JP2004258565A - Optical scanner - Google Patents

Optical scanner Download PDF

Info

Publication number
JP2004258565A
JP2004258565A JP2003052109A JP2003052109A JP2004258565A JP 2004258565 A JP2004258565 A JP 2004258565A JP 2003052109 A JP2003052109 A JP 2003052109A JP 2003052109 A JP2003052109 A JP 2003052109A JP 2004258565 A JP2004258565 A JP 2004258565A
Authority
JP
Japan
Prior art keywords
lens
scanning direction
light source
semiconductor laser
lens system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003052109A
Other languages
Japanese (ja)
Inventor
Kazuhiro Akatsu
和宏 赤津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Printing Systems Ltd
Original Assignee
Hitachi Printing Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Printing Solutions Inc filed Critical Hitachi Printing Solutions Inc
Priority to JP2003052109A priority Critical patent/JP2004258565A/en
Publication of JP2004258565A publication Critical patent/JP2004258565A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the relative positions of such a light source as a semiconductor laser and a collimator lens are displaced after an adjustment due to the variation in temperature, vibration or the like when the number of components for supporting and adjusting such the light source as the semiconductor laser and the collimator lens is large because the sensitivity of the optical axis adjustment of the semiconductor laser is high. <P>SOLUTION: The light source and the image focusing lens system are made adjustable in the advancing direction of a luminous flux, and at least a spherical lens included in a shaping lens system is adjustable in two directions of scanning and sub-scanning directions, or at least a lens having a curvature in the scanning direction and included in the shaping lens system is adjustable in the scanning direction and at least a lens having a curvature in the sub-scanning direction is made adjustable in the sub-scanning direction. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はレーザプリンタ等に用いられる光走査装置に係る。
【0002】
【従来の技術】
図11、図12は、従来の半導体レーザ等の光源ホルダの一例を示す。図11において、半導体レーザ25が固定され、コリメートレンズ41は半導体レーザ25から射出されるレーザビームを通過させる筒状のレンズ保持体65内に進退自在に配置されている。半導体レーザ25に対するコリメートレンズ41の位置決めを行ったら、接着剤流動溝66から接着剤を注入しレンズ保持体65内でコリメートレンズ41を固定することで、半導体レーザ25に対するコリメートレンズ41の位置決めが完了する(例えば、特許文献1参照。)。
【0003】
図12において、半導体レーザから出力されるレーザビームをコリメートレンズの光軸と一致させる調整と半導体レーザとコリメートレンズの間隔の調整とを簡単に行うものである。構成はコリメートレンズユニット91にコリメートレンズ41が固定されており、半導体レーザ25を光軸方向に調整自在に配置されたLD取付部材81が、光軸と垂直な平面内で調整自在な状態でこのコリメートレンズユニット91に取りつけている。この調整でレーザビームを光軸と一致させ、半導体レーザ25とコリメートレンズ41の間隔調整は、半導体レーザ25と間隔部材96を介して接触する調整ネジ86を進退させることによって行うようになっている。
【0004】
図3はさらに他の例を示す。図3において、半導体レーザなどの光源1は、半導体レーザ固定ネジ4によって半導体レーザホルダ3へ固定される。半導体レーザホルダ3には、通すネジの軸より十分大きい穴2があけてある。
【0005】
図4は、従来の半導体レーザホルダとコリメータレンズホルダを示す図である。半導体レーザホルダ固定ネジ7は半導体レーザホルダ3の穴2をとおりコリメータレンズ10を固定しているコリメータレンズホルダ5のねじ穴6へ入り、半導体レーザホルダ3とコリメータレンズホルダ5を一体化させる。この時半導体レーザホルダ3の穴2は大きいので光軸に垂直な平面内で自由にコリメータレンズホルダ5と半導体レーザホルダ3の位置を変化させ固定することができる。
【0006】
図5は、走査光学系の走査方向のレンズ構成例を示す図である。半導体レーザなどの光源1から光束は発生し、コリメータレンズ10で平行光にされる。このあと光束はシリンドリカルレンズ11、球面レンズ12を通って光偏向手段13上へ導かれる。光偏向手段13で偏向走査された光束はFθレンズ14を通って被走査媒体15へ結像する。なお、シリンドリカルレンズ11へ入る光束はシリンドリカルレンズ11と球面レンズ12によって、平行なビームを、幅の異なる平行なビームに変化させられる。そのため、コリメータレンズ10の焦点距離をa、シリンドリカルレンズ11の焦点距離をb、球面レンズ12の焦点距離をcとしたときに、半導体レーザなどの光源1とコリメータレンズ10の距離をa、シリンドリカルレンズ11と球面レンズ12の距離をb+c、球面レンズ12と光偏向手段13の距離をcとしている。
【0007】
図6は走査光学系の副走査方向の構成例を示す図である。半導体レーザなどの光源1から光束は発生し、コリメータレンズ10を通り、シリンドリカルレンズ11を通過し、球面レンズ12で光偏向手段13に絞り込まれる。その後偏向走査された光束は、Fθレンズ14によって、被走査媒体15へ結像される。Fθレンズ14は、光偏向手段13の所定の場所へ所定の入射角度で導かれた場合に、走査全域にわたり小さなスポット径で走査できるような特性になっている。よって、半導体レーザなどの光源1から発生し、コリメータレンズ10、シリンドリカルレンズ11、球面レンズ12を通ってくる光束を正確に目標の位置へ所定の入射角度で導く必要がある。図7はこれを示した図である。図7の直線17と直線18の交点へ所定の入射角度で到達させることが、Fθレンズ14で、走査全域にわたり小さなスポット径で走査できるために必要なことである。所定の入射角度とは、Fθレンズによる走査の中央の光束と半導体レーザから光偏向手段の並びのなす角度である。
【0008】
従来は、光偏向手段13の所定の場所へ所定の入射角度で導くように、図3、図4のような構造で半導体レーザなどの光源1とコリメータレンズ10の走査方向、副走査方向の位置を調整していた。
【特許文献1】
実開昭59−151207号公報
【特許文献2】
特開平5−297303号公報
【0009】
【発明が解決しようとする課題】
コリメータレンズ10の焦点距離をa、シリンドリカルレンズ11の焦点距離をb、球面レンズ12の焦点距離をc、光偏向手段13の所定の場所の許容範囲を±d、所定の入射角度とのずれの許容範囲を±θとする。このとき、半導体レーザなどの光源1の走査方向の許容範囲は(a*c*tanθ)/b、副走査方向の許容範囲はad/cとなる。
【0010】
例えばa=5mm、b=30mm、c=120mm、d=±0.2mm、θ=±0.09549度とすると、半導体レーザなどの光源1の走査方向の許容調整範囲は±0.033mm、副走査方向の許容調整範囲は±0.0083mmとなる。この場合、特に副走査方向の調整範囲が小さいため調整が困難である。この調整が適正にできない場合、Fθレンズ14で走査全域にわたり、小さなスポット径で走査できなくなってしまうので問題であった。また、半導体レーザなどの光源1とコリメータレンズ10を保持、調整するための部品点数が多いため、調整後の温度変化や振動などで、半導体レーザなどの光源1とコリメータレンズ10の位置関係がずれてしまう問題もあった。
【0011】
【課題を解決するための手段】
上記の課題は、光源と、前記光源からの光束をコリメートする結像レンズ系と、前記結像レンズ系から出射した光束の幅を変化させる機能を有しかつ少なくとも1枚の球面レンズを含む、もしくは、走査方向に曲率を有するレンズと、副走査方向に曲率を有するレンズを含む整形レンズ系と、前記整形レンズ系から出射した光束を偏向走査する光偏向手段と、前記光偏向手段によって偏向された光束を被走査媒体に結像させる走査レンズ系とを備えた光走査装置において、
前記光源と結像レンズ系は、光束の進行方向に調整可能とし、かつ整形レンズ系に含まれる少なくとも1つの球面レンズを、走査方向と副走査方向の2つの方向へ、もしくは、整形レンズ系に含まれる少なくとも1つの走査方向に曲率を有するレンズを走査方向へ、少なくとも1つの副走査方向に曲率を有するレンズを副走査方向へ調整可能にすることによって解決される。
【0012】
【発明の実施の形態】
以下本発明を、実施例によって説明する。図1は本発明の全体図を示す。半導体レーザなどの光源1から発生した光束は、結像レンズ系であるコリメータレンズ10で光束を平行光にされ、光束を整形し、かつ、光偏向手段13へ導くための整形レンズ系であるシリンドリカルレンズ11、球面レンズ12をとおり、光偏向手段13へ導かれる。このあと光偏向手段13で偏向された光束は、被走査媒体15の上に結像させる走査レンズ系であるFθレンズ14で、被走査媒体15の上に結像される。このとき、整形レンズのひとつである球面レンズ12を図2に示すような、走査方向、副走査方向へ調整できるレンズホルダ22に実装する。レンズホルダ22の内側には2つの押し付けバネ21があり、これで球面レンズ12を押し付け、また、ネジ20でバネの反対方向から球面レンズ12を押し付ける量を変化させることで走査方向、副走査方向への調整が可能である。コリメータレンズ10の焦点距離をa、シリンドリカルレンズ11の焦点距離をb、球面レンズ12の焦点距離をc光偏向手段13の所定の場所の許容範囲を±d、所定の入射角度とのずれの許容範囲を±θとする。このとき、球面レンズ12の走査方向の許容範囲は±c*tanθ、副走査方向の許容範囲は±dとなる。例えばa=5mm、b=30mm、c=120mm、d=±0.2mm、θ=±0.09549度とすると、球面レンズ12の許容範囲は走査方向、副走査方向とも±0.2mmとなる。走査方向は従来の6倍、副走査方向は従来の24倍の許容範囲となる。よって、従来よりも許容調整範囲が広くなるため調整しやすい光走査装置となるので好ましい。
【0013】
走査方向、副走査方向の位置を調整しない場合、半導体レーザなどの光源1とコリメータレンズ10のずれは機械精度と半導体レーザ等の光源の外形と発光点との位置精度で決定する。機械精度の限界、および半導体レーザ等の光源の外形と発光点の位置精度はそれぞれ約±0.05mmである。前記のa=5mm、b=30mm、c=120mm、の光学系の場合、走査方向は0.1*30/5から0.6mm、副走査方向は0.1*120/5から2.4mm、光偏向手段13の位置でずれてしまうことになる。この場合、許容量dおよびc*tanθは±0.2mmなので、スポット径が絞れないなどの影響が出る見込みである。本発明によれば、球面レンズ12を走査方向に0.6mm、副走査方向に2.4mm調整すれば良いので、光束は光偏向手段13の位置の最適な範囲に移動させることができる。
【0014】
また本発明では、半導体レーザなどの光源1と、コリメータレンズ10の走査方向、副走査方向の調整が不要となるため、光源部の部品点数を少なくできる。図8にその実施例を示す。従来は半導体レーザなどの光源ホルダ3とコリメータレンズホルダ5は2つの部品からなっていたが、本発明の場合光源ユニット23として一体化できる。半導体レーザなどの光源1はネジ20で、光源ユニット23へ固定され、また、コリメータレンズ10は光束の進行方向へ調整可能であり、ネジ20で固定できる構造としている。これにより、従来問題となっていた、調整後の温度変化や振動などで、半導体レーザなどの光源1とコリメータレンズ10の位置関係がずれてしまうという現象も小さくすることができる。
【0015】
図9、図10は、本発明の他の構成の光学系他への実施例を示す。図9が走査方向の図で、図10が副走査方向の図である。この場合、3つのシリンドリカルレンズ30、31、32からなる整形レンズ系を用いている。この場合、まず、走査方向に曲率を有する、シリンドリカルレンズ30もしくはシリンドリカルレンズ31の少なくとも1つを走査方向に調整、固定可能な構成とすれば良い。具体的には図2のような構成で、副走査方向調整機構を取り除いたもので良い。その他、副走査方向に曲率を有する、シリンドリカルレンズ32を副走査方向に調整、固定可能な構成とすれば良い。具体的には図2のような構成で、走査方向調整機構を取り除いたもので良い。
【0016】
【発明の効果】
以上説明した様に、本発明によれば、従来と異なり光軸調整感度の高いコリメータレンズを用いずに別の光軸調整感度の低いレンズを用いて光軸を調整するため、従来よりも短時間で高精度に光学系の調整を済ませることができる。また、半導体レーザなどの光源の光軸調整機構が不要であり、部品点数を減らすことができる。これによって、従来問題となっていた調整後の温度変化や振動などで、半導体レーザなどの光源とコリメータレンズの位置関係がずれるという現象も小さくすることができる。
【図面の簡単な説明】
【図1】本発明の実施形態にかかる光走査装置の全体図である。
【図2】レンズの調整機構を示す図である。
【図3】従来の半導体レーザ等の光源のホルダを示す図である。
【図4】従来の半導体レーザ等の光源のホルダとコリメータレンズホルダを示す図である。
【図5】走査方向の光学系構成の例を示す図である。
【図6】副走査方向の光学系構成の例を示す図である。
【図7】光偏向手段の所定の場所を示す図である。
【図8】本発明の光源とコリメータレンズの固定方法を示す図である。
【図9】走査方向の光学系構成の他の例を示す図である。
【図10】副走査方向の光学系構成の他の例を示す図である。
【図11】従来の半導体レーザ等の光源のホルダを示す図である。
【図12】従来の半導体レーザ等の光源のホルダを示す図である。
【符号の説明】
1 半導体レーザなどの光源
2 穴
3 半導体レーザなどの光源ホルダ
4 半導体レーザなどの光源を固定するネジ
5 コリメータレンズホルダ
6 ネジ穴
7 半導体レーザホルダ固定ネジ
10 コリメータレンズ
11,30,31,32 シリンドリカルレンズ
12 球面レンズ
13 光偏向手段
14 Fθレンズ
15 被走査媒体
16 調整機構
17,18 直線
20 ネジ
21 おしつけバネ
22 レンズホルダ
23 光源ユニット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical scanning device used for a laser printer or the like.
[0002]
[Prior art]
11 and 12 show an example of a conventional light source holder for a semiconductor laser or the like. In FIG. 11, the semiconductor laser 25 is fixed, and the collimator lens 41 is disposed movably in a cylindrical lens holder 65 that allows a laser beam emitted from the semiconductor laser 25 to pass therethrough. After the positioning of the collimator lens 41 with respect to the semiconductor laser 25, the adhesive is injected from the adhesive flow groove 66 and the collimator lens 41 is fixed in the lens holder 65, whereby the positioning of the collimator lens 41 with respect to the semiconductor laser 25 is completed. (For example, see Patent Document 1).
[0003]
In FIG. 12, the adjustment for making the laser beam output from the semiconductor laser coincide with the optical axis of the collimator lens and the adjustment of the interval between the semiconductor laser and the collimator lens are simply performed. The configuration is such that the collimating lens 41 is fixed to the collimating lens unit 91, and the LD mounting member 81 in which the semiconductor laser 25 is adjustable in the optical axis direction is adjustable in a plane perpendicular to the optical axis. It is attached to the collimating lens unit 91. With this adjustment, the laser beam is made to coincide with the optical axis, and the distance between the semiconductor laser 25 and the collimating lens 41 is adjusted by moving the adjusting screw 86 that comes into contact with the semiconductor laser 25 via the distance member 96. .
[0004]
FIG. 3 shows still another example. In FIG. 3, a light source 1 such as a semiconductor laser is fixed to a semiconductor laser holder 3 by a semiconductor laser fixing screw 4. The semiconductor laser holder 3 has a hole 2 that is sufficiently larger than the axis of the screw to be passed.
[0005]
FIG. 4 is a diagram showing a conventional semiconductor laser holder and a collimator lens holder. The semiconductor laser holder fixing screw 7 passes through the hole 2 of the semiconductor laser holder 3 and enters the screw hole 6 of the collimator lens holder 5 that fixes the collimator lens 10, and integrates the semiconductor laser holder 3 and the collimator lens holder 5. At this time, since the hole 2 of the semiconductor laser holder 3 is large, the positions of the collimator lens holder 5 and the semiconductor laser holder 3 can be freely changed and fixed in a plane perpendicular to the optical axis.
[0006]
FIG. 5 is a diagram illustrating an example of a lens configuration in the scanning direction of the scanning optical system. A light beam is generated from a light source 1 such as a semiconductor laser, and is collimated by a collimator lens 10. Thereafter, the light beam is guided to the light deflecting means 13 through the cylindrical lens 11 and the spherical lens 12. The light beam deflected and scanned by the light deflecting means 13 forms an image on the medium to be scanned 15 through the Fθ lens 14. The light beam entering the cylindrical lens 11 is changed from parallel beams into parallel beams having different widths by the cylindrical lens 11 and the spherical lens 12. Therefore, when the focal length of the collimator lens 10 is a, the focal length of the cylindrical lens 11 is b, and the focal length of the spherical lens 12 is c, the distance between the light source 1 such as a semiconductor laser and the collimator lens 10 is a, and the cylindrical lens The distance between 11 and the spherical lens 12 is b + c, and the distance between the spherical lens 12 and the light deflecting means 13 is c.
[0007]
FIG. 6 is a diagram showing a configuration example of the scanning optical system in the sub-scanning direction. A light beam is generated from a light source 1 such as a semiconductor laser, passes through a collimator lens 10, passes through a cylindrical lens 11, and is narrowed down to a light deflecting unit 13 by a spherical lens 12. Thereafter, the light beam deflected and scanned is imaged on the medium to be scanned 15 by the Fθ lens 14. Lens has such characteristics that it can scan with a small spot diameter over the entire scanning area when guided to a predetermined place of the light deflecting means 13 at a predetermined incident angle. Therefore, it is necessary to accurately guide a light beam generated from the light source 1 such as a semiconductor laser and passing through the collimator lens 10, the cylindrical lens 11, and the spherical lens 12 to a target position at a predetermined incident angle. FIG. 7 shows this. It is necessary to reach the intersection of the straight line 17 and the straight line 18 in FIG. 7 at a predetermined incident angle so that the Fθ lens 14 can scan with a small spot diameter over the entire scanning area. The predetermined incident angle is an angle formed by a light beam at the center of scanning by the Fθ lens and an arrangement of light deflecting means from the semiconductor laser.
[0008]
Conventionally, the light source 1 such as a semiconductor laser and the collimator lens 10 in the scanning direction and the sub-scanning direction have a structure as shown in FIGS. Had been adjusted.
[Patent Document 1]
JP-A-59-151207 [Patent Document 2]
JP-A-5-297303
[Problems to be solved by the invention]
The focal length of the collimator lens 10 is a, the focal length of the cylindrical lens 11 is b, the focal length of the spherical lens 12 is c, the allowable range of the predetermined position of the light deflecting means 13 is ± d, and the deviation from the predetermined incident angle is The allowable range is ± θ. At this time, the allowable range in the scanning direction of the light source 1 such as a semiconductor laser is (a * c * tan θ) / b, and the allowable range in the sub-scanning direction is ad / c.
[0010]
For example, if a = 5 mm, b = 30 mm, c = 120 mm, d = ± 0.2 mm, and θ = ± 0.09549 degrees, the allowable adjustment range in the scanning direction of the light source 1 such as a semiconductor laser is ± 0.033 mm, The allowable adjustment range in the scanning direction is ± 0.0083 mm. In this case, adjustment is particularly difficult because the adjustment range in the sub-scanning direction is small. If this adjustment cannot be performed properly, there is a problem in that the Fθ lens 14 cannot scan with a small spot diameter over the entire scanning area. Further, since the number of components for holding and adjusting the light source 1 such as a semiconductor laser and the collimator lens 10 is large, the positional relationship between the light source 1 such as a semiconductor laser and the collimator lens 10 is shifted due to a temperature change or vibration after the adjustment. There was also a problem.
[0011]
[Means for Solving the Problems]
The above problems include a light source, an imaging lens system for collimating a light beam from the light source, and at least one spherical lens having a function of changing a width of a light beam emitted from the imaging lens system, Alternatively, a shaping lens system including a lens having a curvature in the scanning direction, a lens having a curvature in the sub-scanning direction, light deflecting means for deflecting and scanning a light beam emitted from the shaping lens system, and light deflected by the light deflecting means. A scanning lens system for forming an image of the light beam on the medium to be scanned,
The light source and the imaging lens system can be adjusted in a traveling direction of a light beam, and at least one spherical lens included in the shaping lens system can be adjusted in two directions, a scanning direction and a sub-scanning direction, or the shaping lens system. The problem is solved by allowing the included lens having the curvature in the at least one scanning direction to be adjustable in the scanning direction and the lens having the curvature in the at least one sub-scanning direction to be adjustable in the sub-scanning direction.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to examples. FIG. 1 shows an overall view of the present invention. A light beam generated from a light source 1 such as a semiconductor laser is converted into a parallel light by a collimator lens 10 which is an image forming lens system, and a cylindrical lens which is a shaping lens system for shaping the light beam and guiding the light beam to a light deflecting unit 13. The light passes through the lens 11 and the spherical lens 12 and is guided to the light deflecting unit 13. Thereafter, the light beam deflected by the light deflecting means 13 is imaged on the medium to be scanned 15 by an Fθ lens 14 which is a scanning lens system that forms an image on the medium to be scanned 15. At this time, the spherical lens 12, which is one of the shaping lenses, is mounted on a lens holder 22 that can be adjusted in the scanning direction and the sub-scanning direction as shown in FIG. There are two pressing springs 21 inside the lens holder 22, which press the spherical lens 12, and change the amount of pressing the spherical lens 12 from the opposite direction of the spring with the screw 20 to change the scanning direction and the sub-scanning direction. Adjustment to is possible. The focal length of the collimator lens 10 is a, the focal length of the cylindrical lens 11 is b, the focal length of the spherical lens 12 is c, the permissible range of a predetermined location of the light deflecting means 13 is ± d, and the deviation from a predetermined incident angle is permissible. The range is ± θ. At this time, the allowable range of the spherical lens 12 in the scanning direction is ± c * tan θ, and the allowable range in the sub-scanning direction is ± d. For example, if a = 5 mm, b = 30 mm, c = 120 mm, d = ± 0.2 mm, and θ = ± 0.09549 degrees, the allowable range of the spherical lens 12 is ± 0.2 mm in both the scanning direction and the sub-scanning direction. . The scanning direction has an allowable range of 6 times that of the related art, and the sub-scanning direction has an allowable range of 24 times of the existing range. Therefore, the allowable adjustment range is wider than before, and the optical scanning device is easy to adjust, which is preferable.
[0013]
When the positions in the scanning direction and the sub-scanning direction are not adjusted, the displacement between the light source 1 such as a semiconductor laser and the collimator lens 10 is determined by the mechanical accuracy and the positional accuracy between the outer shape of the light source such as the semiconductor laser and the light emitting point. The limit of the mechanical accuracy and the positional accuracy of the outer shape of the light source such as a semiconductor laser and the light emitting point are each approximately ± 0.05 mm. In the case of the optical system of a = 5 mm, b = 30 mm, and c = 120 mm, the scanning direction is 0.1 * 30/5 to 0.6 mm, and the sub-scanning direction is 0.1 * 120/5 to 2.4 mm. Will be shifted at the position of the light deflecting means 13. In this case, since the allowable amounts d and c * tan θ are ± 0.2 mm, it is expected that the spot diameter may not be narrowed. According to the present invention, since the spherical lens 12 may be adjusted by 0.6 mm in the scanning direction and 2.4 mm in the sub-scanning direction, the light beam can be moved to an optimal range of the position of the light deflecting unit 13.
[0014]
Further, according to the present invention, it is not necessary to adjust the light source 1 such as a semiconductor laser and the scanning direction and the sub-scanning direction of the collimator lens 10, so that the number of components of the light source unit can be reduced. FIG. 8 shows the embodiment. Conventionally, the light source holder 3 such as a semiconductor laser and the collimator lens holder 5 are composed of two parts, but in the present invention, they can be integrated as the light source unit 23. The light source 1 such as a semiconductor laser is fixed to the light source unit 23 with a screw 20, and the collimator lens 10 can be adjusted in the traveling direction of the light flux and can be fixed with the screw 20. Thereby, the phenomenon that the positional relationship between the light source 1 such as a semiconductor laser and the collimator lens 10 is shifted due to the temperature change or vibration after the adjustment, which has conventionally been a problem, can be reduced.
[0015]
FIG. 9 and FIG. 10 show an embodiment of the present invention for an optical system having another configuration. FIG. 9 is a diagram in the scanning direction, and FIG. 10 is a diagram in the sub-scanning direction. In this case, a shaping lens system including three cylindrical lenses 30, 31, 32 is used. In this case, first, at least one of the cylindrical lens 30 and the cylindrical lens 31 having a curvature in the scanning direction may be adjusted and fixed in the scanning direction. Specifically, the configuration shown in FIG. 2 may be obtained by removing the sub-scanning direction adjusting mechanism. In addition, the cylindrical lens 32 having a curvature in the sub-scanning direction may be adjusted and fixed in the sub-scanning direction. Specifically, the configuration shown in FIG. 2 may be obtained by removing the scanning direction adjusting mechanism.
[0016]
【The invention's effect】
As described above, according to the present invention, unlike the related art, the optical axis is adjusted by using another lens with low optical axis adjustment sensitivity without using a collimator lens with high optical axis adjustment sensitivity. The adjustment of the optical system can be completed with high accuracy in a short time. Further, an optical axis adjusting mechanism of a light source such as a semiconductor laser is not required, and the number of components can be reduced. As a result, it is possible to reduce the problem that the positional relationship between the light source such as the semiconductor laser and the collimator lens is shifted due to the temperature change or the vibration after the adjustment, which has conventionally been a problem.
[Brief description of the drawings]
FIG. 1 is an overall view of an optical scanning device according to an embodiment of the present invention.
FIG. 2 is a view showing a lens adjustment mechanism.
FIG. 3 is a view showing a conventional holder for a light source such as a semiconductor laser.
FIG. 4 is a diagram showing a conventional holder for a light source such as a semiconductor laser and a collimator lens holder.
FIG. 5 is a diagram illustrating an example of an optical system configuration in a scanning direction.
FIG. 6 is a diagram illustrating an example of an optical system configuration in a sub-scanning direction.
FIG. 7 is a diagram showing a predetermined position of the light deflecting means.
FIG. 8 is a diagram illustrating a method of fixing a light source and a collimator lens according to the present invention.
FIG. 9 is a diagram illustrating another example of the optical system configuration in the scanning direction.
FIG. 10 is a diagram illustrating another example of the optical system configuration in the sub-scanning direction.
FIG. 11 is a view showing a conventional holder for a light source such as a semiconductor laser.
FIG. 12 is a view showing a conventional holder for a light source such as a semiconductor laser.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Light source such as semiconductor laser 2 Hole 3 Light source holder such as semiconductor laser 4 Screw for fixing light source such as semiconductor laser 5 Collimator lens holder 6 Screw hole 7 Semiconductor laser holder fixing screw 10 Collimator lens 11, 30, 31, 32 Cylindrical lens DESCRIPTION OF SYMBOLS 12 Spherical lens 13 Optical deflecting means 14 Fθ lens 15 Scanned medium 16 Adjustment mechanism 17, 18 Straight line 20 Screw 21 Press spring 22 Lens holder 23 Light source unit

Claims (2)

光源と、前記光源からの光束をコリメートする結像レンズ系と、該結像レンズ系から出射した光束の幅を変化させる機能を有しかつ少なくとも1枚の球面レンズを含む整形レンズ系と、該整形レンズ系から出射した光束を偏向走査する光偏向手段と、該光偏向手段によって偏向された光束を被走査媒体に結像させる走査レンズ系とを備えた光走査装置において、前記光源と前記結像レンズ系は、光束の進行方向に調整可能、かつ前記整形レンズ系に含まれる少なくとも1つの球面レンズを走査方向と副走査方向の2つの方向へ調整可能としたことを特徴とする光走査装置。A light source, an imaging lens system for collimating the light beam from the light source, a shaping lens system having a function of changing the width of the light beam emitted from the imaging lens system, and including at least one spherical lens; An optical scanning device comprising: a light deflecting unit that deflects and scans a light beam emitted from a shaping lens system; and a scanning lens system that forms an image of a light beam deflected by the light deflecting unit on a medium to be scanned. The optical scanning device is characterized in that the image lens system is adjustable in a traveling direction of a light beam and at least one spherical lens included in the shaping lens system is adjustable in two directions, a scanning direction and a sub-scanning direction. . 光源と、前記光源からの光束をコリメートする結像レンズ系と、該結像レンズ系から出射した光束の幅を変化させる機能を有しかつ少なくとも1枚の走査方向に曲率を有するレンズと、副走査方向に曲率を有するレンズを含む整形レンズ系と、該整形レンズ系から出射した光束を偏向走査する光偏向手段と、該光偏向手段によって偏向された光束を被走査媒体に結像させる走査レンズ系とを備えた光走査装置において、前記光源と前記結像レンズ系は、光束の進行方向に調整可能、かつ前記整形レンズ系に含まれる少なくとも1つの走査方向に曲率を有するレンズを走査方向へ少なくとも1つの副走査方向に曲率を有するレンズを副走査方向へ調整可能としたことを特徴とする光走査装置。A light source, an imaging lens system for collimating the light beam from the light source, a lens having a function of changing the width of the light beam emitted from the imaging lens system, and having at least one curvature in the scanning direction; A shaping lens system including a lens having a curvature in the scanning direction, a light deflecting unit that deflects and scans a light beam emitted from the shaping lens system, and a scanning lens that images the light beam deflected by the light deflecting unit on a medium to be scanned A light source and the imaging lens system, the light source and the imaging lens system being capable of adjusting a lens having a curvature in at least one scanning direction included in the shaping lens system in the scanning direction. An optical scanning device characterized in that at least one lens having a curvature in the sub-scanning direction can be adjusted in the sub-scanning direction.
JP2003052109A 2003-02-28 2003-02-28 Optical scanner Pending JP2004258565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003052109A JP2004258565A (en) 2003-02-28 2003-02-28 Optical scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003052109A JP2004258565A (en) 2003-02-28 2003-02-28 Optical scanner

Publications (1)

Publication Number Publication Date
JP2004258565A true JP2004258565A (en) 2004-09-16

Family

ID=33117050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003052109A Pending JP2004258565A (en) 2003-02-28 2003-02-28 Optical scanner

Country Status (1)

Country Link
JP (1) JP2004258565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8237763B2 (en) 2008-06-13 2012-08-07 Ricoh Company, Ltd. Light source apparatus, and optical scanning apparatus and image forming apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8237763B2 (en) 2008-06-13 2012-08-07 Ricoh Company, Ltd. Light source apparatus, and optical scanning apparatus and image forming apparatus using the same

Similar Documents

Publication Publication Date Title
JP5809498B2 (en) Light source unit adjusting apparatus and manufacturing method
JPH09146026A (en) Method for compensating curvature of image surface and light beam scanning device used for the method
JP4677657B2 (en) Scanning optical device
JPH06202016A (en) Optical scanning device
JPH1164755A (en) Laser light source and focus adjusting device and scanning optical system of the light source
JP2003043388A (en) Scanning optical device and imaging apparatus using the same
JP2964629B2 (en) Laser beam scanning optical device
JP2004258565A (en) Optical scanner
JP2001021822A (en) Optical scanning optical system and image forming device using the system
JP2971005B2 (en) Optical scanning device
JP2006148711A (en) Laser beam scanner
JP2004258173A (en) Optical scanner
KR100529339B1 (en) Laser scanning unit
JPH0618802A (en) Optical scanning device
JPH0980330A (en) Multibeam scanning optical system
JP4106537B2 (en) Optical scanning device and laser printer device
JP2001235697A (en) Optical scanner
JP2000284201A (en) Optical scanner and light source device for the scanner
JP2003057582A (en) Multibeam light emitting device
JPH0421811A (en) Scanning optical device
JP2000221432A (en) Optical scanner
JP2817454B2 (en) Scanning optical device
JP2000231069A (en) Optical scanner
JP2002296523A (en) Optical scanner
JP2004317724A (en) Scanning optical device