selectivity. However, there is a problem that it is insufficient in terms of improving the efficiency in terms of application of the stereospecificity of the enzyme.
(C) In the fractional precipitation method described in Patent Literature 1 and Non-Patent Literature 9 and the like, since optical resolution is performed using DL-pipecolic acid as a raw material, it is necessary to separately prepare an optical isomer and recover it after use. And it was inefficient.
(D) In the asymmetric synthesis method described in Non-Patent Document 10, the reagent itself for introducing an asymmetric point is expensive, and the scale is at the laboratory level. There was a problem that it was difficult.
(E) In the method of forming a piperidine ring using the intramolecular SN2 reaction of amines described in Non-Patent Document 11, the yield is low without direct pipecolic acid because it is limited to the piperidine ring, In addition, since it is not an optical resolution method using an enzyme, unnecessary diastereomers are also produced as by-products, and there is a problem that it is difficult to obtain high-purity products.
(F) The method of Non-Patent Document 12 in which L-lysine is used as a raw material and two kinds of enzymes are used uses an enzyme having L-form stereospecificity, and also has D-form stereospecificity. Similarly, there has been a problem that the enzyme cannot be applied to the production of D-pipecolic acid because the enzyme has not been developed.
[0007]
The present invention has been made in order to solve the above-mentioned conventional problems, and an object of the present invention is to provide a method for producing pipecolic acid which can supply pipecolic acid optically resolved to high purity in high yield and at low cost. I do.
[0008]
[Means for Solving the Problems]
The method for producing pipecolic acid according to claim 1, wherein the step of adjusting comprises adding an aminoacylase to a racemic solution of an amino acid derivative having a halogen group at a side chain terminal, and the solution comprising the step of: And an extraction step of solvent-extracting the optically active pipecolic acid from the solution by generating an optically active pipecolic acid by the enantiomer-specific action of the aminoacylase.
As a result, pipecolic acid optically resolved to high purity can be produced in high yield and at low cost. That is, the amino acid derivative having a halogen group at the side chain terminal is reacted with an optically active aminoacylase to hydrolyze the amino acid derivative in an enantiomer-specific manner, and the optically active pipecolic acid is converted by an intramolecular cyclization reaction that occurs immediately thereafter. It can be generated efficiently.
[0009]
Here, as the amino acid derivative, a racemic substance capable of intramolecularly cyclizing to produce pipecolic acid by enantiomeric-specific hydrolysis by an aminoacylase such as DL-N-acetyl-2-amino-6-bromohexanoic acid or the like, A solution obtained by optically resolving a racemic body can be applied.
The halogen group is for inducing elimination by inducing an intramolecular cyclization reaction of the amino acid derivative, and alkyl or allyl sulfonic acid ester in addition to halogen elements such as bromine, chlorine, and iodine can be applied. In addition, the side chain terminal of an amino acid derivative refers to the terminal of an atomic group extended from α-carbon in the amino acid derivative.
Aminoacylase is an enzyme that is extracted from a microorganism or the like and hydrolyzes an amide bond of an amino acid derivative, and includes Aspergillus genus L-aminoacylase, alkaline genus xylose oxydans (Alcaligenes xylosoxydans) D-aminoacylase, and the like. .
The intramolecular cyclization reaction is a reaction in which an amino acid derivative is self-cyclized to generate a special imino acid as illustrated in FIG. The amino acid derivative can be self-cyclized by being hydrolyzed by the action of aminoacylase while maintaining the conditions for the intramolecular cyclization reaction. That is, optically active pipecolic acids (L-pipecolic acid and D-pipecolic acid) can be produced by enzymatic enantiomer-specific hydrolysis of aminoacylase and an intramolecular cyclization reaction accompanying the hydrolysis.
[0010]
In the method for producing pipecolic acid according to claim 2, in the invention according to claim 1, the conditions for the intramolecular cyclization reaction are such that the racemic solution has a pH of 6 to 9, a temperature of 20 to 50 ° C, and a retention time of It is configured to be 10-30 hours.
Thereby, enantiomer-specific hydrolysis by aminoacylase and the accompanying intramolecular cyclization reaction can be properly maintained, and high-purity optically active pipecolic acid can be obtained in higher yield.
Here, when the pH of the racemic solution is lower than 6, the reaction rate of the specific hydrolysis tends to decrease, and when the pH exceeds 9, the aminoacylase is denatured and optically active pipecolic acid is effectively used. This is not preferred because a tendency to become impossible appears.
When the temperature in the racemic solution is lower than 20 ° C., the reaction rate tends to be extremely reduced. Conversely, when the temperature is higher than 50 ° C., aminoacylase is denatured and optically active pipecolic acid can be effectively obtained. It is not preferable because it tends to be impossible.
When the retention time of the intramolecular cyclization reaction in the solution is shorter than 10 hours, the reaction rate of the specific hydrolysis tends to decrease, and when the retention time is longer than 30 hours, aminoacylase is denatured and the optical activity is reduced. It is not preferable because there is a tendency that the effective pipecolic acid cannot be obtained effectively.
[0011]
The method for producing pipecolic acid according to claim 3 is the method according to claim 1 or 2, wherein the amino acid derivative is DL-N-acetyl-2-amino-6-bromohexanoic acid, DL-N-acetyl. -2-amino-6-chlorohexanoic acid, DL-N-acetyl-2-amino-6-iodohexanoic acid, DL-N-acetyl-2-amino-6-methanesulfoxyhexanoic acid, DL-N- A racemic form of any one of acetyl-2-amino-6-tosyloxyhexanoic acid, wherein the aminoacylase is Aspergillus genus L-aminoacylase or Alcaligenes xylosoxydans D-. It is configured to be an aminoacylase.
Thereby, optically active pipecolic acid can be obtained in high yield, and D- and L-pipecolic acid can be produced easily and in good yield using an amino acid derivative obtained by optical resolution using an enzyme as an intermediate. Can be.
Here, as the L-aminoacylase, (Aspergillus genus, Thermococcus eitoralis) and acylase I (porcine watermelon, Aspergillus melleus) can also be used in addition to the above.
[0012]
The method for producing pipecolic acid according to claim 4 is the method according to any one of claims 1 to 3, wherein the L-pipecolic acid is extracted and removed from the remaining solution by the extraction step. A step of recovering 2-amino-6-bromohexanoic acid, and adding an alkaline genus xylose oxydans (D-aminoacylase) to the recovered D-acetyl-2-amino-6-bromohexanoic acid. Deacetylation by its D-enantiomer-specific action and intramolecular cyclization to produce D-pipecolic acid.
This makes it possible to effectively use the residual solution from which L-pipecolic acid has been extracted to produce high-value-added D-pipecolic acid without waste, and to configure a pipecolic acid production system with excellent productivity. In response to a shortage of supply of optically active pipecolic acid, which is an imino acid, the supply of both optical isomers can be facilitated to promote medical research and development.
[0013]
The method for producing pipecolic acid according to claim 5 is the method according to any one of claims 1 to 3, wherein L-acetyl- from the residual solution from which D-pipecolic acid has been extracted and removed in the extraction step. Recovering 2-amino-6-bromohexanoic acid, adding Aspergillus genus L-aminoacylase to the recovered L-acetyl-2-amino-6-bromohexanoic acid, Deacetylation by the L-enantiomer-specific action and intramolecular cyclization to produce L-pipecolic acid.
This makes it possible to effectively use the residual solution from which D-pipecolic acid has been extracted, to produce L-pipecolic acid with high added value without waste, and to realize a pipecolic acid production system with excellent productivity.
[0014]
The method for producing pipecolic acid according to claim 6 is the method according to any one of claims 3 to 5, wherein the DL-N-acetyl-2-amino-6-bromohexanoic acid is acetamide malonone. Reacting diethyl acetate with 1,4-dibromobutane to form diethyl acetamide-4-bromobutylmalonate; semi-saponifiing the acetamide-4-bromobutylmalonic acid, heating and decarboxylating the DL-N- Steps of obtaining ethyl acetyl-2-amino-6-bromohexanoate and steps of saponifying and crystallizing the ethyl DL-N-acetyl-2-amino-6-bromohexanoate are sequentially performed to produce the compound. It is configured to be.
This makes it easy to control DL-N-acetyl-2-amino-6-bromohexanoic acid, which is an intermediate for producing pipecolic acid, using diethyl acetamide malonate, which is relatively inexpensive and easily available, as a starting material. In this way, the manufacturing system can be efficiently manufactured, and a manufacturing system having excellent productivity can be constructed.
Here, the semi-saponification condition is a condition in which a little more than one equivalent of an alkali is added to acetamide-4-bromobutylmalonic acid under ice-cooling, and the condition of heat decarboxylation is the addition of a toluene or ethyl acetate solution. This is a condition for heating and refluxing.
[0015]
The method for producing pipecolic acid according to claim 7, wherein the urethane-type protecting group capable of protecting the halogen group at the time of desorption such as a t-benzyloxycarbonyl group, a t-butoxycarbonyl group and the like and being removable under mild conditions is an amino group. A solution of an amino acid derivative having a halogen group at a side chain terminal bonded to a group is maintained under the conditions for desorption of the protective group, and pipecolic acid is generated by an intramolecular cyclization reaction of the amino acid derivative accompanying the desorption. Is configured.
As a result, pipecolic acid can be effectively produced by an intramolecular cyclization reaction accompanying the desorption and hydrolysis of the protecting group. That is, as illustrated in FIG. 4, the protecting group of the amino acid derivative (the portion of the t-butoxycarbonyl group that modifies the amino group) is hydrolyzed under predetermined conditions, and the subsequent intramolecular cyclization reaction causes pipecolic acid to react. Is generated efficiently. Thus, L-pipecolic acid and D-pipecolic acid and their derivatives can be supplied individually and inexpensively.
The protecting group is a functional group introduced to protect the amino group of the amino acid derivative during the reaction with dibromobutane, and is used to suppress the reaction of the amino group with the bromo-bonded carbon until immediately before the intramolecular cyclization reaction. It is a protecting group, such as a benzyloxycarbonyl group or a t-butoxycarbonyl group.
[0016]
In the method for producing pipecolic acid according to claim 8, in the invention according to claim 7, the conditions for desorption of the protecting group are hydrogenation reaction conditions using palladium charcoal as a catalyst at room temperature or dioxane solution containing hydrogen chloride. Alternatively, it is configured to be a desorption reaction condition in an ethyl acetate solution.
This makes it possible to appropriately maintain the desorption conditions necessary for obtaining optically active pipecolic acid, to obtain pipecolic acid having a high purity of nearly 100% in a high yield of 80 to 90%, and to provide a protective group. The production of pipecolic acid on an industrial scale is enabled using an amino acid derivative having the following formula:
Here, the concentration of hydrogen chloride is about 2 equivalents to the amino acid derivative at 2 molar concentration.
[0017]
The method for producing pipecolic acid according to claim 9 is the method according to claim 7 or 8, wherein the amino acid derivative is (1) N-protected-L-2-amino-6-bromohexanoic acid or (2 A) N-protected-D-2-amino-6-bromohexanoic acid, wherein (1) said N-protected-L-2-amino-6-bromohexanoic acid is N-benzyloxycarbonyl-amino An aminomalonic acid derivative having a protecting group such as diethyl malonate or Nt-butoxycarbonyl-aminomalonate is reacted with 1,4-dibromobutane to give N-protected diethylamino-4-bromobutylmalonate. After the formation, the mixture is hemi-saponified by adding dilute strong alkaline water under ice-cooling, and then thermally decarboxylated to obtain DL-N-protected ethyl 2-amino-6-bromohexanoate, which is proteolytically decomposed. It is produced by the hydrolysis of an enzyme or esterase,
(2) The N-protected-D-2-amino-6-bromohexanoic acid is recovered from the solution after the formation of the N-protected-L-2-amino-6-bromohexanoic acid. Protection- It is configured to be produced by saponifying ethyl D-2-amino-6-bromohexanoate by adding a diluted strong alkaline water under ice-cooling.
Thus, when producing optically active pipecolic acid (D-pipecolic acid, L-pipecolic acid), (1) N-protected-L-2-amino-6-bromohexanoic acid or (2) N-protected-D An efficient production system can be constructed using -2-amino-6-bromohexanoic acid as an intermediate raw material, and optically active pipecolic acid to be used as a pharmaceutical raw material can be mass-produced at low cost.
Here, the mild condition refers to a condition in which the reaction holding temperature of the amino acid derivative is 0 ° C. or lower, whereby the degree of semi-saponification and the degree of saponification can be controlled.
As the proteolytic enzyme, chymotrypsin, subtilisin, alkaline protease having ester-degrading action, and esterase having strict stereospecificity are preferably used.
As the diluted strong alkaline water, an approximately 0.1 N solution of sodium hydroxide, potassium hydroxide or the like is used.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors accidentally produce pipecolic acid during the development of an anticancer agent led by a biologically active natural product containing L-pipecolic acid and D-pipecolic acid as constituents, and during the development of a special artificial amino acid. A side reaction was discovered. We thought that this reaction could be used to easily produce new L-pipecolic acid and D-pipecolic acid and their derivatives, and as a result of intensive research to solve the above problems, FIG. As shown, a racemic amino acid derivative having a halogen group at a side chain terminal is quantitatively determined by the action of Aspergillus genus L-aminoacylase and alkaline genus xylose oxydans (Alcaligenes xylosoxydans) D-aminoacylase. It was confirmed that pipecolic acid and D-pipecolic acid were produced. In addition, the amino group is protected with a protecting group such as a urethane type, and a racemic 2-aminohexanoic acid ester having a halogen group and an alkylsulfoxy group at a side chain terminal is converted into subtilisin, chymotrypsin, acidic protease (Aspergillus niger), After the treatment with a protease such as a neutral protease (Aspergillus oryzae, Bacillus subtilis) or an alkaline protease (Bacillus subtilis, Aspergillus melleus, Bacillus lichenifomis), the phosphoric acid generated during the removal of the protecting group and the L-pi-phosphoric acid simultaneously with the removal of the phosphoric acid from the phosphoric acid were removed. It was confirmed. The present inventors have found that this enzymatic enantiomer-specific hydrolysis and automatic cyclization reaction can be used for a simple method for producing L-pipecolic acid and D-pipecolic acid, and completed the present invention.
That is, the present invention includes the following methods for producing L-pipecolic acid and D-pipecolic acid.
[1] A method of preparing N-acetyl-DL-2-amino-6-halogenohexanoic acid as a raw material from diethyl acetamide malonate.
[2] A method of producing L-pipecolic acid and D-pipecolic acid by allowing Aspergillus genus L-aminoacylase to act on the L-form in the racemic form and Alcaligenes xylosoxydans D-aminoacylase to act on the D-form.
[3] A method in which a protease is allowed to act on an N-acyl-DL-2-amino-6-halogenohexanoic acid ester, and then the acyl group is removed and simultaneously L-pipecolic acid is produced.
[4] A method of producing D-pipecolic acid or a derivative thereof from the recovered DN-acyl-2-amino-6-halogenohexanoate by deprotection.
[0019]
That is, the outline of the present embodiment is as follows.
Diethyl acetamide malonate and 1,4-dibromobutane are reacted by a conventional method, and the saponification reaction is performed twice under mild conditions, and the obtained N-acetyl-DL-2-amino-6-hexanoic acid is converted to L-aminoacylase. , L-2-amino-6-bromohexanoic acid produced by enzyme-specific optical resolution is immediately converted to L-pipecolic acid in the reaction solution. Subsequently, D-aminoacylase is further allowed to act on N-acetyl-D-2-amino-6-hexanoic acid which is quantitatively recovered, and D-pipecolic acid can be obtained in the same manner.
[0020]
On the other hand, as shown in FIG. 4, when a detachable protecting group such as Nt-butoxycarbonyl-diethylaminomalonate is used, it is similarly reacted with 1,4-dibromobutane to form Nt-butoxycarbonyl. Ethyl Nt-butoxycarbonyl-DL-2-amino-6-bromohexanoate obtained through the steps of semi-saponification and decarboxylation in the same manner as described above to obtain diethyl 2-amino-4-bromobutylmalonate Is treated with Nt-butoxycarbonyl-L-2-amino-6-bromohexanoic acid by enzymatic and stereospecific hydrolysis of ethyl ester when treated with a proteolytic enzyme such as subtilisin or esterase. Ethyl Nt-butoxycarbonyl-D-2-amino-6-bromohexanoate is obtained. Both are easily separable. Ethyl Nt-butoxycarbonyl-D-2-amino-6-bromohexanoate was further saponified in ethanol under ice-cooling to quantitatively determine Nt-butoxycarbonyl-D-2-amino-6. -Convert to bromohexanoic acid. When Nt-butoxycarbonyl-L-2-amino-6-bromohexanoic acid is treated with an acid and then neutralized, the formed L-2-amino-6-bromohexanoic acid automatically undergoes an intramolecular cyclization reaction. To produce L-pipecolic acid. Similarly, D-pipecolic acid is obtained.
[0021]
When a benzyloxycarbonyl group is used as an acyl-protecting group for diethyl aminomalonate, N-benzyloxycarbonyl-L-2-amino-6-bromohexanoic acid can be catalytically reduced in methanol in the presence of a catalyst such as palladium. The generated L-2-amino-6-bromohexanoic acid automatically generates L-pipecolic acid by an intramolecular cyclization reaction. N-Benzyloxycarbonyl-D-2-amino-6-bromohexanoic acid similarly provides D-pipecolic acid. Protecting groups other than the t-butoxycarbonyl group, which can be gently removed, such as a benzyloxycarbonyl group, can also be used. Further, esters other than ethyl ester may be used.
[0022]
In the present embodiment, the amino-protecting group of 2-amino-6-halogenohexanoic acid includes, in addition to the acetyl group, other substituted acyl groups and urethane-type acyl groups. This is because an equivalent action can be obtained. It is sufficient that L-aminoacylase and D-aminoacylase have sufficient enantiomer-specific (optical specificity, stereospecificity) hydrolysis activity. As long as the enzyme having esterase activity has sufficient enantiomer-specific (optical specificity, stereospecificity) hydrolysis activity, the type of the target ester and the specificity of the original enzymatic reaction do not matter.
[0023]
As described above, the method for producing pipecolic acid according to the present embodiment comprises allowing Aspergillus genus L-aminoacylase to act on DL-N-acetyl-2-amino-6-bromohexanoic acid, followed by optical resolution by the enzyme. L-pipecolic acid, which rapidly causes an intramolecular cyclization reaction, is produced. Further, when the DN-acetyl-2-amino-6-bromohexanoic acid recovered from this reaction is further treated with Alcaligenes xylosoxydans D-aminoacylase, D-pipecolic acid is obtained similarly. By utilizing the enzymatic resolution of a racemic amino acid having a bromoalkyl group in the side chain, an excellent production system capable of synthesizing L- and D-pipecolic acid with high purity and high yield can be constructed.
[0024]
Hereinafter, the present invention will be described in more detail with reference to the drawings using examples. However, the present invention is not limited to the following examples.
(Example 1)
FIG. 2 shows an outline of the synthesis of N-acetyl-DL-2-amino-6-bromohexanoic acid.
(1) Synthesis of diethyl acetamide-4-bromobutylmalonate
In a 300 ml eggplant flask, metallic sodium (2.19 g, 95 mmol) was added to dehydrated ethanol (100 ml), and the mixture was stirred for 30 minutes. Then, diethyl acetamide malonate (21.08 g, 100 mmol) was added, and the mixture was heated for 30 minutes (120). C) under stirring. Thereto was added 1,4-dibromobutane (59 ml, 500 mmol), and the mixture was refluxed for 5 hours. After cooling, acetic acid (0.29 ml, 5 mmol) was added, and ethanol and 1,4-dibromobutane were distilled off. After the target substance was extracted with ethyl acetate (300 ml), it was purified by silica gel chromatography (φ4.7 cm × 17 cm, ethyl acetate / hexane = 1: 1). The solvent was distilled off to obtain white crystals of diethyl acetamide-4-bromobutylmalonate. Yield: 26.2 g, Yield: 73%, Rf value: 0.82 (CHCl3 / MeOH = 9: 1).
(2) Synthesis of monoethyl acetamido-4-bromobutylmalonate
Diethyl acetamido-4-bromobutylmalonate (26.2 g, 74.4 mmol) was dissolved in ethanol (80 ml), and a 2N aqueous sodium hydroxide solution (40 ml) was added every 30 minutes under ice-cooling for 5 minutes. Added in batches. After 3 hours, the reaction solution was concentrated and shaken with ether and 4% aqueous sodium bicarbonate. After neutralizing and acidifying a 4% aqueous sodium hydrogen carbonate solution with citric acid, the precipitated oil was extracted with ethyl acetate. The ethyl acetate layer was washed with saturated saline and dried over anhydrous magnesium sulfate, and the solvent was distilled off to obtain white crystals of monoethyl acetamido-4-bromobutylmalonate. Yield: 20.4 g, Yield: 85%, Rf value: 0.64 (CHCl3 / MeOH / AcOH = 90: 10: 10: 2).
(3) Synthesis of ethyl N-acetyl-DL-2-amino-6-bromohexanoate
Monoethyl acetamido-4-bromobutylmalonate (20.4 g, 63.1 mmol) was dissolved in ethyl acetate (100 ml), and the mixture was heated under reflux for 3 hours in toluene or ethyl acetate to perform decarboxylation. The solution was concentrated, dissolved in ether, and washed with a 4% aqueous sodium hydrogen carbonate solution and saturated saline. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain an oily ethyl N-acetyl-DL-2-amino-6-bromohexanoate. Yield: 17.0 g, Yield: 97%, Rf value: 0.62 (CHCl3 / MeOH = 9: 1).
(4) Synthesis of N-acetyl-DL-2-amino-6-bromohexanoic acid
Ethyl N-acetyl-DL-2-amino-6-bromohexanoate (17.0 g, 60.9 mmol) was dissolved in ethanol (50 ml), and a 2N aqueous sodium hydroxide solution (25 ml) was added under ice cooling. ml) was added in 5 portions every 30 minutes. After 3 hours, the solution was concentrated and shaken with ether and 4% aqueous sodium bicarbonate. After neutralizing the 4% aqueous sodium hydrogen carbonate solution with citric acid to make it acidic, the target product was extracted into ethyl acetate. The ethyl acetate layer was washed with saturated saline and dried over anhydrous magnesium sulfate, and the solvent was distilled off to obtain white crystals of N-acetyl-DL-2-amino-6-bromohexanoic acid. Yield: 12.5 g, Yield: 81%, Rf value: 0.54 (CHCl3 / MeOH / AcOH = 90: 10: 2).
[0025]
(Example 2)
Next, the synthesis of L-pipecolic acid by L-aminoacylase, the recovery of N-acetyl-D-2-amino-6-bromohexanoic acid, and the synthesis of D-pipecolic acid by D-aminoacylase will be described.
FIG. 3 is a diagram showing an outline of the synthesis and the like.
(1) N-acetyl-DL-2-amino-6-bromohexanoic acid (10.3 g, 41.0 mmol) was dissolved in a 0.1 N aqueous sodium hydroxide solution (about 200 ml), and the pH was adjusted. It was adjusted to 7.0. Add CoCl to this solution 2 ・ 6H 2 O (48 mg) and Aspergillus genus L-aminoacylase (Tokyo Kasei, 2.0 g) were added and reacted at 38 ° C. for 24 hours. After the reaction solution was concentrated and adjusted to pH 3 with 1N hydrochloric acid, N-acetyl-D-2-amino-6-bromohexanoic acid was extracted with ethyl acetate. After drying over anhydrous magnesium sulfate, the solvent was distilled off to obtain N-acetyl-D-2-amino-6-bromohexanoic acid as white crystals. Yield: 4.59 g, Yield: 89%, Rf value: 0.52 (CHCl3 / MeOH / AcOH = 90: 10: 2), Rt: 13.38 min [B: 0% -100% 30min, ( A: 100% AcCN / H2O / 0.1% TFA, B: 100% AcCN / 0.1% TFA) YMC-Pack ODS-A 150 x 4.6 mm, 1 = 220 nm].
(2) Further, after the aqueous solution after extraction of N-acetyl-D-2-amino-6-bromohexanoic acid was adjusted to pH 7 with sodium hydroxide, a solution cation exchange resin (Amberlite IR-120, 200) was used. ml) and eluted with a 1 M aqueous ammonia solution. The eluate was concentrated to dryness to obtain L-pipecolic acid as white crystals. Yield: 1.84 g, Yield: 80%, [α] D: −26.3 (c 1.0, H2O), FABHRMS: [M + H] + (130.0842), C6H12O2N (130.0868).
(3) N-acetyl-D-2-amino-6-bromohexanoic acid (3.5 g, 14 mmol) was dissolved in 0.1 N aqueous sodium hydroxide solution (about 7 ml), and the pH was adjusted to 7. Adjusted to zero. Alcaligenes xylosoxydans D-aminoacylase (45 mg / 45 ml) was added to this solution, and the mixture was reacted at 38 ° C. for 3 days. After concentrating the reaction solution, it was poured into a cation exchange resin (Amberlite IR-120, 200 ml) column and eluted with a 1 M aqueous ammonia solution. The eluate was concentrated to dryness to obtain D-pipecolic acid as white crystals. Yield: 1.55 g, Yield: 85%, [α] D: +26.3 (c 1.0, H2O), FABHRMS: [M + H] + (130.0877), C6H12O2N (130.0868).
[0026]
(Example 3)
Next, the synthesis of N-acyl-DL-2-amino-6-halogenohexanoate, the action of protease and the synthesis of L-pipecolic acid by a deacyl group will be described.
(1) Synthesis of diethyl Nt-butoxycarbonyl-2-amino-4-bromobutylmalonate
In a 300 ml eggplant flask, metallic sodium (2.3 g, 100 mmol) was added to dehydrated ethanol (100 ml), and the mixture was stirred for 30 minutes. Then, diethyl Nt-butoxycarbonyl-2-aminomalonate (27.6 g, (100 mmol), and the mixture was heated and stirred for 30 minutes. 1,4-Dibromobutane (60 ml, 500 mmol) was added thereto, and the mixture was refluxed for 5 hours. After cooling, citric acid was added for neutralization, and NaBr was filtered off, and ethanol and 1,4-dibromobutane were distilled off. The desired product was extracted with ethyl acetate (300 ml), and the solvent was distilled off to obtain an oily diethyl Nt-butoxycarbonyl-2-amino-4-bromobutylmalonate. Yield: 37.0 g, Yield: 92%, Rf value: 0.90 (CHCl3 / MeOH = 9: 1).
(2) Synthesis of monoethyl Nt-butoxycarbonyl-2-amino-4-bromobutylmalonate
Diethyl Nt-butoxycarbonyl-2-amino-4-bromobutylmalonate (37.0 g, 92 mmol) was dissolved in ethanol (100 ml), and a 2N aqueous sodium hydroxide solution (46 ml) was added under ice-cooling. ) Was added in 5 portions every 30 minutes. After 3 hours, the reaction solution was concentrated and shaken with ether and 4% aqueous sodium bicarbonate. After neutralizing and acidifying a 4% aqueous sodium hydrogen carbonate solution with citric acid, the precipitated oil was extracted with ethyl acetate. The ethyl acetate layer was washed with saturated saline, dried over anhydrous magnesium sulfate, and the solvent was distilled off to obtain white crystals of monoethyl Nt-butoxycarbonyl-2-amino-4-bromobutylmalonate. Yield: 27.5 g, Yield: 80%, Rf value: 0.68 (CHCl3 / MeOH / AcOH = 90: 10: 10: 2).
(3) Synthesis of ethyl Nt-butoxycarbonyl-DL-2-amino-6-bromohexanoate
Monoethyl Nt-butoxycarbonyl-2-amino-4-bromobutylmalonate (27.5 g, 73 mmol) was dissolved in toluene (150 ml) and heated under reflux for 3 hours. The solution was concentrated and purified by silica gel chromatography (φ4.7 cm × 18 cm, ethyl acetate / hexane = 1: 8). The solvent was distilled off to obtain an oily substance of ethyl Nt-butoxycarbonyl-DL-2-amino-6-bromohexanoate. Yield: 19.3 g, Yield: 85%, Rf value: 0.70 (CHCl3 / MeOH = 9: 1).
(4) Synthesis of Nt-butoxycarbonyl-L-2-amino-6-bromohexanoic acid
FIG. 4 shows an outline of the synthesis method.
Ethyl Nt-butoxycarbonyl-DL-2-amino-6-bromohexanoate (19.3 g, 58.6 mmol) was dissolved in DMF (50 ml) and H2O (150 ml), and 1 M NH3aq was added. The pH was adjusted to 8.0 with, subtilisin (60 mg) was added, and the mixture was reacted at 37 ° C for 12 hours. After drying with ether and a 4% aqueous sodium hydrogen carbonate solution and shaking anhydrous magnesium sulfate, the solvent is distilled off to give Nt-butoxycarbonyl-L-2-amino-6-bromohexanoic acid and Nt-butoxycarbonyl-. Ethyl D-2-amino-6-bromohexanoate was obtained. Thereafter, a 4% aqueous sodium hydrogen carbonate solution was acidified with citric acid, and the precipitated oil was extracted with ethyl acetate. The ethyl acetate layer was washed with saturated saline and dried over anhydrous magnesium sulfate, and then the solvent was distilled off to obtain Nt-butoxycarbonyl-L-2-amino-6-bromohexanoic acid as an oil. Yield: 8.0 g, Yield: 89%, Rf value: 0.55 (CHCl3 / MeOH / AcOH = 90: 10: 10: 2).
(5) Synthesis of L-pipecolic acid
Treat Nt-butoxycarbonyl-L-2-amino-6-bromohexanoic acid (1.24 g, 4.0 mmol) at room temperature for 2 hours with 2M HCl / dioxane (20 ml, 10 eq) (solvent). Then, after the solvent was distilled off, the residue was dissolved in DMF (10 ml), and triethylamine (8 mmol, 1.1 ml) was added thereto under ice-cooling to adjust the pH to 8.0, followed by a reaction for 5 hours. After filtering the salt, the reaction solution was neutralized with acetic acid and concentrated, and acetone was added to obtain L-pipecolic acid as white crystals. Yield: 494 mg, yield: 95%.
[0027]
(Example 4)
Synthesis of N-acyl-D-2-amino-6-halogenohexanoic acid and synthesis of D-pipecolic acid by deacyl group
(1) Synthesis of Nt-butoxycarbonyl-D-2-amino-6-bromohexanoic acid
Ethyl Nt-butoxycarbonyl-D-2-amino-6-bromohexanoate (4.63 g, 13.6 mmol) was dissolved in ethanol (20 ml), and 2N sodium hydroxide was added under ice cooling. The aqueous solution (7 ml) was added in 5 portions every 30 minutes. After 3 hours, the reaction solution was concentrated and shaken with ether and 4% aqueous sodium bicarbonate. After acidifying the 4% aqueous sodium hydrogen carbonate solution with citric acid, the precipitated oil was extracted with ethyl acetate. The ethyl acetate layer was washed with brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off to obtain Nt-butoxycarbonyl-D-2-amino-6-bromohexanoic acid as an oil. Yield: 4.33 g, Yield: 100%, Rf value: 0.55 (CHCl3 / MeOH / AcOH = 90: 10: 10: 2).
(2) Synthesis of D-pipecolic acid
Treat Nt-butoxycarbonyl-D-2-amino-6-bromohexanoic acid (4.33 g, 14.0 mmol) with 2M HCl / dioxane (20 ml, 10 equiv) (solvent) at room temperature for 2 hours. After that, the solvent was distilled off, then dissolved in DMF (15 ml), and added with triethylamine (28 mmol, 3.92 ml) under ice-cooling to adjust the pH to 8.0 and reacted for 5 hours. After filtering the salt, the reaction solution was neutralized and concentrated with acetic acid, and acetone was added thereto to obtain white crystals of D-pipecolic acid. Yield: 1.71 mg, yield: 94%
[0028]
【The invention's effect】
According to the method for producing pipecolic acid according to the first aspect, pipecolic acid optically resolved to high purity can be produced in high yield and at low cost.
[0029]
According to the method for producing pipecolic acid according to claim 2, in addition to the effect described in claim 1, high-purity optically active pipecolic acid can be obtained in a high yield, and the productivity is excellent.
[0030]
According to the method for producing pipecolic acid according to claim 3, in addition to the effects described in claim 1 or 2, optically active pipecolic acid can be obtained in a high yield, with high productivity and low cost. D- and L-pipecolic acid can be mass-produced.
[0031]
According to the method for producing pipecolic acid according to the fourth aspect, in addition to the effect according to any one of the first to third aspects, the addition is performed by effectively using the remaining solution obtained by extracting L-pipecolic acid. Highly valuable D-pipecolic acid can be produced without waste, a pipecolic acid production system with excellent productivity can be constructed, and both optical isomers can be prepared in response to the shortage of supply of optically active pipecolic acid, a special imino acid. It can facilitate the supply of the body and promote medical development research.
[0032]
According to the method for producing pipecolic acid according to the fifth aspect, in addition to the effect according to any one of the first to third aspects, the residual solution obtained by extracting D-pipecolic acid is effectively used and added. Highly valuable L-pipecolic acid can be produced without waste, and a pipecolic acid production system with excellent productivity can be realized.
[0033]
According to the method for producing pipecolic acid according to claim 6, in addition to the effects according to claims 3 to 5, an intermediate for producing pipecolic acid using diethyl acetamide malonate as a starting material, which is relatively inexpensive and easily available. DL-N-acetyl-2-amino-6-bromohexanoic acid can be efficiently produced in an easy process that is easy to control, and a production system excellent in productivity and economy can be constructed.
[0034]
According to the method for producing pipecolic acid according to claim 7, pipecolic acid can be effectively produced by an intramolecular cyclization reaction accompanying the desorption of a protecting group. That is, the protecting group of the amino acid derivative is desorbed under predetermined conditions, and pipecolic acid can be efficiently produced by the subsequent intramolecular cyclization reaction. , And can be manufactured at low cost.
[0035]
According to the method for producing pipecolic acid according to claim 8, in addition to the effect described in claim 7, it is possible to appropriately maintain desorption conditions and hydrolysis conditions necessary for obtaining optically active pipecolic acid. And pipecolic acid of high purity can be obtained in high yield, and pipecolic acid can be produced on an industrial scale using an amino acid derivative having a protecting group.
[0036]
According to the method for producing pipecolic acid according to claim 9, in addition to the effect according to claim 7 or 8, when producing optically active pipecolic acid (D-pipecolic acid, L-pipecolic acid) (1) To construct an efficient production system using N-protected-L-2-amino-6-bromohexanoic acid and (2) N-protected-D-2-amino-6-bromohexanoic acid as intermediate raw materials. Thus, optically active pipecolic acid that can be used as a drug material can be provided at low cost.
[Brief description of the drawings]
FIG. 1. Examples of bioactive natural products and pharmaceuticals containing L- or D-pipecolic acid
FIG. 2 is a flowchart of the synthesis of N-acetyl-DL-2-amino-6-bromohexanoic acid.
FIG. 3 is a flowchart of a synthesis reaction of L-pipecolic acid by the action of L-aminoacylase and a synthesis reaction of D-pipecolic acid by the action of D-aminoacylase.
FIG. 4 is a flowchart of a method for synthesizing L- and D-pipecolic acid including a protease action when a removable protecting group is used.

Claims (9)

ハロゲン基を側鎖末端に有するアミノ酸誘導体のラセミ体溶液にアミノアシラーゼを添加する調整工程と、前記アミノ酸誘導体の分子内環化反応条件に前記ラセミ体溶液を保持させ前記アミノアシラーゼのエナンチオマー特異的作用により光学活性ピペコリン酸を生成させる生成工程と、前記ラセミ体溶液から前記光学活性ピペコリン酸を溶媒抽出する抽出工程と、を備えたことを特徴とするピペコリン酸の製造方法。An adjusting step of adding an aminoacylase to a racemic solution of an amino acid derivative having a halogen group at a side chain terminal; A method for producing pipecolic acid, comprising: a production step of producing optically active pipecolic acid by the above method; and an extraction step of solvent-extracting the optically active pipecolic acid from the racemic solution. 前記分子内環化反応条件が、前記ラセミ体溶液におけるpH6〜9、温度が20〜50℃、保持時間が10〜30時間であることを特徴とする請求項1に記載の光学活性なピペコリン酸の製造方法。The optically active pipecolic acid according to claim 1, wherein the conditions for the intramolecular cyclization reaction are a pH of 6 to 9, a temperature of 20 to 50 ° C, and a retention time of 10 to 30 hours in the racemic solution. Manufacturing method. 前記アミノ酸誘導体がDL−N−アセチル−2−アミノ−6−ブロモへキサン酸、DL−N−アセチル−2−アミノ−6−クロロヘキサン酸、DL−N−アセチル−2−アミノ−6−ヨードヘキサン酸、DL−N−アセチル−2−アミノ−6−メタンスルフォキシヘキサン酸、DL−N−アセチル−2−アミノ−6−トシルオキシヘキサン酸のいずれか1のラセミ体であって、前記アミノアシラーゼがアスペルギルス・ジーナス( Aspergillus genus )L−アミノアシラーゼ又はアルカリジーナスキシロースオキシダンス(Alcaligenes xylosoxydans )D−アミノアシラーゼであることを特徴とする請求項1又は2に記載のピペコリン酸の製造方法。The amino acid derivative is DL-N-acetyl-2-amino-6-bromohexanoic acid, DL-N-acetyl-2-amino-6-chlorohexanoic acid, DL-N-acetyl-2-amino-6-iodo A racemate of any one of hexanoic acid, DL-N-acetyl-2-amino-6-methanesulfoxyhexanoic acid, and DL-N-acetyl-2-amino-6-tosyloxyhexanoic acid, The method for producing pipecolic acid according to claim 1 or 2, wherein the aminoacylase is Aspergillus genus L-aminoacylase or alkaline genus xylose oxidans (Alcaligenes xylosoxydans) D-aminoacylase. 前記抽出工程により L−ピペコリン酸が抽出除去された残溶液から D−アセチル−2−アミノ−6−ブロモへキサン酸を回収する工程と、前記回収されたD−アセチル−2−アミノ−6−ブロモへキサン酸にアルカリジーナスキシロースオキシダンス( Alcaligenes xylosoxydans )D−アミノアシラーゼを添加し、その D−エナンチオマー特異的作用により脱アセチル化させ、分子内環化させて D−ピペコリン酸を生成する工程とを備えたことを特徴とする請求項1乃至3の内いずれか1項に記載のピペコリン酸の製造方法。Recovering D-acetyl-2-amino-6-bromohexanoic acid from the remaining solution from which L-pipecolic acid has been extracted and removed by the extraction step; and recovering the recovered D-acetyl-2-amino-6- A step of adding D-aminoacylase of alkaline genus xylose oxydans to bromohexanoic acid, deacetylating the bromohexanoic acid by D-enantiomer-specific action, and cyclizing intramolecularly to produce D-pipecolic acid. The method for producing pipecolic acid according to any one of claims 1 to 3, further comprising: 前記抽出工程によりD−ピペコリン酸が抽出除去された残溶液からL−アセチル−2−アミノ−6−ブロモへキサン酸を回収する工程と、前記回収されたL−アセチル−2−アミノ−6−ブロモへキサン酸にアスペルギルス・ジーナス(Aspergillus genus)L−アミノアシラーゼを添加し、そのL−エナンチオマー特異的作用により脱アセチル化させ、分子内環化させてL−ピペコリン酸を生成する工程とを備えたことを特徴とする請求項1乃至3の内いずれか1項に記載のピペコリン酸の製造方法。Recovering L-acetyl-2-amino-6-bromohexanoic acid from the residual solution from which D-pipecolic acid has been extracted and removed by the extraction step; and recovering the recovered L-acetyl-2-amino-6- Adding Aspergillus genus L-aminoacylase to bromohexanoic acid, deacetylating by L-enantiomer-specific action, and intramolecularly cyclizing to produce L-pipecolic acid. The method for producing pipecolic acid according to any one of claims 1 to 3, wherein: 前記 DL−N−アセチル−2−アミノ−6−ブロモへキサン酸が、アセタミドマロン酸ジエチルと 1, 4−ジブロモブタンを反応させてアセタミド−4−ブロモブチルマロン酸ジエチルを生成させる工程と、前記アセタミド−4−ブロモブチルマロン酸を半ケン化して加熱脱炭酸し DL−N−アセチル−2−アミノ−6−ブロモへキサン酸エチルを得る工程と、前記工程で得られたDL−N−アセチル−2−アミノ−6−ブロモへキサン酸エチルをケン化、結晶化させる工程とを順次実行して製造されたものであることを特徴とする請求項3乃至5の内いずれか1項に記載のピペコリン酸の製造方法。A step of reacting the DL-N-acetyl-2-amino-6-bromohexanoic acid with diethyl acetamide malonate and 1,4-dibromobutane to produce diethyl acetamide-4-bromobutyl malonate; -4-hemo-saponification of 4-bromobutylmalonic acid and heat decarboxylation to obtain ethyl DL-N-acetyl-2-amino-6-bromohexanoate; and DL-N-acetyl- obtained in the above step. The step of saponifying and crystallizing ethyl 2-amino-6-bromohexanoate is sequentially performed to produce the compound. The method according to any one of claims 3 to 5, wherein A method for producing pipecolic acid. ベンジルオキシカルボニル基、t−ブトキシカルボニル基などの脱着時に前記ハロゲン基を保護して温和な条件により脱着可能なウレタン型の保護基がアミノ基に結合され側鎖末端にハロゲン基を備えたアミノ酸誘導体の溶液を前記保護基の脱着条件に保持して、この脱着に伴う前記アミノ酸誘導体の分子内環化反応によってピペコリン酸を生成させることを特徴とするピペコリン酸の製造方法。Amino acid derivative having a urethane-type protecting group which is protected under mild conditions by protecting the halogen group at the time of desorption such as a benzyloxycarbonyl group or a t-butoxycarbonyl group, and which is bonded to an amino group and has a halogen group at a side chain terminal. Wherein pipetting acid is produced by an intramolecular cyclization reaction of the amino acid derivative accompanying the desorption of the solution of the above (1). 前記脱着条件が、室温下におけるパラジウム炭を触媒とする水素添加反応条件又は、塩化水素含有ジオキサン溶液又は酢酸エチル中での脱着反応条件であることを特徴とする請求項7に記載のピペコリン酸の製造方法。The pipecolic acid according to claim 7, wherein the desorption conditions are hydrogenation reaction conditions using palladium charcoal as a catalyst at room temperature or desorption reaction conditions in hydrogen chloride-containing dioxane solution or ethyl acetate. Production method. 前記アミノ酸誘導体が(1)N−保護−L−2−アミノ−6−ブロモへキサン酸や(2)N−保護−D−2−アミノ−6−ブロモへキサン酸であって、
(1)前記N−保護−L−2−アミノ−6−ブロモへキサン酸が、N−ベンジルオキシカルボニル−アミノマロン酸ジエチル、N−t−ブトキシカルボニル−アミノマロン酸ジエチル等の保護基を有するアミノマロン酸誘導体と 1, 4−ジブロモブタンを反応させて N−保護−アミノ−4−ブロモブチルマロン酸ジエチルを生成せしめた後、氷冷下で希薄強アルカリ水を添加して半ケン化し、次いで加熱脱炭酸して得られる DL−N−保護−2−アミノ−6−ブロモへキサン酸エチルをタンパク質分解酵素またはエステラーゼの加水分解作用によって作成されたものであり、
(2)前記N−保護−D−2−アミノ−6−ブロモへキサン酸が、前記N−保護−L−2−アミノ−6−ブロモへキサン酸の作成後の溶液から回収された N−保護− D−2−アミノ−6−ブロモへキサン酸エチルを氷冷下で希薄強アルカリ水を添加してケン化して作成されたものであることを特徴とする請求項7又は8に記載のピペコリン酸の製造方法。
The amino acid derivative is (1) N-protected-L-2-amino-6-bromohexanoic acid or (2) N-protected-D-2-amino-6-bromohexanoic acid,
(1) The N-protected-L-2-amino-6-bromohexanoic acid has a protective group such as diethyl N-benzyloxycarbonyl-aminomalonate and diethyl Nt-butoxycarbonyl-aminomalonate. After reacting the aminomalonic acid derivative with 1,4-dibromobutane to form diethyl N-protected-amino-4-bromobutylmalonate, dilute strong alkaline water is added under ice-cooling to semi-saponify, Then, DL-N-protected ethyl 2-amino-6-bromohexanoate obtained by heating and decarboxylation is prepared by the hydrolysis of a protease or esterase,
(2) The N-protected-D-2-amino-6-bromohexanoic acid was recovered from the solution after the preparation of the N-protected-L-2-amino-6-bromohexanoic acid. 9. The method according to claim 7 or 8, wherein the protected-D-2-amino-6-bromohexanoate is saponified by adding diluted strong alkaline water under ice-cooling. A method for producing pipecolic acid.
JP2003055011A 2003-02-28 2003-02-28 Method for producing pipecolic acid Expired - Lifetime JP4452820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003055011A JP4452820B2 (en) 2003-02-28 2003-02-28 Method for producing pipecolic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003055011A JP4452820B2 (en) 2003-02-28 2003-02-28 Method for producing pipecolic acid

Publications (2)

Publication Number Publication Date
JP2004261086A true JP2004261086A (en) 2004-09-24
JP4452820B2 JP4452820B2 (en) 2010-04-21

Family

ID=33119137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003055011A Expired - Lifetime JP4452820B2 (en) 2003-02-28 2003-02-28 Method for producing pipecolic acid

Country Status (1)

Country Link
JP (1) JP4452820B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108752253A (en) * 2018-06-27 2018-11-06 深圳市茵诺圣生物科技有限公司 A kind of polynary aza-cyclic Non-natural chiral amino acid and its synthetic method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108752253A (en) * 2018-06-27 2018-11-06 深圳市茵诺圣生物科技有限公司 A kind of polynary aza-cyclic Non-natural chiral amino acid and its synthetic method
CN108752253B (en) * 2018-06-27 2020-11-24 深圳市茵诺圣生物科技有限公司 Multi-nitrogen heterocyclic non-natural chiral amino acid and synthesis method thereof

Also Published As

Publication number Publication date
JP4452820B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
EP2123769B1 (en) Method for producing optically active 3-aminopiperidine or salt thereof
TW200846307A (en) Preparation of pregabalin and related compounds
JP2007532125A (en) Stereoselective bioconversion of aliphatic dinitriles to cyanocarboxylic acids.
AU2008307573A1 (en) Production of monatin stereoisomers
US20140256003A1 (en) R-praziquantel preparation method
JP2008525515A (en) Method for preparing optically active indoline-2-carboxylic acid
EP2017259A2 (en) Preparation of gamma-amino acids having affinity for the alpha-2-delta protein
KR20080086463A (en) Improved method for the production of ramipril
Watanabe et al. An efficient access to both enantiomers of pipecolic acid
WO2013114173A1 (en) A novel process for the preparation of sitagliptin
Fauq et al. Synthesis of (2S)-2-amino-3-(1H-4-indolyl) propanoic acid, a novel tryptophan analog for structural modification of bioactive peptides
Winkler et al. Nitrilase‐Catalyzed Enantioselective Synthesis of Pyrrolidine‐and Piperidinecarboxylic Acids
JP4452820B2 (en) Method for producing pipecolic acid
JPWO2012176715A1 (en) 1-amino-2-vinylcyclopropanecarboxylic acid amide and salt thereof, and production method thereof
JP3744171B2 (en) Process for producing optically active N-substituted azetidine-2-carboxylic acid compound
JPH09143101A (en) Production of optically active carboxylic acid
JP3847934B2 (en) γ-oxo-homophenylalanine derivative and method for producing homophenylalanine derivative obtained by reducing the same
JP5329973B2 (en) From racemic 4- (1-aminoethyl) benzoic acid methyl ester to (R)-and (S) -4- (1-ammoniumethyl) by enantioselective acylation using a lipase catalyst followed by precipitation with sulfuric acid. Method for preparing benzoic acid methyl ester sulfate
JP5697998B2 (en) Process for producing optically active succinimide derivative and intermediate thereof
WO2010019469A2 (en) Preparation of (s)-2-aminobutyric acid
JP3192791B2 (en) Method for producing optically active DN-piperonyl-2-amino- (benzo [b] thiophen-3-yl) -propionylamide
WO2003087033A1 (en) Process for the preparation of enantiomerically enriched compounds
WO2004070045A1 (en) Process for producing optically active 6-formyl-1,4-benzodioxin-2-carboxylic acid derivative
JPH10158239A (en) Production of 4-hydroxy-2-pyrrolidinone and its purification
JP4544385B2 (en) Process for producing optically active 2,6-diaminoheptanoic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060228

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4452820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term