JP2004259528A - Vacuum chamber for particle accelerator - Google Patents

Vacuum chamber for particle accelerator Download PDF

Info

Publication number
JP2004259528A
JP2004259528A JP2003047496A JP2003047496A JP2004259528A JP 2004259528 A JP2004259528 A JP 2004259528A JP 2003047496 A JP2003047496 A JP 2003047496A JP 2003047496 A JP2003047496 A JP 2003047496A JP 2004259528 A JP2004259528 A JP 2004259528A
Authority
JP
Japan
Prior art keywords
ceramic member
conductor layer
vacuum chamber
particle accelerator
inner peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003047496A
Other languages
Japanese (ja)
Other versions
JP4018997B2 (en
Inventor
Koichi Iwamoto
晃一 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003047496A priority Critical patent/JP4018997B2/en
Publication of JP2004259528A publication Critical patent/JP2004259528A/en
Application granted granted Critical
Publication of JP4018997B2 publication Critical patent/JP4018997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum chamber for a particle accelerator well controlling a charged particle by preventing a non-magnetic conductor layer in the chamber from generation of local defects. <P>SOLUTION: The vacuum chamber for a particle accelerator comprises a cylindrical ceramic member 1 having conductor layers arranged so as to extend over both end surfaces and an inner peripheral surface, cylinder-shaped metallic members 6 brazed to the conductor layers at the both end surfaces of the ceramic member 1, coaxially with the ceramic member, respectively, and the non-magnetic conductor layer 5 covering a whole inner surface of the ceramic member 1 and the metallic member 6. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高周波またはパルス状の電磁場によって電子、重粒子等の荷電粒子を加速および偏向させるための粒子加速器用真空チャンバに関する。
【0002】
【従来の技術】
従来の粒子加速器用真空チャンバを図2に示す。図2は粒子加速器用真空チャンバの断面図である。図2で、11は電気絶縁性でありかつ非磁性材料から成る筒状のセラミック部材であり、その内部は高周波またはパルス状電磁場により電子、重粒子等の荷電粒子を加速あるいは偏向させる際の荷電粒子の軌道となる真空空間として作用する。
【0003】
また、16はセラミック部材11の両端面にロウ付けされた筒状の金属部材であり、鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金や鉄(Fe)−ニッケル(Ni)合金等からなり、その内部は真空空間を形成し、セラミック部材11との接合面と反対側の端部が他の真空容器や真空部品に接続されることにより真空空間を連続的に形成する。
【0004】
17はセラミック部材11の端面に予め被着されたモリブデン(Mo)−マンガン(Mn)メタライズ層の表面にNiメッキ層を被着させた導体層であり、このセラミック部材11の端面の導体層17と金属部材16とがロウ材18を介して接合される。
【0005】
また、15はセラミック部材11および金属部材16の内周面に形成された非磁性導体層であり、チタン(Ti)や窒化チタン(TiN)等の導電性の非磁性材料から成る。
【0006】
このような非磁性導体層15は、セラミック部材11と金属部材16とをロウ付けした後、これらの内周面に真空蒸着法により被着させることにより形成される。
【0007】
そして、粒子加速器でこのような真空チャンバを使用する場合、セラミック部材11の中心付近を荷電粒子が通過する。この時に発生する電場分布が荷電粒子軌道方向において常に一定であることが求められるため、非磁性導体層15は局所的な欠陥が無いように連続して粒子加速器用真空チャンバの内周面に被着形成されている必要がある(例えば、下記の特許文献1参照)。
【0008】
【特許文献1】
特開平5−275131号公報
【0009】
【発明が解決しようとする課題】
しかしながら、上記従来の粒子加速器用真空チャンバにおいて、セラミック部材11と金属部材16をロウ付けする際、ロウ材18が導体層17の端部より、セラミック部材11の内側に突出してはみ出し易く、このロウ材18のはみ出し部がセラミック部材11の内周面の開口端を全周にわたって覆ってしまい、ロウ材18のはみ出し部においてセラミック部材11の内周面に非磁性導体層15が全周にわたって形成されないという問題があった。
【0010】
そのため、非磁性導体層15と導体層17とが電気的に非接触となっている部分が全周にわたって発生し、これにより粒子加速器中で使用した場合、荷電粒子により発生する電場やセラミック部材11の外部に設けられるマグネットによる変動磁場により、非磁性導体層15と導体層17との間で放電が発生し、荷電粒子の制御に悪影響をおよぼすという問題があった。
【0011】
本発明は、かかる従来技術の問題点に鑑み案出されたものであり、その目的は、粒子加速器用真空チャンバの内部の非磁性導体層に局所的な欠陥が生じるのを防止して荷電粒子の制御が良好な粒子加速器用真空チャンバを提供することにある。
【0012】
【課題を解決するための手段】
本発明の粒子加速器用真空チャンバは、両端面から内周面にかけて導体層がそれぞれ形成された筒状のセラミック部材と、該セラミック部材の前記両端面の前記導体層にそれぞれ前記セラミック部材と同軸状にロウ付けされた筒状の金属部材と、前記セラミック部材および前記金属部材の内周面の全面に被着された非磁性導体層とを具備していることを特徴とする。
【0013】
本発明の粒子加速用真空チャンバは、両端面から内周面にかけて導体層がそれぞれ形成された筒状のセラミック部材と、このセラミック部材の両端面の導体層にそれぞれセラミック部材と同軸状にロウ付けされた筒状の金属部材と、セラミック部材および金属部材の内周面の全面に被着された非磁性導体層とを具備していることにより、セラミック部材と金属部材とを接合するロウ材をセラミック部材の内周面に形成した導体層の表面に濡れ広がらせることができ、ロウ材がセラミック部材の内側に部分的に突出することなく全周にわたってなだらかな表面となるように被着させることができる。その結果、局所的に非磁性導体層と導体層とが電気的に非接触となっている部分が発生することを抑制することができるため、荷電粒子により発生する電場やセラミック部材の外部に設けられるマグネットによる変動磁場により局部的に放電が発生し、荷電粒子の制御に悪影響をおよぼすようなことが無くなり、また、マグネットにより発生した磁場に悪影響をおよぼすこともなくなるため、より信頼性の高い粒子加速器用真空チャンバとすることができる。
【0014】
【発明の実施の形態】
本発明の粒子加速器用真空チャンバを以下に詳細に説明する。図1は本発明の粒子加速器用真空チャンバについて実施の形態の一例を示す断面図である。図1において、1はセラミック部材、5は非磁性導体層で、6は金属部材、7は導体層、8はロウ材である。
【0015】
本発明のセラミック部材1は、アルミナ(Al)質焼結体,窒化ケイ素(SiN)質焼結体,窒化アルミ(AlN)質焼結体等のセラミックスから成り、電気的に絶縁性の非磁性材料から成る筒状体である。また、セラミック部材1は、その軸方向に垂直な断面形状が円形、楕円形および一対の対向する直線部の両端同士を円弧状の曲線で結んだ長円形状等であり、その内部空間は電子等の荷電粒子を加速させるためのものである。
【0016】
金属部材6はセラミック部材1の両端面にロウ付けされた筒状のものであり、Fe−Ni−Co合金やFe−Ni合金等の金属からなる。そして、その内部は真空空間となっており、セラミック部材1との接合面と反対側の端部が他の真空容器や真空部品に接続されることにより、セラミック部材1、金属部材6、真空容器および真空部品による連続した真空空間が形成される。
【0017】
また、セラミック部材1の両端面から内周面にかけて導体層7が被着形成されている。この導体層7はMo−Mn等のメタライズ層から成り、その表面にはロウ材8の濡れ性をよくしてロウ材8との密着性を向上させるためにNiメッキ層などが被着されているのがよい。
【0018】
非磁性導体層5は、セラミック部材1および金属部材6の内周面に形成されており、TiまたはTiN等の導電性の非磁性材料から成る。このような非磁性導体層5は、セラミック部材1と金属部材6とをロウ材8で接合した後、これらの内周面に真空蒸着法により被着されることにより形成される。
【0019】
導体層7は、セラミック部材1の内周面の部位の幅が4乃至10mmであるのがよい。これにより、セラミック部材1と金属部材6とを接合するロウ材8をセラミック部材1の内周面に形成した導体層7の表面に濡れ広がらせることができ、ロウ材8がセラミック部材1の内側に部分的に突出することなく全周にわたってなだらかな表面となるように被着させることができる。その結果、局所的に非磁性導体層5と導体層7とが電気的に非接触となっている部分が発生することを抑制することができるため、荷電粒子により発生する電場やセラミック部材1の外部に設けられるマグネットによる変動磁場により局部的に放電が発生し、荷電粒子の制御に悪影響をおよぼすようなことが無くなり、また、マグネットにより発生した磁場に悪影響をおよぼすこともなくなるため、より信頼性の高い粒子加速器用真空チャンバとすることができる。
【0020】
導体層7の幅が4mmより小さい場合、セラミック部材1と金属部材6とをロウ付けした際、流れ出したロウ材8が導体層7の端部に溜まり、セラミック部材1の内側に突出してはみ出し易くなり、その結果、このロウ材8のはみ出し部がセラミック部材1の開口の一部を覆ってセラミック部材1の内面に非磁性導体層5が形成され難くなる。また、導体層7の幅が10mmを超え場合、Niメッキ層の磁性が大きくなって無視できなくなり、粒子加速器中で使用した場合、マグネットにより発生する磁場に対してNiメッキ層の磁性が悪影響をおよぼし易くなる。
【0021】
【実施例】
本発明の粒子加速器用真空チャンバの実施例について以下に説明する。
【0022】
図1の構成の粒子加速器用真空チャンバを以下のようにして製作した。純度約99重量%のアルミナ質焼結体からなり、電気的に絶縁性の非磁性材料からなる筒状体のセラミック部材1を用意した。このセラミック部材1は、内径72.7mm、外径78.5mm、全長300mmであった。
【0023】
そして、セラミック部材1の両端面および両端面から内周面にかけて4mmの範囲にMo粉末、Mn粉末および酸化ケイ素(SiO)粉末に有機バインダや溶剤を混合してなる金属ペーストを、約10μmの厚さとなるように印刷塗布し、乾燥後加湿したフォーミングガス中で約1400℃の温度で焼成して、セラミック部材1にMo−Mn合金からなるメタライズ層を被着した。
【0024】
その後、メタライズ層上にNiメッキ層を電解メッキ法により約2μmの厚さで被着して導体層7を形成した。
【0025】
しかる後、セラミック部材1の両端面に筒状の金属部材6をロウ付けした。金属部材6はFe−Ni−Co合金からなり、内径73mm、外径74.5mmの円筒形状で軸方向の長さは15mmであった。
【0026】
そして、ロウ材8としてのAg−Cu合金からなる箔をセラミック部材1と金属部材6との接合部に設置し粒子加速器用真空チャンバ全体を820℃に加熱してロウ付けした。
【0027】
最後に、セラミック部材1および金属部材6の内面に真空蒸着法によりTiの非磁性導体層5を膜厚5μm形成した。
【0028】
このようにして製作したサンプルを粒子加速器中で使用したが、問題なく目的の性能を発揮し、加速器の構成部品として機能した。
【0029】
次にセラミック部材1の内周面の導体層7の幅を10mmとすること以外は同様にして粒子加速器用真空チャンバを製作し、加速器中で使用したが、問題なく目的の性能を発揮し、加速器の構成部品として機能した。
【0030】
次にセラミック部材1の内周面の導体層7の幅を3mmとすること以外は同様にして粒子加速器用真空チャンバを製作し、加速器中で使用したが、荷電粒子により発生する電場やセラミック部材1の外部に設けられたマグネットによる変動磁場により局所的に放電が発生し、荷電粒子の安定的な制御に問題が起きた。
【0031】
次にセラミック部材1の内周面の導体層7の幅を11mmとすること以外は同様にして粒子加速器用真空チャンバを製作し、加速器中で使用したが、セラミック部材1の外部に設けられるマグネットのよる変動磁場が導体層7の磁性により、正しく荷電粒子に作用せず、荷電粒子の安定的な制御が困難になった。
【0032】
以上のことから、本発明の粒子加速器用真空チャンバは局所的に非磁性導体層5と導体層7とが電気的に非接触となっている部分が発生せず、特にセラミック部材1の内周面の導体層7が4〜10mmであるときに優れた効果を有するものであることがわかった。
【0033】
なお、本発明は以上の実施の形態の例および実施例に限定されず、本発明の要旨を逸脱しない範囲内で種々の変更を行うことは何ら差し支えない。
【0034】
【発明の効果】
本発明の粒子加速用真空チャンバは、両端面から内周面にかけて導体層がそれぞれ形成された筒状のセラミック部材と、このセラミック部材の両端面の導体層にそれぞれセラミック部材と同軸状にロウ付けされた筒状の金属部材と、セラミック部材および金属部材の内周面の全面に被着された非磁性導体層とを具備していることにより、セラミック部材と金属部材とを接合するロウ材をセラミック部材の内周面に形成した導体層の表面に濡れ広がらせることができ、ロウ材がセラミック部材の内側に部分的に突出することなく全周にわたってなだらかな表面となるように被着させることができる。その結果、局所的に非磁性導体層と導体層とが電気的に非接触となっている部分が発生することを抑制することができるため、荷電粒子により発生する電場やセラミック部材の外部に設けられるマグネットによる変動磁場により局部的に放電が発生し、荷電粒子の制御に悪影響をおよぼすようなことが無くなり、また、マグネットにより発生した磁場に悪影響をおよぼすこともなくなるため、より信頼性の高い粒子加速器用真空チャンバとすることができる。
【図面の簡単な説明】
【図1】本発明の粒子加速器用真空チャンバについて実施の形態の一例を示す断面図である。
【図2】従来の粒子加速器用真空チャンバを示す断面図である。
【符号の説明】
1:セラミック部材
5:非磁性導体層
6:金属部材
7:導体層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vacuum chamber for a particle accelerator for accelerating and deflecting charged particles such as electrons and heavy particles by a high-frequency or pulsed electromagnetic field.
[0002]
[Prior art]
FIG. 2 shows a conventional vacuum chamber for a particle accelerator. FIG. 2 is a sectional view of a vacuum chamber for a particle accelerator. In FIG. 2, reference numeral 11 denotes a cylindrical ceramic member which is electrically insulating and made of a non-magnetic material, and the inside of which is charged when accelerating or deflecting charged particles such as electrons and heavy particles by a high frequency or pulsed electromagnetic field. Acts as a vacuum space that orbits particles.
[0003]
Reference numeral 16 denotes a cylindrical metal member brazed to both end surfaces of the ceramic member 11, such as an iron (Fe) -nickel (Ni) -cobalt (Co) alloy or an iron (Fe) -nickel (Ni) alloy. The inside thereof forms a vacuum space, and the vacuum space is continuously formed by connecting the end opposite to the joint surface with the ceramic member 11 to another vacuum vessel or vacuum component.
[0004]
Reference numeral 17 denotes a conductor layer in which a Ni plating layer is deposited on the surface of a molybdenum (Mo) -manganese (Mn) metallized layer previously deposited on the end face of the ceramic member 11. And the metal member 16 are joined via the brazing material 18.
[0005]
Reference numeral 15 denotes a nonmagnetic conductor layer formed on the inner peripheral surfaces of the ceramic member 11 and the metal member 16 and is made of a conductive nonmagnetic material such as titanium (Ti) or titanium nitride (TiN).
[0006]
Such a non-magnetic conductor layer 15 is formed by brazing the ceramic member 11 and the metal member 16 and then attaching the ceramic member 11 and the metal member 16 to their inner peripheral surfaces by a vacuum deposition method.
[0007]
When such a vacuum chamber is used in a particle accelerator, charged particles pass near the center of the ceramic member 11. Since the electric field distribution generated at this time is required to be always constant in the charged particle orbital direction, the nonmagnetic conductor layer 15 is continuously coated on the inner peripheral surface of the particle accelerator vacuum chamber so as not to have local defects. It needs to be formed (for example, see Patent Document 1 below).
[0008]
[Patent Document 1]
JP-A-5-275131
[Problems to be solved by the invention]
However, when the ceramic member 11 and the metal member 16 are brazed in the above-described conventional vacuum chamber for a particle accelerator, the brazing material 18 easily projects from the end of the conductor layer 17 to the inside of the ceramic member 11 and protrudes. The protruding portion of the material 18 covers the entire open end of the inner peripheral surface of the ceramic member 11, and the nonmagnetic conductor layer 15 is not formed on the inner peripheral surface of the ceramic member 11 over the entire periphery of the protruding portion of the brazing material 18. There was a problem.
[0010]
Therefore, a portion where the nonmagnetic conductive layer 15 and the conductive layer 17 are not electrically in contact with each other is generated over the entire circumference, and when used in a particle accelerator, the electric field generated by the charged particles and the ceramic member 11 There is a problem that a discharge is generated between the non-magnetic conductor layer 15 and the conductor layer 17 due to a fluctuating magnetic field generated by a magnet provided outside the semiconductor device, which adversely affects the control of charged particles.
[0011]
The present invention has been devised in view of the problems of the related art, and has as its object to prevent the occurrence of local defects in a nonmagnetic conductor layer inside a vacuum chamber for a particle accelerator to prevent charged particles from being generated. The object of the present invention is to provide a vacuum chamber for a particle accelerator having good control of the particle accelerator.
[0012]
[Means for Solving the Problems]
The vacuum chamber for a particle accelerator according to the present invention has a cylindrical ceramic member in which a conductor layer is formed from both end surfaces to an inner peripheral surface, and the conductor layer on both end surfaces of the ceramic member is coaxial with the ceramic member. And a non-magnetic conductor layer attached to the entire surface of the ceramic member and the inner peripheral surface of the metal member.
[0013]
A vacuum chamber for accelerating particles according to the present invention includes a cylindrical ceramic member having conductor layers formed from both end surfaces to an inner peripheral surface, and brazing to the conductor layers on both end surfaces of the ceramic member coaxially with the ceramic member. By providing a cylindrical metal member, and a non-magnetic conductor layer applied to the entire inner peripheral surface of the ceramic member and the metal member, a brazing material for joining the ceramic member and the metal member is formed. The brazing material can be spread over the surface of the conductor layer formed on the inner peripheral surface of the ceramic member so that the brazing material has a smooth surface over the entire periphery without partially protruding inside the ceramic member. Can be. As a result, it is possible to suppress the occurrence of a portion where the nonmagnetic conductor layer and the conductor layer are not electrically in contact with each other locally. Therefore, the nonmagnetic conductor layer is provided outside the ceramic member or the electric field generated by the charged particles. Discharge does not occur locally due to the fluctuating magnetic field generated by the magnet, which does not adversely affect the control of charged particles, and does not adversely affect the magnetic field generated by the magnet. It can be a vacuum chamber for an accelerator.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The vacuum chamber for a particle accelerator of the present invention will be described in detail below. FIG. 1 is a sectional view showing an example of an embodiment of a vacuum chamber for a particle accelerator according to the present invention. In FIG. 1, 1 is a ceramic member, 5 is a nonmagnetic conductor layer, 6 is a metal member, 7 is a conductor layer, and 8 is a brazing material.
[0015]
The ceramic member 1 of the present invention is made of ceramic such as alumina (Al 2 O 3 ) sintered body, silicon nitride (SiN) sintered body, aluminum nitride (AlN) based sintered body, and is electrically insulating. Is a cylindrical body made of the non-magnetic material. The ceramic member 1 has a circular cross section perpendicular to the axial direction, an elliptical shape, an elliptical shape in which both ends of a pair of opposed linear portions are connected by an arc-shaped curve, and the like. Etc. for accelerating charged particles.
[0016]
The metal member 6 is a cylindrical member brazed to both end surfaces of the ceramic member 1 and is made of a metal such as an Fe-Ni-Co alloy or an Fe-Ni alloy. The inside is a vacuum space, and the end opposite to the joining surface with the ceramic member 1 is connected to another vacuum container or vacuum component, so that the ceramic member 1, the metal member 6, the vacuum container And a continuous vacuum space formed by vacuum components.
[0017]
In addition, a conductor layer 7 is formed from both end surfaces of the ceramic member 1 to the inner peripheral surface. The conductor layer 7 is formed of a metallized layer such as Mo-Mn. A Ni plating layer or the like is adhered on the surface of the conductor layer 7 in order to improve the wettability of the brazing material 8 and improve the adhesion with the brazing material 8. Good to be.
[0018]
The nonmagnetic conductor layer 5 is formed on the inner peripheral surfaces of the ceramic member 1 and the metal member 6, and is made of a conductive nonmagnetic material such as Ti or TiN. Such a non-magnetic conductor layer 5 is formed by joining the ceramic member 1 and the metal member 6 with the brazing material 8, and then attaching the ceramic member 1 and the metal member 6 to their inner peripheral surfaces by a vacuum deposition method.
[0019]
The width of the conductor layer 7 on the inner peripheral surface of the ceramic member 1 is preferably 4 to 10 mm. Thereby, the brazing material 8 joining the ceramic member 1 and the metal member 6 can be spread on the surface of the conductor layer 7 formed on the inner peripheral surface of the ceramic member 1, and the brazing material 8 is Can be applied so as to have a gentle surface over the entire circumference without partially protruding. As a result, it is possible to suppress the occurrence of a portion where the non-magnetic conductor layer 5 and the conductor layer 7 are not electrically in contact with each other locally. Discharge does not occur locally due to the fluctuating magnetic field caused by the magnet provided outside, which does not adversely affect the control of charged particles, and does not adversely affect the magnetic field generated by the magnet. And a vacuum chamber for a particle accelerator having a high density.
[0020]
When the width of the conductor layer 7 is smaller than 4 mm, when the ceramic member 1 and the metal member 6 are brazed, the brazing material 8 that has flowed out collects at the end of the conductor layer 7 and easily protrudes inside the ceramic member 1 and protrudes. As a result, the protruding portion of the brazing material 8 covers a part of the opening of the ceramic member 1 so that the nonmagnetic conductor layer 5 is hardly formed on the inner surface of the ceramic member 1. When the width of the conductor layer 7 exceeds 10 mm, the magnetism of the Ni plating layer becomes large and cannot be ignored, and when used in a particle accelerator, the magnetism of the Ni plating layer adversely affects the magnetic field generated by the magnet. Easy to reach.
[0021]
【Example】
An embodiment of the vacuum chamber for a particle accelerator according to the present invention will be described below.
[0022]
The vacuum chamber for a particle accelerator having the configuration of FIG. 1 was manufactured as follows. A cylindrical ceramic member 1 made of an alumina sintered body having a purity of about 99% by weight and made of an electrically insulating nonmagnetic material was prepared. This ceramic member 1 had an inner diameter of 72.7 mm, an outer diameter of 78.5 mm, and a total length of 300 mm.
[0023]
Then, a metal paste obtained by mixing an organic binder and a solvent with Mo powder, Mn powder and silicon oxide (SiO 2 ) powder in a range of 4 mm from both end surfaces and both end surfaces to the inner peripheral surface of the ceramic member 1 is applied to a thickness of about 10 μm. A metallized layer made of a Mo—Mn alloy was applied to the ceramic member 1 by printing and applying it to a thickness, firing it at a temperature of about 1400 ° C. in a humidified forming gas after drying.
[0024]
Thereafter, a Ni plating layer was applied to a thickness of about 2 μm on the metallized layer by electrolytic plating to form a conductor layer 7.
[0025]
Thereafter, cylindrical metal members 6 were brazed to both end surfaces of the ceramic member 1. The metal member 6 was made of an Fe—Ni—Co alloy, had a cylindrical shape with an inner diameter of 73 mm and an outer diameter of 74.5 mm, and had a length in the axial direction of 15 mm.
[0026]
Then, a foil made of an Ag—Cu alloy as the brazing material 8 was placed at the joint between the ceramic member 1 and the metal member 6, and the entire vacuum chamber for the particle accelerator was heated to 820 ° C. and brazed.
[0027]
Finally, a non-magnetic conductive layer 5 of Ti was formed to a thickness of 5 μm on the inner surfaces of the ceramic member 1 and the metal member 6 by a vacuum evaporation method.
[0028]
The sample produced in this way was used in a particle accelerator, but exhibited the desired performance without any problem and functioned as a component of the accelerator.
[0029]
Next, except that the width of the conductor layer 7 on the inner peripheral surface of the ceramic member 1 was set to 10 mm, a vacuum chamber for a particle accelerator was manufactured in the same manner and used in the accelerator. Functioned as a component of the accelerator.
[0030]
Next, except that the width of the conductor layer 7 on the inner peripheral surface of the ceramic member 1 was set to 3 mm, a vacuum chamber for a particle accelerator was manufactured in the same manner and used in the accelerator, but an electric field generated by charged particles and a ceramic member were used. Discharge occurred locally due to a fluctuating magnetic field generated by a magnet provided outside the device 1, causing a problem in stable control of charged particles.
[0031]
Next, a vacuum chamber for a particle accelerator was manufactured in the same manner except that the width of the conductor layer 7 on the inner peripheral surface of the ceramic member 1 was set to 11 mm, and the vacuum chamber was used in the accelerator. Due to the magnetic field of the conductor layer 7, the fluctuating magnetic field does not act on the charged particles correctly, and stable control of the charged particles becomes difficult.
[0032]
From the above, in the vacuum chamber for a particle accelerator of the present invention, a portion where the nonmagnetic conductor layer 5 and the conductor layer 7 are not electrically in contact with each other is not locally generated, and particularly, the inner periphery of the ceramic member 1 It was found that when the surface conductor layer 7 was 4 to 10 mm, the effect was excellent.
[0033]
It should be noted that the present invention is not limited to the above-described embodiments and examples, and various changes may be made without departing from the spirit of the present invention.
[0034]
【The invention's effect】
A vacuum chamber for accelerating particles according to the present invention includes a cylindrical ceramic member having conductor layers formed from both end surfaces to an inner peripheral surface, and brazing to the conductor layers on both end surfaces of the ceramic member coaxially with the ceramic member. By providing a cylindrical metal member, and a non-magnetic conductor layer applied to the entire inner peripheral surface of the ceramic member and the metal member, a brazing material for joining the ceramic member and the metal member is formed. The brazing material can be spread over the surface of the conductor layer formed on the inner peripheral surface of the ceramic member so that the brazing material has a smooth surface over the entire periphery without partially protruding inside the ceramic member. Can be. As a result, it is possible to suppress the occurrence of a portion where the nonmagnetic conductor layer and the conductor layer are not electrically in contact with each other locally. Therefore, the nonmagnetic conductor layer is provided outside the ceramic member or the electric field generated by the charged particles. Discharge does not occur locally due to the fluctuating magnetic field generated by the magnet, which does not adversely affect the control of charged particles. It can be a vacuum chamber for an accelerator.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an embodiment of a vacuum chamber for a particle accelerator according to the present invention.
FIG. 2 is a sectional view showing a conventional vacuum chamber for a particle accelerator.
[Explanation of symbols]
1: ceramic member 5: nonmagnetic conductor layer 6: metal member 7: conductor layer

Claims (2)

両端面から内周面にかけて導体層がそれぞれ形成された筒状のセラミック部材と、該セラミック部材の前記両端面の前記導体層にそれぞれ前記セラミック部材と同軸状にロウ付けされた筒状の金属部材と、前記セラミック部材および前記金属部材の内周面の全面に被着された非磁性導体層とを具備していることを特徴とする粒子加速器用真空チャンバ。A cylindrical ceramic member having a conductor layer formed from both end surfaces to an inner peripheral surface; and a cylindrical metal member brazed coaxially with the ceramic member to the conductor layers on both end surfaces of the ceramic member. And a non-magnetic conductor layer applied to the entire inner peripheral surface of the ceramic member and the metal member. 前記導体層は、前記セラミック部材の内周面の部位の幅が4乃至10mmであることを特徴とする請求項1記載の粒子加速器用真空チャンバ。2. The vacuum chamber for a particle accelerator according to claim 1, wherein the conductor layer has a width of 4 to 10 mm on an inner peripheral surface of the ceramic member. 3.
JP2003047496A 2003-02-25 2003-02-25 Vacuum chamber for particle accelerator Expired - Fee Related JP4018997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047496A JP4018997B2 (en) 2003-02-25 2003-02-25 Vacuum chamber for particle accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047496A JP4018997B2 (en) 2003-02-25 2003-02-25 Vacuum chamber for particle accelerator

Publications (2)

Publication Number Publication Date
JP2004259528A true JP2004259528A (en) 2004-09-16
JP4018997B2 JP4018997B2 (en) 2007-12-05

Family

ID=33113738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047496A Expired - Fee Related JP4018997B2 (en) 2003-02-25 2003-02-25 Vacuum chamber for particle accelerator

Country Status (1)

Country Link
JP (1) JP4018997B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110431920A (en) * 2017-03-24 2019-11-08 京瓷株式会社 Component is used in electromagnetic field control
WO2021040016A1 (en) * 2019-08-29 2021-03-04 京セラ株式会社 Member for controlling electromagnetic field

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110431920A (en) * 2017-03-24 2019-11-08 京瓷株式会社 Component is used in electromagnetic field control
CN110431920B (en) * 2017-03-24 2021-05-25 京瓷株式会社 Component for controlling electromagnetic field
WO2021040016A1 (en) * 2019-08-29 2021-03-04 京セラ株式会社 Member for controlling electromagnetic field
JPWO2021040016A1 (en) * 2019-08-29 2021-03-04
JP7203233B2 (en) 2019-08-29 2023-01-12 京セラ株式会社 Electromagnetic field control parts

Also Published As

Publication number Publication date
JP4018997B2 (en) 2007-12-05

Similar Documents

Publication Publication Date Title
US9892833B2 (en) Magnetic powder and coil electronic component containing the same
JP6502627B2 (en) Coil parts and electronic devices
US11225720B2 (en) Magnetic powder, and manufacturing method thereof
JP2019220609A (en) Magnetic substrate including metal magnetic particles and electronic component including magnetic substrate
US20230162908A1 (en) Coil component
JP2009290624A (en) Antenna device
US20220351883A1 (en) Coil component
JP4018997B2 (en) Vacuum chamber for particle accelerator
JP4836837B2 (en) Method for producing core-shell magnetic nanoparticles
US10818424B2 (en) Coil component
US20220199313A1 (en) Coil component
US6524707B1 (en) Carbon-bonded metal structures and methods of fabrication
JP2000252121A (en) HIGH-FREQUENCY Co-BASED METALLIC AMORPHOUS MAGNETIC FILM, AND MAGNETIC ELEMENT, INDUCTOR AND TRANSFORMER USING THE SAME
US20180033541A1 (en) Coil component and method of manufacturing the same
US3475707A (en) Porous intermediate layer for affixing lossy coatings to r.f. tube circuits
JP6366496B2 (en) Radio wave absorber and method of manufacturing radio wave absorber
JP7441370B1 (en) ceramic susceptor
JP2003002768A (en) Ceramic member, joined body and container for vacuum switch
US11881346B2 (en) Coil electronic component
JP5517816B2 (en) Ceramic body with conductive layer, and joined body of ceramic and metal
JP2002231060A (en) Magnetic wire
KR20210090029A (en) Magnetic powder and coil component containing the same
KR870004130Y1 (en) A magnetron
JP4578033B2 (en) Insulation joint
JP2004179083A (en) Vacuum terminal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070921

R150 Certificate of patent or registration of utility model

Ref document number: 4018997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees