JP2004259945A - Transformer, and receiving and transforming facility - Google Patents

Transformer, and receiving and transforming facility Download PDF

Info

Publication number
JP2004259945A
JP2004259945A JP2003049174A JP2003049174A JP2004259945A JP 2004259945 A JP2004259945 A JP 2004259945A JP 2003049174 A JP2003049174 A JP 2003049174A JP 2003049174 A JP2003049174 A JP 2003049174A JP 2004259945 A JP2004259945 A JP 2004259945A
Authority
JP
Japan
Prior art keywords
phase
transformer
winding
power
secondary winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003049174A
Other languages
Japanese (ja)
Other versions
JP4076878B2 (en
Inventor
Manabu Iwamura
学 岩村
Satoru Kajiwara
悟 梶原
Kenji Tsuchiya
賢治 土屋
Tomohiko Nagata
知彦 永田
Akira Niitsuma
晃 新妻
Seiichi Nakada
誠一 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2003049174A priority Critical patent/JP4076878B2/en
Publication of JP2004259945A publication Critical patent/JP2004259945A/en
Application granted granted Critical
Publication of JP4076878B2 publication Critical patent/JP4076878B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Housings And Mounting Of Transformers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent increase of cost and installation area of a secondary side unit and a casing storing the secondary side unit with an increase of capacity of a transformer. <P>SOLUTION: In a receiving and transforming facility, a primary side winding wire 13 and a tertiary side winding wire 14 in the transformer 1A are delta-connected. Delta connection is divided into three so that respective phases of a secondary side winding wire 15 become three single phase transformers. Single phase three line connection is obtained where neutral lines are installed for the respective phases. The cost and the installation areas of the receiving and transforming facility are reduced by branching current of a secondary side into three phases. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は変圧器及び高圧もしくは特別高圧の電圧を変圧器の一次側で受電し、二次側で使用電圧に変換し、低圧開閉器を介して需要家に電力を供給する受変電設備に関する。
【0002】
【従来の技術】
従来、変圧器は、高層ビルや大型マンション内に設けられた受電室にて、供給電圧を低電圧に変換するために使用されている。大容量負荷に対応し、変圧器の容量は大きく、更に停電発生時の影響を極小化するなど配慮し、2バンク構成とする特徴を持っている。
【0003】
高圧もしくは特別高圧の電圧で受電し、変圧器を介して低圧用開閉器に接続されている。低圧用開閉器の負荷側にはヒューズが収納され、このヒューズから負荷に直接電力を供給している。
【0004】
変圧器は異容量の単相変圧器をV結線した方式で、2台中の1台の変圧器容量が他方の変圧器容量に比べて大きい。単相の100Vの負荷に対しては、容量の大きい変圧器を使用し、三相の200V負荷を使用する場合は、もう一方の容量の小さい変圧器を併用してV結線とし、動力用負荷に電力を供給している。単相100V負荷に対応した容量の大きい変圧器では、変圧器の二次側が大電流となるため、大電流の通電可能な低圧用開閉器を選定している。
【0005】
低圧用開閉器を収納する筐体には、大電流により導体から発生する漏れ磁束が原因で渦電流が発生するため、大電流が通電する導体付近はステンレス材を使用した母線箱で包囲している。また、変圧器の二次側の低圧用筐体は、受電用とフィーダー用機器を別々の筐体に収納している。
【0006】
しかし、上記従来技術では、変圧器の二次側の電流が多く、変圧器容量の増加に伴う二次側の電流の増加により、二次側の低圧用開閉器のコストが増加する。また、大電流が通電する導体付近の構造材及び低圧用筐体へのステンレス材の使用により、低圧用筐体の材料、加工費が増加する。
【0007】
更に、低圧受電用とフィーダー用機器を別々の筐体に収納していることや、単相変圧器2台の変圧器相互の絶縁距離確保により変圧器筐体のサイズが増大し、変圧器及び低圧用筐体を受電室で組み合わせたときの据付面積が増大する問題があった。尚、変圧器を利用した受変電設備としては、特許文献1を挙げることができる。
【0008】
【特許文献1】
特開昭55−160905号公報(要約)
【0009】
【発明が解決しようとする課題】
そこで、変圧器及び低圧用筐体等の受変電設備のコスト及び据付面積を低減するには、二次側機器の簡素化、コスト、据付面積、変圧器の二次側電流による漏れ磁束対策のステンレス材使用部材の削減、変圧器の台数低減が考えられる。
【0010】
しかしながら、いずれの場合においても変圧器の二次側の電流を低減しなければ、上記課題を解決することは困難である。
【0011】
本発明の目的は、コスト及び据付面積を低減した受変電設備を提供することにある。
【0012】
【課題を解決するための手段】
上記課題を解決するために、本発明の受変電設備は、二次側巻線の各相を分割しその各相から低圧の負荷に電力を供給するようにデルタ結線を3分割し、各相毎に中性線を設けた単相3線結線とし、通電値を各相に分流した分だけ小さくして、受変電設備のコスト及び据付面積を低減することを特徴とする。
【0013】
【発明の実施の形態】
本発明の実施例を図1及び図2に示す変圧器及び受変電設備により説明する。図1及び図2は変圧器の等価回路及び受変電設備の系統を示す図である。
【0014】
変圧器1Aを図1により説明する。変圧器1Aの一次側巻線13及び三次側
巻線14をデルタ結線している。三次側巻線14は三相変圧器を形成している。三相変圧器からの三相負荷として、例えば、エレベータ、ポンプ、建物の照明
等に電力を供給する。
【0015】
二次側巻線15の各相U,V,Wは3台の単相変圧器をなすようにデルタ結線を3分割し、各相毎に中性線を設けた単相3線結線としている。3台の単相変圧器1Aの二次側巻線はU相,V相,W相二次側巻線15U,15V,15Wである。つまり、二次側巻線の各相をその各相から負荷に電力を供給する単相変圧器をなすようにデルタ結線を3分割し、各相毎に中性線を設けた単相3線結線としている。この結線は、例えばU相二次側巻線15UとV相二次側巻線15Vとの間が電気的に絶縁している。
【0016】
この変圧器1Aは図2に示すように変圧器用筐体1内に2バンクの変圧器1A,
1Bを配置している。変圧器1Bは変圧器1Aと同じ構造なので、前述と同様に以下でも変圧器1Aを代表として説明する。
【0017】
変圧器1A,1Bは2バンク構成であるため、変圧器1Aと変圧器1Bとを
右左に配置している。この変圧器1Aの二次側巻線15の端子から低圧受電用
とフィーダーの機能を併せ持つ低圧用筐体が3台配置されている。
【0018】
3台の低圧用筐体は変圧器1AのU相,V相,W相二次側巻線15U,15V,15Wと対応して左からU相低圧用筐体4A、V相低圧用筐体5A、W相低圧用筐体6Aとして配列している。これらの低圧用筐体には低圧用開閉器7を収納している。U相低圧用筐体4A、V相低圧用筐体5A、W相低圧用筐体6Aは全て同じ構造のため、代表としてW相低圧用筐体6Aを説明するが、その詳細は後述する。
【0019】
W相低圧用筐体6AとU相低圧用筐体4Bとの間に挟まれた中間に連絡用筐体8が配置されている。連絡用筐体8は、通常の運転時には並列で運転している2バンクのどちらか一方のバンク、例えば変圧器1Aを停止して点検する時に、もう一方の運転している方の変圧器1Bから停止を予定している変圧器1A側の負荷に電力を供給する際に必要となる連絡用開閉器9を3台収納している。連絡用筐体8の詳細については後述する。
【0020】
変圧器1Aを停止して点検するときは、連絡用開閉器9の3台全てを投入し、停止を予定しているバンクの変圧器1Aの代わりに、もう一方の変圧器1Bから停止している変圧器1Aの負荷に電力を供給する。通常運転時には、連絡用開閉器9は3台とも遮断した状態で、両バンクは切り離された状態にあり、2バンク並列運転している。
【0021】
変圧器1Aの三次巻線14と接続した電線10が連絡用筐体9内にある三次用開閉器12に接続され、三相200Vを必要とする三相負荷に電力を供給している。
【0022】
そして、変圧器1Aと低圧用開閉器7、連絡用開閉器9、三次用開閉器12の電気的な接続関係を図3により説明する。
【0023】
図3では連絡用筐体8と右側の低圧用筐体内について説明する。左側の低圧用筐体内の構成は右側の低圧用筐体内と同じなので、説明を省略する。また3台の低圧用筐体内の構成は同じなので、W相低圧用筐体6Aを説明し、他のV相低圧用筐体5A、W相低圧用筐体4Aについての電気的な接続関係については説明を省略する。
【0024】
変圧器1AのW相二次側巻線15W1及び15W3には主回路導体16が接続されている。W相二次側巻線15W2にはW相の中性用主回路導体16Nが接続されている。主回路導体16及び中性用主回路導体16Nには、W相低圧用筐体6A内の連絡用主回路導体18及び18Nに接続されている。
【0025】
W相二次側巻線15W1と15W3からの2本の主回路導体16が低圧用開閉器7及び変流器17に接続すると共に、連絡用主回路導体18に接続されている。中性用主回路導体16Nは1本の中性連絡用主回路導体18Nに接続されている。この中性連絡用主回路導体18NにはV相,U相二次側巻線15V,15Uにも接続され、共通線としての役目をしている。
【0026】
2本の連絡用主回路導体18Nと1本の中性連絡用主回路導体18NはU相低圧用筐体4A、V相低圧用筐体5A、W相低圧用筐体6A、連絡用筐体8内を貫通し、主回路導体16及び中性用主回路導体16Nに対して直交つまり水平方向に延びている。
【0027】
連絡用主回路導体18及び中性連絡用主回路導体18Nは図4に示すように母線箱19内に2本のU相,V相,W相二次側巻線と中性用二次巻線とに対応する7本の導体が収納されている。7本の導体は連絡用主回路導体18(U1,U3)、(V1,V3)、(W1,W3)、中性用連絡用主回路導体18Nである。
【0028】
母線箱19はステンレス部材により構成されている。つまり、大電流が通電する箇所にはステンレス部材が使用されている。主回路導体16及び連絡用主回路導体18は帯状の導体バーよりなる。連絡用主回路導体18には連絡用開閉器9が接続されている。連絡用主回路導体18に接続されたヒューズ線20Aには、5本のヒューズ20が接続されている。各ヒューズ20は各々低圧の負荷Lに接続されている。負荷Lで発生した事故電流が電力系統側に波及するのをヒューズ20の溶断により防止している。
【0029】
次に、変圧器用筐体1及びW相低圧用筐体6Aと連絡用筐体8の詳細について図1,2と図5(A)及び図6により説明する。図5(A)及び図6は図2のA−A線及びB−B線断面図である。
【0030】
図5(A)の変圧器筐体1内には3相3脚鉄心1Zが配置されている。その鉄心脚1Zには図5(B)に示すように三次側巻線14を配置し、三次側巻線14の外周側に二次側巻線15を配置し、二次側巻線15の外周側に一次側巻線13を配置している。一次側巻線13、二次側巻線15、三次側巻線14は絶縁部材によりコイルをモールドしたモールドコイルを使用している。
【0031】
変圧器1Aの結線は、変圧器1Aの一次側巻線13及び三次側巻線14をデルタ結線にしている。二次側巻線15は、見かけ上は3相変圧器が1台であるが、機能上、二次側はデルタ結線を3分割し、各相毎に中性線を設けた単相3線結線であるため、単相変圧器が3台の変圧器と同等となる。3台の単相変圧器は全て構成が同じであるため、U相,V相,W相二次側巻線15U,15V,15Wより成るが、代表としてW相二次側巻線15Wについて説明を行う。
【0032】
W相二次側巻線15Wの引出し線である二次端子15W1,15W3及び二次中性用端子15W2には、低圧用筐体6Aと接続する際の寸法の余裕度を持たせるため、たわみ導体22を使用している。そのため、たわみ導体22及び二次端子15W1,15W3と二次中性用端子15W2の引出しにスペースを取るため、一次端子13Aを逆方向に持ってくると、その分だけ変圧器1Aを収納する変圧器筐体1の寸法が増大する。よって、一次端子13Aを二次端子15W1,15W3、二次中性用端子15W2側と同じ引出し方向つまり低圧用開閉器7側に引出し、変圧器用筐体1のスペースの縮小を図っている。
【0033】
尚、図3では図5(A)と一次端子13Aと二次端子15との引出し方向が必ずしも一致していないが、図3は各端子の接続先を分かりやすくするために作成した図であるから、必ずしも図5(A)と一致していない。
【0034】
W相二次側巻線15Wに引出された二次端子15W1,15W3及び二次中性用端子15W2から、単相の100Vの電圧を発生させるため、3本の内1本の二次端子は二次中性用端子15W2となっている。変圧器1Aの二次電流については、変圧器1Aの二次側からみると単相の変圧器3台と同じであるため、単相変圧器の1台当たりの二次電流は、従来の異容量の変圧器をV結線した場合と比較して1/3となる。また、三次側端子14Aは、3相の200V用の負荷に対応している。
【0035】
次に、W相低圧用筐体6Aの内部構造について、図5(A)の右側面図により説明を行う。変圧器1Aの二次側からは、二次端子15W1,15W3及び二次中性用端子15W2が引出され、これらの主回路導体16及び16Nに接続され、この3本の導体がW相低圧用筐体6A内に入る。
【0036】
主回路導体16は変流器17を通過後、低圧用開閉器7に接続される。また、残り1本の二次中性用端子15W2は変流器17を通過せず、低圧用開閉器7に接続される。その後、主回路導体16及び16Nは、他のバンクへの接続の際に必要となる連絡用主回路導体18,18Nに接続され、連絡用主回路導体18からヒューズ線20Aを介して5台のヒューズ20に接続される。ヒューズ20の各々は単相100Vの負荷Lに接続されている。
【0037】
つまり、U相低圧用筐体4A、V相低圧用筐体5A、W相低圧用筐体6Aにおいて、それぞれ単相100V用の負荷Lを5幹線分得ることができる。U相低圧用筐体4A、V相低圧用筐体5A、W相低圧用筐体6Aを合わせて1バンクとなる。このため、1バンクで15幹線、2バンクで30幹線の単相100Vの負荷Lを得ることが可能である。2バンク構成である為、変圧器1Bのバンクも変圧器1Aのバンクと全く同様な構成となっている。
【0038】
連絡用主回路導体18及び中性連絡用主回路導体18NはU相,V相,W相用低圧用筐体4A,5A,6A内にそれぞれ最低でも2本の母線と1本の中性用母線が配置されている。また連絡用主回路導体18及び中性連絡用主回路導体18Nはもう片方のバンクのU,V,W相用低圧用筐体4B,5B,6B内の連絡用主回路導体18及び中性連絡用主回路導体18Nに繋がっている。このため、W相用低圧用筐体6AにはV相用母線及びU相用母線を配置されていることになり、計6本の母線及び1本の中性用母線が配置されている。
【0039】
連絡用筐体8について図3,5(A)及び図6により説明する。図6は連絡用筐体8の側面図である。
【0040】
連絡用筐体8には、連絡用遮断器9を収納すると共に、変圧器1Aの三次巻線14から三次側端子14Aを引出し、三次側端子14Aは電線10に接続している。電線10及び三次側端子14Aは、二次端子15W1,15W3及び二次中性用端子15W2の反対側から引出されている。電線10は二次端子15W1,15W3と交差しないように変圧器筐体1内より連絡用筐体8に入る。連絡用筐体8内の電線10は三次用開閉器12に接続されている。
【0041】
三次用開閉器12の先には、1台で2つの開閉器を持つインターロック付開閉器23がある。たとえば、両バンクとも電圧がある場合には、インターロック付開閉器23内のどちらか一方の開閉器が投入され、もう片方の開閉器は遮断された状態となっている。
【0042】
また、投入している開閉器に接続されている変圧器が停止し、電圧が無くなった場合には、投入している開閉器は遮断状態となり、もう片方の遮断している遮断器は投入状態となる。その後、三相の200Vの負荷開閉器24を介して三相の200Vの負荷に接続される。また、特高側の操作電源及び制御するための電源の供給している。
【0043】
このように、この実施例では、二次側巻線15を単相変圧器が3台になるようにデルタ結線を3分割し、各相毎に中性線を設けた単相3線結線としている。これにより3台の単相変圧器の二次側巻線15U,15V,15Wの各相の二次側電流は分流した分だけ電流を従来に比べて小さくできる。
【0044】
即ち、従来技術では約5000アンペアの二次側の電流が主回路導体16及び連絡用主回路導体18等に流れていた。これに対して、本発明の実施例では二次側の電流をデルタ結線を分割して3相各々に分流したことにより、二次側巻線15に一相あたり流れる約1600アンペアの電流が、主回路導体16及び連絡用主回路導体18等に均等に流れる。
【0045】
この結果、主回路導体16及び連絡用主回路導体18等に流れる渦電流及び通常電流は、本発明の実施例では従来技術と比較して約1/3となり、母線箱19及び主回路導体16、連絡用主回路導体18等を約1/3に縮小できるようになり、変圧器及び変圧器筐体、低圧用筐体を縮小することができる。
【0046】
例えば、従来の受変電設備の据付面積を約10とすると、本発明の受変電設備の据付面積は約6〜7に縮小できる。また低圧用筐体4A,5A,6A及び母線箱19に使用したステンレス材を低減することができる。従って、本発明の変圧器及び受変電設備によれば、据付面積の縮小及びコストの低減ができる。
【0047】
また主回路導体16、連絡用主回路導体18等の通電値が小さくなったので、変圧器の二次側導体の各々に対向して低圧用筐体4A,5A,6Aを3つに分離して配置できるようになった。即ち、各低圧用筐体で短絡事故が生じた場合、従来技術と比較して事故電流が小さく、他の低圧用筐体に悪影響を及ぼす影響が少ないことから、3台の独立した低圧用筐体に分離することができる。
【0048】
この結果、U相,V相,W相の二次側巻線15U,15V,15Wは、低圧用筐体との配線が容易に理解できるようになり、変圧器と低圧用筐体4A,5A,6A内の機器との接続に際し、誤った接続を防止することが可能となる。
【0049】
更に、三次側端子14Aを、二次端子15W1,15W3及び二次中性用端子15W2の反対側から引出すことにより、引出し作業が容易になった。例えば、三次側端子14Aを二次端子15U1,15U3の直角方向から引出す場合、変圧器のW相二次側巻線15WとV相二次側巻線15Vとの間より引出すことになり、作業性が悪化する。また、絶縁距離を必要とする欠点がある。
【0050】
更に、一次端子13及び二次端子15U1,15U3を同方向に引出したため、変圧器筐体1の縮小が可能なり、更に作業性が向上した。
【0051】
更に、前述の実施例を2回線2バンクとして使用する場合を説明する。
【0052】
即ち、2バンクを各々変圧器1A,1Bとして一次側巻線13及び三次側巻線14をデルタ結線にし、二次側巻線15を3台の単相変圧器15U,15V,15Wになるようにデルタ結線を3分割し、各相毎に中性線を設けた単相3線結線とし、W相変圧器15の二次側巻線15W1,15W3に低圧開閉器7を接続し、低圧開閉器7を連絡用開閉器9の一方側(変圧器1A側)と他方側(変圧器1B側)に接続し、一方側の変圧器1Aが停電している時に、停電している側の低圧開閉器7を開放すると共に、連絡用開閉器9を閉じて他方側の運転中の変圧器1Bからの電力を停電している変圧器1A側の負荷Lに供給する。
【0053】
尚、前述の実施例では低圧開閉器及び低圧用筐体について説明したが、低圧でない通常の開閉器及び筐体についても使用できることは勿論である。
【0054】
【発明の効果】
以上のように、本発明の受変電設備によれば、変圧器及び受変電設備の据付面積の縮小及びコストの低減が可能となる。
【図面の簡単な説明】
【図1】本発明の実施例として示した変圧器の等価回路図。
【図2】図1の変圧器を使用した受変電設備の配置を示す概略平面図。
【図3】図2の受変電設備の系統を示す系統回路図。
【図4】図3のC−C線断面である母線箱の断面図。
【図5】図5(A)及び(B)は図2のA−A線断面図及び図5(A)の変圧器の鉄心及び巻線を示す断面図。
【図6】図2のB−B線断面図。
【符号の説明】
1…変圧器用筐体、1A,1B…変圧器、1Z…鉄心脚、4A,5A,6A…低圧用筐体、4B,5B,6B…低圧用筐体、7…低圧用開閉器、8…連絡用筐体、9…連絡用開閉器、10…電線、12…3次用開閉器、13…一次巻線、13A…一次端子、14…三次巻線、14A…三次端子、15…二次巻線、15U,15V,15W…U,V,W相二次側巻線、15W1,15W3…二次側端子、15W2…二次中性用端子、16…主回路導体、16N…中性用主回路導体、17…変流器、18…連絡用主回路導体、18N…中性連絡用主回路導体、19…母線箱、20…ヒューズ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a transformer and a power receiving and transforming facility that receives high-voltage or extra-high voltage at a primary side of the transformer, converts the voltage into a working voltage at a secondary side, and supplies power to a customer via a low-voltage switch.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a transformer is used in a power receiving room provided in a high-rise building or a large apartment to convert a supply voltage to a low voltage. It has a feature of a two-bank configuration in consideration of, for example, a large capacity load, a large capacity of the transformer, and minimizing the influence of a power failure.
[0003]
It receives power at high or extra high voltage and is connected to a low voltage switch via a transformer. A fuse is stored on the load side of the low-voltage switch, and power is directly supplied to the load from the fuse.
[0004]
The transformer is a system in which single-phase transformers of different capacities are V-connected, and the capacity of one of the two transformers is larger than the capacity of the other transformer. For a single-phase 100V load, use a large-capacity transformer, and when using a three-phase 200V load, use the other small-capacity transformer together for V connection, Power. In a large-capacity transformer corresponding to a single-phase 100 V load, the secondary side of the transformer has a large current. Therefore, a low-voltage switch that can carry a large current is selected.
[0005]
Since the eddy current is generated in the housing that houses the low-voltage switch due to leakage magnetic flux generated from the conductor due to the large current, the area near the conductor where the large current flows is surrounded by a busbar box made of stainless steel. I have. The low-voltage housing on the secondary side of the transformer houses the power receiving and feeder devices in separate housings.
[0006]
However, in the above-described conventional technology, the current on the secondary side of the transformer is large, and the cost of the low-voltage switch on the secondary side increases due to the increase in the current on the secondary side accompanying the increase in the capacity of the transformer. In addition, the use of a stainless steel material for the structural material near the conductor through which a large current flows and the low-pressure housing increases the material and processing cost of the low-pressure housing.
[0007]
Furthermore, the size of the transformer casing increases due to the fact that the low-voltage power receiving and feeder devices are housed in separate casings and the insulation distance between the two single-phase transformers is ensured. There is a problem that the installation area when the low-voltage housing is combined in the power receiving room increases. As a power receiving and transforming facility using a transformer, Patent Document 1 can be cited.
[0008]
[Patent Document 1]
JP-A-55-160905 (abstract)
[0009]
[Problems to be solved by the invention]
Therefore, in order to reduce the cost and installation area of power receiving and transforming equipment such as transformers and low-voltage enclosures, simplification of secondary equipment, cost, installation area, and measures against leakage magnetic flux due to secondary current of the transformer are required. It is conceivable to reduce the number of stainless steel members and the number of transformers.
[0010]
However, in any case, it is difficult to solve the above problem unless the current on the secondary side of the transformer is reduced.
[0011]
An object of the present invention is to provide a power receiving and transforming facility with reduced cost and installation area.
[0012]
[Means for Solving the Problems]
In order to solve the above problem, the substation equipment of the present invention divides each phase of the secondary winding, divides the delta connection into three so that each phase supplies power to a low-voltage load, and splits each phase into three phases. It is characterized by a single-phase three-wire connection in which a neutral wire is provided for each, and the energization value is reduced by the amount divided into each phase, thereby reducing the cost and installation area of the substation equipment.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the transformer and the power receiving and transforming equipment shown in FIGS. 1 and 2 are diagrams showing an equivalent circuit of a transformer and a system of power receiving and transforming equipment.
[0014]
The transformer 1A will be described with reference to FIG. The primary winding 13 and the tertiary winding 14 of the transformer 1A are delta-connected. The tertiary winding 14 forms a three-phase transformer. As a three-phase load from the three-phase transformer, power is supplied to, for example, an elevator, a pump, lighting of a building, and the like.
[0015]
Each phase U, V, and W of the secondary winding 15 is divided into three delta connections so as to form three single-phase transformers, and is a single-phase three-wire connection in which a neutral wire is provided for each phase. . The secondary windings of the three single-phase transformers 1A are U-phase, V-phase, and W-phase secondary windings 15U, 15V, and 15W. In other words, the delta connection is divided into three so that each phase of the secondary winding forms a single-phase transformer that supplies power from each phase to the load, and a single-phase three-wire in which a neutral wire is provided for each phase It is connected. In this connection, for example, between the U-phase secondary winding 15U and the V-phase secondary winding 15V is electrically insulated.
[0016]
As shown in FIG. 2, the transformer 1A has two banks of transformers 1A,
1B is arranged. Since the transformer 1B has the same structure as the transformer 1A, the transformer 1A will be described below as a representative similarly to the above.
[0017]
Since the transformers 1A and 1B have a two-bank configuration, the transformer 1A and the transformer 1B are arranged on the right and left sides. From the terminals of the secondary winding 15 of the transformer 1A, three low-voltage housings having both functions of low-voltage power receiving and feeder are arranged.
[0018]
The three low-voltage housings correspond to the U-phase, V-phase, and W-phase secondary windings 15U, 15V, and 15W of the transformer 1A, and the U-phase low-voltage housing 4A and the V-phase low-voltage housing from the left. 5A, arranged as a W-phase low-pressure housing 6A. A low-voltage switch 7 is housed in these low-voltage housings. Since the U-phase low-pressure housing 4A, the V-phase low-pressure housing 5A, and the W-phase low-pressure housing 6A are all of the same structure, the W-phase low-pressure housing 6A will be described as a representative, but the details will be described later.
[0019]
The communication housing 8 is arranged in the middle between the W-phase low-pressure housing 6A and the U-phase low-pressure housing 4B. The communication housing 8 is used to operate one of the two banks operating in parallel during normal operation, for example, when the transformer 1A is stopped and inspected, the other operating transformer 1B is operated. In this case, three communication switches 9 necessary for supplying power to the load on the transformer 1A that is scheduled to be stopped from the power supply are housed. Details of the communication housing 8 will be described later.
[0020]
When the transformer 1A is stopped and inspected, all the three switching switches 9 are turned on, and the transformer 1B is stopped from the other transformer 1B instead of the transformer 1A of the bank to be stopped. Power to the load of the existing transformer 1A. During normal operation, all three switches 9 are shut off, both banks are disconnected, and two banks are operated in parallel.
[0021]
An electric wire 10 connected to the tertiary winding 14 of the transformer 1A is connected to a tertiary switch 12 in the communication housing 9 and supplies power to a three-phase load requiring three-phase 200V.
[0022]
The electrical connection relationship between the transformer 1A and the low-voltage switch 7, the communication switch 9, and the tertiary switch 12 will be described with reference to FIG.
[0023]
FIG. 3 illustrates the communication housing 8 and the inside of the low-pressure housing on the right side. The configuration in the left low-pressure housing is the same as that in the right low-pressure housing, and a description thereof will be omitted. Since the configurations inside the three low-voltage housings are the same, the W-phase low-voltage housing 6A will be described, and the electrical connection relationship between the other V-phase low-voltage housing 5A and the W-phase low-voltage housing 4A will be described. Will not be described.
[0024]
The main circuit conductor 16 is connected to the W-phase secondary windings 15W1 and 15W3 of the transformer 1A. The W-phase neutral main circuit conductor 16N is connected to the W-phase secondary winding 15W2. The main circuit conductor 16 and the neutral main circuit conductor 16N are connected to the communication main circuit conductors 18 and 18N in the W-phase low-voltage housing 6A.
[0025]
Two main circuit conductors 16 from the W-phase secondary windings 15W1 and 15W3 are connected to the low-voltage switch 7 and the current transformer 17 and also to the communication main circuit conductor 18. The neutral main circuit conductor 16N is connected to one neutral communication main circuit conductor 18N. The neutral connection main circuit conductor 18N is also connected to the V-phase and U-phase secondary windings 15V and 15U, and serves as a common line.
[0026]
The two communication main circuit conductors 18N and one neutral communication main circuit conductor 18N are a U-phase low-voltage housing 4A, a V-phase low-voltage housing 5A, a W-phase low-voltage housing 6A, and a communication housing. 8, and extends orthogonally, that is, in the horizontal direction with respect to the main circuit conductor 16 and the neutral main circuit conductor 16N.
[0027]
As shown in FIG. 4, two main U-phase, V-phase and W-phase secondary windings and a neutral secondary winding are provided in a bus box 19 as shown in FIG. Seven conductors corresponding to the wires are accommodated. The seven conductors are the communication main circuit conductors 18 (U1, U3), (V1, V3), (W1, W3), and the neutral communication main circuit conductor 18N.
[0028]
The busbar box 19 is made of a stainless member. That is, a stainless member is used where a large current flows. The main circuit conductor 16 and the connecting main circuit conductor 18 are formed of strip-shaped conductor bars. The communication switch 9 is connected to the communication main circuit conductor 18. Five fuses 20 are connected to the fuse line 20A connected to the communication main circuit conductor 18. Each fuse 20 is connected to a low-voltage load L. The fusing of the fuse 20 prevents the fault current generated in the load L from spreading to the power system side.
[0029]
Next, the details of the transformer housing 1, the W-phase low-voltage housing 6A, and the communication housing 8 will be described with reference to FIGS. FIGS. 5A and 6 are sectional views taken along lines AA and BB of FIG.
[0030]
A three-phase three-legged iron core 1Z is arranged in the transformer housing 1 of FIG. As shown in FIG. 5B, a tertiary winding 14 is disposed on the iron core leg 1Z, and a secondary winding 15 is disposed on the outer peripheral side of the tertiary winding 14. The primary winding 13 is arranged on the outer peripheral side. The primary winding 13, the secondary winding 15, and the tertiary winding 14 use a molded coil obtained by molding a coil with an insulating member.
[0031]
The connection of the transformer 1A is a delta connection between the primary winding 13 and the tertiary winding 14 of the transformer 1A. The secondary winding 15 is apparently a single three-phase transformer, but functionally, the secondary side is a single-phase three-wire system in which the delta connection is divided into three and a neutral line is provided for each phase. Because of the connection, the single-phase transformer is equivalent to three transformers. Since all three single-phase transformers have the same configuration, they are composed of U-phase, V-phase, and W-phase secondary windings 15U, 15V, and 15W. The W-phase secondary winding 15W will be described as a representative. I do.
[0032]
The secondary terminals 15W1 and 15W3 and the secondary neutral terminal 15W2, which are the lead wires of the W-phase secondary winding 15W, are bent so as to have a margin of dimensions when connected to the low-voltage housing 6A. The conductor 22 is used. Therefore, when the primary terminal 13A is brought in the opposite direction to take out space for the flexible conductor 22 and the secondary terminals 15W1 and 15W3 and the secondary neutral terminal 15W2, the transformer 1A is stored by that amount. The dimensions of the casing 1 increase. Therefore, the primary terminal 13A is pulled out in the same drawing direction as the secondary terminals 15W1 and 15W3 and the secondary neutral terminal 15W2, that is, in the low-voltage switch 7 side, thereby reducing the space of the transformer housing 1.
[0033]
Note that in FIG. 3, the drawing directions of the primary terminal 13A and the secondary terminal 15 do not always match those of FIG. 5A, but FIG. 3 is a diagram created for easy understanding of the connection destination of each terminal. Therefore, it does not always coincide with FIG.
[0034]
In order to generate a single-phase 100V voltage from the secondary terminals 15W1, 15W3 and the secondary neutral terminal 15W2 drawn out to the W-phase secondary winding 15W, one of the three secondary terminals is It is a secondary neutral terminal 15W2. The secondary current of the transformer 1A is the same as that of three single-phase transformers when viewed from the secondary side of the transformer 1A. Therefore, the secondary current per single-phase transformer is different from the conventional one. This is 1/3 of the case where the capacity transformer is V-connected. The tertiary terminal 14A corresponds to a three-phase 200V load.
[0035]
Next, the internal structure of the W-phase low-pressure housing 6A will be described with reference to the right side view of FIG. From the secondary side of the transformer 1A, the secondary terminals 15W1, 15W3 and the secondary neutral terminal 15W2 are drawn out and connected to the main circuit conductors 16 and 16N. These three conductors are used for the W-phase low voltage. It enters the housing 6A.
[0036]
After passing through the current transformer 17, the main circuit conductor 16 is connected to the low-voltage switch 7. The remaining one secondary neutral terminal 15W2 does not pass through the current transformer 17, and is connected to the low-voltage switch 7. Thereafter, the main circuit conductors 16 and 16N are connected to the communication main circuit conductors 18 and 18N required for connection to another bank, and the five main circuits are connected from the communication main circuit conductor 18 via the fuse wires 20A. Connected to fuse 20. Each of the fuses 20 is connected to a single-phase 100V load L.
[0037]
That is, in the U-phase low-voltage housing 4A, the V-phase low-voltage housing 5A, and the W-phase low-voltage housing 6A, a single-phase 100V load L can be obtained for five trunk lines. The U-phase low-pressure housing 4A, the V-phase low-pressure housing 5A, and the W-phase low-pressure housing 6A constitute one bank. Therefore, it is possible to obtain a single-phase 100 V load L of 15 trunks in one bank and 30 trunks in two banks. Because of the two-bank configuration, the bank of the transformer 1B has exactly the same configuration as the bank of the transformer 1A.
[0038]
The communication main circuit conductor 18 and the neutral communication main circuit conductor 18N are provided in the U-phase, V-phase, and W-phase low-voltage housings 4A, 5A, and 6A, respectively, with at least two buses and one neutral bus. Busbars are placed. In addition, the main circuit conductor 18 for communication and the main circuit conductor 18N for neutral communication are connected to the main circuit conductor 18 for communication in the low-voltage housings 4B, 5B, 6B for the U, V, and W phases of the other bank. Connected to the main circuit conductor 18N. Therefore, the V-phase bus and the U-phase bus are arranged in the W-phase low-voltage housing 6A, and a total of six buses and one neutral bus are arranged.
[0039]
The communication housing 8 will be described with reference to FIGS. FIG. 6 is a side view of the communication housing 8.
[0040]
The communication housing 8 houses the communication circuit breaker 9 and also draws out the tertiary terminal 14A from the tertiary winding 14 of the transformer 1A. The tertiary terminal 14A is connected to the electric wire 10. The electric wire 10 and the tertiary terminal 14A are drawn out from the opposite sides of the secondary terminals 15W1, 15W3 and the secondary neutral terminal 15W2. The electric wire 10 enters the communication housing 8 from inside the transformer housing 1 so as not to cross the secondary terminals 15W1 and 15W3. The electric wire 10 in the communication case 8 is connected to the tertiary switch 12.
[0041]
At the end of the tertiary switch 12, there is an interlocked switch 23 having one switch and two switches. For example, when there is a voltage in both banks, one of the switches in the interlocked switch 23 is turned on, and the other switch is turned off.
[0042]
In addition, when the transformer connected to the switch being turned off stops and the voltage is lost, the switch being turned on is turned off and the other circuit breaker is turned off. It becomes. Thereafter, it is connected to a three-phase 200 V load via a three-phase 200 V load switch 24. In addition, the power supply for operation and the power supply for controlling the extra high side are supplied.
[0043]
As described above, in this embodiment, the secondary winding 15 is divided into three delta connections so that three single-phase transformers are provided, and a single-phase three-wire connection in which a neutral wire is provided for each phase. I have. As a result, the secondary current of each phase of the secondary windings 15U, 15V, and 15W of the three single-phase transformers can be reduced by the divided current as compared with the conventional case.
[0044]
That is, in the prior art, a current of about 5000 amps on the secondary side was flowing through the main circuit conductor 16 and the connecting main circuit conductor 18. On the other hand, in the embodiment of the present invention, the current on the secondary side is divided into three phases by dividing the delta connection, so that a current of about 1600 amperes per phase that flows through the secondary winding 15 per phase is: It flows evenly through the main circuit conductor 16 and the connecting main circuit conductor 18.
[0045]
As a result, the eddy current and the normal current flowing through the main circuit conductor 16 and the connecting main circuit conductor 18 and the like in the embodiment of the present invention are reduced to about 1/3 as compared with the prior art, and the bus box 19 and the main circuit conductor 16 are reduced. The main circuit conductor for communication 18 and the like can be reduced to about 1/3, and the transformer, the transformer housing, and the low-voltage housing can be reduced.
[0046]
For example, assuming that the installation area of the conventional power receiving and transforming equipment is about 10, the installation area of the power receiving and transforming equipment of the present invention can be reduced to about 6 to 7. Further, the stainless steel materials used for the low-pressure housings 4A, 5A, 6A and the busbar box 19 can be reduced. Therefore, according to the transformer and the power receiving and transforming equipment of the present invention, the installation area and the cost can be reduced.
[0047]
Further, since the energization values of the main circuit conductor 16, the communication main circuit conductor 18 and the like are reduced, the low-voltage housings 4A, 5A, and 6A are separated into three so as to face each of the secondary conductors of the transformer. Can now be placed. In other words, when a short circuit fault occurs in each low-voltage housing, the fault current is small compared to the prior art, and there is little adverse effect on other low-voltage housings. Can be separated into bodies.
[0048]
As a result, the wiring of the U-phase, V-phase, and W-phase secondary windings 15U, 15V, and 15W can be easily understood from the low-voltage housing, and the transformer and the low-voltage housings 4A and 5A can be easily understood. , 6A can be prevented from being erroneously connected.
[0049]
Further, by pulling out the tertiary terminal 14A from the side opposite to the secondary terminals 15W1, 15W3 and the secondary neutral terminal 15W2, the pull-out operation is facilitated. For example, when the tertiary terminal 14A is drawn from the direction perpendicular to the secondary terminals 15U1 and 15U3, the tertiary terminal 14A is drawn from between the W-phase secondary winding 15W and the V-phase secondary winding 15V of the transformer. Sex worsens. Further, there is a disadvantage that an insulation distance is required.
[0050]
Furthermore, since the primary terminal 13 and the secondary terminals 15U1 and 15U3 are drawn out in the same direction, the transformer housing 1 can be reduced, and workability is further improved.
[0051]
Further, a case where the above-described embodiment is used as two lines and two banks will be described.
[0052]
That is, the primary winding 13 and the tertiary winding 14 are delta-connected with the two banks as transformers 1A and 1B, respectively, and the secondary winding 15 becomes three single-phase transformers 15U, 15V and 15W. The delta connection is divided into three parts, and a single-phase three-wire connection is provided in which a neutral line is provided for each phase. The low-voltage switch 7 is connected to the secondary windings 15W1 and 15W3 of the W-phase transformer 15 to perform low-voltage switching. The transformer 7 is connected to one side (transformer 1A side) and the other side (transformer 1B side) of the communication switch 9 so that when one transformer 1A is out of power, The switch 7 is opened and the communication switch 9 is closed to supply the electric power from the operating transformer 1B on the other side to the load L on the transformer 1A that is out of power.
[0053]
In the above-described embodiment, the low-voltage switch and the low-voltage housing have been described. However, it is needless to say that a normal switch and a non-low-voltage switch and housing can also be used.
[0054]
【The invention's effect】
As described above, according to the power receiving and transforming equipment of the present invention, it is possible to reduce the installation area and cost of the transformer and the power receiving and transforming equipment.
[Brief description of the drawings]
FIG. 1 is an equivalent circuit diagram of a transformer shown as an embodiment of the present invention.
FIG. 2 is a schematic plan view showing an arrangement of substation equipment using the transformer of FIG.
FIG. 3 is a system circuit diagram illustrating a system of the power receiving and transforming equipment of FIG. 2;
FIG. 4 is a sectional view of the bus box taken along the line CC of FIG. 3;
5 (A) and 5 (B) are a cross-sectional view taken along line AA of FIG. 2 and a cross-sectional view showing an iron core and windings of the transformer of FIG. 5 (A).
FIG. 6 is a sectional view taken along line BB of FIG. 2;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Transformer housing, 1A, 1B ... Transformer, 1Z ... Iron core, 4A, 5A, 6A ... Low pressure housing, 4B, 5B, 6B ... Low pressure housing, 7 ... Low voltage switch, 8 ... Communication housing, 9 Communication switch, 10 Wire, 12 Tertiary switch, 13 Primary winding, 13A Primary terminal, 14 Tertiary winding, 14A Tertiary terminal, 15 Secondary Winding, 15U, 15V, 15W ... U, V, W phase secondary winding, 15W1, 15W3 ... secondary terminal, 15W2 ... secondary neutral terminal, 16 ... main circuit conductor, 16N ... neutral Main circuit conductor, 17: Current transformer, 18: Main circuit conductor for connection, 18N: Main circuit conductor for neutral connection, 19: Busbar box, 20: Fuse.

Claims (7)

変圧器の一次側巻線の電力を二次側巻線及び三次側巻線に供給する変圧器において、前記変圧器の一次側巻線及び三次側巻線をデルタ結線にし、二次側巻線の各相をその各相が単相変圧器をなすようにデルタ結線を3分割し、各相毎に中性線を設けた単相3線結線とすることを特徴とする変圧器。In a transformer for supplying power of a primary winding of a transformer to a secondary winding and a tertiary winding, the primary winding and the tertiary winding of the transformer are delta-connected, and the secondary winding is Wherein each phase is divided into three delta connections so that each phase forms a single-phase transformer, and a single-phase three-wire connection is provided in which a neutral line is provided for each phase. 変圧器の一次側巻線の電力を二次側巻線及び三次側巻線に供給し、前記二次側巻線からの電力を複数の開閉器に供給すると共に、前記三次側巻線からの電力を三相負荷に供給する受変電設備において、前記変圧器の一次側巻線及び前記三次側巻線をデルタ結線にし、前記二次側巻線の各相をその各相が単相変圧器をなすようにデルタ結線を3分割し、各相毎に中性線を設けた単相3線結線とし、前記二次側巻線の各相に前記開閉器を接続することを特徴とする受変電設備。The power of the primary winding of the transformer is supplied to the secondary winding and the tertiary winding, and the power from the secondary winding is supplied to a plurality of switches. In a power receiving and supplying facility for supplying power to a three-phase load, the primary winding and the tertiary winding of the transformer are delta-connected, and each phase of the secondary winding is a single-phase transformer. The delta connection is divided into three so as to form a single-phase three-wire connection in which a neutral wire is provided for each phase, and the switch is connected to each phase of the secondary winding. Substation equipment. 変圧器の一次側巻線の電力を二次側巻線及び三次側巻線に供給し、前記二次側巻線からの電力を複数の開閉器に供給すると共に、前記三次側巻線からの電力を三相負荷に供給する受変電設備において、前記変圧器の一次側巻線及び前記三次側巻線をデルタ結線にし、前記二次側巻線の各相をその各相が単相変圧器をなすようにデルタ結線を3分割し、各相毎に中性線を設けた単相3線結線とし、前記二次側巻線の各相に前記開閉器を接続し、前記変圧器と前記二次側巻線の各相に対向する前記開閉器を筐体に収納することを特徴とする受変電設備。The power of the primary winding of the transformer is supplied to the secondary winding and the tertiary winding, and the power from the secondary winding is supplied to a plurality of switches. In a power receiving and supplying facility for supplying power to a three-phase load, the primary winding and the tertiary winding of the transformer are delta-connected, and each phase of the secondary winding is a single-phase transformer. The delta connection is divided into three so as to form a single-phase three-wire connection in which a neutral line is provided for each phase, the switch is connected to each phase of the secondary winding, and the transformer and the Power receiving and transforming equipment, wherein the switch facing each phase of the secondary winding is housed in a housing. 変圧器の一次側巻線の電力を二次側巻線及び三次側巻線に供給し、前記二次側巻線からの電力を複数の開閉器に供給すると共に、前記三次側巻線からの電力を三相負荷に供給する受変電設備において、前記変圧器の一次側巻線及び前記三次側巻線をデルタ結線にし、前記二次側巻線の各相をその各相が単相変圧器をなすようにデルタ結線を3分割し、各相毎に中性線を設けた単相3線結線とし、前記二次側巻線の各相に前記開閉器を接続し、前記二次側巻線を前記開閉器側に二次側引出端子として引出し、この二次側引出端子と反対側の前記三次側巻線から三次側引出端子を引出すことを特徴とする受変電設備。The power of the primary winding of the transformer is supplied to the secondary winding and the tertiary winding, and the power from the secondary winding is supplied to a plurality of switches. In a power receiving and supplying facility for supplying power to a three-phase load, the primary winding and the tertiary winding of the transformer are delta-connected, and each phase of the secondary winding is a single-phase transformer. The delta connection is divided into three to form a single-phase three-wire connection in which a neutral wire is provided for each phase, the switch is connected to each phase of the secondary winding, and the secondary winding is A power receiving and transforming facility, wherein a wire is drawn out to the switch as a secondary-side lead-out terminal, and a tertiary-side lead-out terminal is drawn out from the tertiary-side winding opposite to the secondary-side lead-out terminal. 変圧器として一次側巻線及び三次側巻線をデルタ結線にし、二次側巻線の各相をその各相が単相変圧器をなすようにデルタ結線を3分割し、各相毎に中性線を設けた単相3線結線とし、前記二次側巻線の各相に開閉器を接続し、前記開閉器を連絡用開閉器の一方側と他方側に接続し、一方側の変圧器が停電している時に、停電している側の前記開閉器を開放すると共に、前記連絡用開閉器を閉じて他方側の運転中の変圧器からの電力を停電している前記変圧器の負荷側に供給することを特徴とする受変電設備。As a transformer, the primary winding and the tertiary winding are delta-connected, and each phase of the secondary winding is divided into three delta connections so that each phase forms a single-phase transformer. A single-phase three-wire connection with a power line is provided, a switch is connected to each phase of the secondary winding, and the switch is connected to one side and the other side of the communication switch. When a power failure occurs in the transformer, the switch on the power failure side is opened, and the communication switch is closed to open the switch on the power failure side and the power supply from the operating transformer on the other side is interrupted. Substation equipment characterized by supplying to the load side. 前記二次側巻線の電流を各相に均等に分流することを特徴とする請求項2から5のいずれか1項に記載の受変電設備。The power receiving and transforming equipment according to any one of claims 2 to 5, wherein the current of the secondary winding is equally divided into each phase. 前記一次側巻線の一次側引出端子及び前記二次側巻線の二次側引出端子を、前記開閉器側に引出すことを特徴とする請求項2から5のいずれか1項に記載の受変電設備。The receptacle according to any one of claims 2 to 5, wherein a primary-side extraction terminal of the primary winding and a secondary-side extraction terminal of the secondary winding are extracted toward the switch. Substation equipment.
JP2003049174A 2003-02-26 2003-02-26 Transformer and receiving / transforming equipment Expired - Fee Related JP4076878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049174A JP4076878B2 (en) 2003-02-26 2003-02-26 Transformer and receiving / transforming equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049174A JP4076878B2 (en) 2003-02-26 2003-02-26 Transformer and receiving / transforming equipment

Publications (2)

Publication Number Publication Date
JP2004259945A true JP2004259945A (en) 2004-09-16
JP4076878B2 JP4076878B2 (en) 2008-04-16

Family

ID=33114958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049174A Expired - Fee Related JP4076878B2 (en) 2003-02-26 2003-02-26 Transformer and receiving / transforming equipment

Country Status (1)

Country Link
JP (1) JP4076878B2 (en)

Also Published As

Publication number Publication date
JP4076878B2 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
RU2007143590A (en) PANEL CONVERTER BUILT INTO THE DISTRIBUTION BOARD
JP2012084470A (en) Earth leakage breaker for distribution board and distribution board system
CN103151754A (en) Method and device for connecting inlet wire and outlet wire of low-voltage cable branch box
CA2701669C (en) Various methods and apparatuses for an integrated zig-zag transformer
KR101874988B1 (en) Load brake switch
JP4076878B2 (en) Transformer and receiving / transforming equipment
US20220013997A1 (en) Electrical equipment with additional compartment and wiring to account for temperature limitations of connected conductors
US8138745B2 (en) Power transformer distribution network and method of operating same
KR100696675B1 (en) A hydroelectricity arrangements of the special hightension
KR200411502Y1 (en) Air insulated outgoing Automatic Load Transfer Switch
KR20210043857A (en) Low voltage distribution box of underground location type and method for operating thereof
JP6688148B2 (en) Disconnector unit, load disconnector, and control center
JPH07297052A (en) Dual rated voltage transformer
JP3237671B2 (en) Network switchboard
JPH07264777A (en) Transformation panel board
CN215896989U (en) Electric cabinet based on novel branching mode
KR101837131B1 (en) Integrated module type electric swiching apparatus and electric supply equipment
JP2004312989A (en) Electric energy receiving and transforming facility
JP3277936B2 (en) switchboard
JP2005197623A (en) Space-saving power receiving power transformer and single pole type space-saving high voltage power receiving installation
KR200231521Y1 (en) A two capacities transformer
JP3587779B2 (en) switchboard
JPH04295206A (en) Cubicle
JP2006049731A (en) Transformer
JP2023132299A (en) Switching board and switcher

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees