JP2004258221A - Optical component and liquid crystal projector using the same - Google Patents

Optical component and liquid crystal projector using the same Download PDF

Info

Publication number
JP2004258221A
JP2004258221A JP2003047907A JP2003047907A JP2004258221A JP 2004258221 A JP2004258221 A JP 2004258221A JP 2003047907 A JP2003047907 A JP 2003047907A JP 2003047907 A JP2003047907 A JP 2003047907A JP 2004258221 A JP2004258221 A JP 2004258221A
Authority
JP
Japan
Prior art keywords
crystal
quartz substrate
quartz
optical component
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003047907A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsumoto
浩 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2003047907A priority Critical patent/JP2004258221A/en
Publication of JP2004258221A publication Critical patent/JP2004258221A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide optical components having increased thermal conductivity and a larger area to be used for a projector apparatus. <P>SOLUTION: The optical components such as a heat radiation plate and a wave plate of a projector apparatus are made of quartz substrates, the angle θ(deg) between the principal surface of the quartz substrate and the XY-plane of the crystal is controlled to satisfy 0<θ<45. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、プロジェクタ装置に用いる光学部品に関する。
【0002】
【従来の技術】現在、カラー液晶プロジェクタ装置(以下、プロジェクタ装置と称す)は、企業用から一般家庭用まで幅広く用途が広がっている。それに伴って、プロジェクタ市場においては映像の高輝度化の要求が高まってきている。近年、プロジェクタ装置の光学系部品には小型化、低価格化の要求に応えるべく偏光フィルムなどの樹脂系材料を多く採用しているが、フィルム単体では平面を維持できないため、ガラス基板に偏光フィルムを貼り付けることでフィルムの平面を維持するのが一般的である。しかしながら、映像の高輝度化の要求に応えるべく光源の光量を増大させると光量だけでなく熱量も大きくなり、偏光フィルムを構成する樹脂材料が変質するなどの劣化が起こるため、むやみ光量を増大することができなかった。
【0003】そこで、特開2000−314809号公報及び特開2000−206507号公報では、ガラス基板の代わりにサファイア基板の表面に偏光フィルムを貼り付けた構造が提案されている。サファイアは、室温(25℃)条件下において熱伝導率がガラス基板の1(W/m・K)に対し41(W/m・K)と格段に高いため、光源の光量を上げてもサファイアが放熱板として機能するため偏光フィルムの劣化を抑えることが可能である。
【0004】ところが、サファイア基板はガラス基板と比較してコストが約10倍程度高価になることから一部の高級なプロジェクタ装置には使用されているものの、近年普及率が増加している安価な家庭用プロジェクタ装置においては高価なサファイア基板は使えないため光量の向上が課題となっていた。
【0005】これに対して特開2002−014419号公報においては、サファイア基板には及ばないもののガラス基板より10数倍熱伝導率の優れた水晶基板を放熱板として用いたプロジェクタ装置が提案されている。水晶基板を用いた場合、サファイア基板の1/5〜1/3倍程度の価格で放熱板を実現することが可能である。
【発明が解決しようとする課題】
【0006】サファイア基板より安価になるとは言え、水晶基板はガラス基板と比較して2〜3倍の価格となるため、一般家庭用のプロジェクタ装置に使用する上では更なるコストダウンが要求される。一方で、スクリーンに投影した映像を高輝度にするだけでなく高鮮明にするという課題があり、その手法として光学系を大口径とするという手段が用いられる。光学系を大口径とするためには、光学系部品にも大面積化が要求されることになる。従って、放熱板に用いる水晶基板の大面積化も必要となっている。
【0007】しかしながら、水晶基板の原料となる人工水晶の結晶体の育成には時間がかかり、工業用に最も利用されている人工水晶結晶体の結晶軸(Z軸)方向の厚みが20〜25mm程度の結晶を得るためには2ヶ月程の育成期間を要する。近年、プロジェクタ用の光学部品として求められている放熱板用基板の寸法は一辺が30〜40mm程度のものであり、これに対応すべく大きな人工水晶結晶体を作ろうとすると4〜6ヶ月もの時間を要し材料コストが数倍にはね上がってしまうため、サファイア基板との比較においてコスト的なメリットが少なくなってしまうという問題が生じる。本発明は、以上の問題を解決したものであって、高輝度、高鮮明にすべく大口径にしたプロジェクタ装置に対応した大面積の放熱板の基板を水晶にて安価に実現すると共に、従前のサイズについても放熱板のコストダウンを図ることを目的とする。
【課題を解決するための手段】
【0008】上記目的を達成するために本発明に係る弾性表面波フィルタの請求項1記載の発明は、水晶基板の主表面に樹脂製の光学フィルムを貼り付けた構造の光学部品であって、前記水晶基板の主表面と結晶のXY平面とのなす角度θ(deg)が0<θ<45であることを特徴とする光学部品である。請求項2記載の発明は、前記光学フィルムは偏光フィルムであることを特徴とする請求項1に記載の光学部品である。請求項3記載の発明は、波長板を水晶基板で構成した光学部品であって、前記水晶基板の主表面と結晶のXY平面とのなす角度θ(deg)が0<θ<45であることを特徴とする光学部品である。請求項4記載の発明は、請求項1または3のいずれか一項に記載の光学部品を有する液晶プロジェクタである。
【発明の実施の形態】
【0009】以下、本発明を図面に図示した実施の形態例に基づいて詳細に説明する。図1は、本発明に係るプロジェクタ装置の構成を示したものである。光源1から出射された光は偏光発生素子2、波長板12を通過して集光レンズ3で均一に集光、出射される。そして、ビームスプリッタプレート4(以下、BMPと称す)によって光を分解する。BMPは、プレートの斜面に多層膜を形成し光を透過光と反射光の2つに分離させる働きをもっている。BMP4においては、赤色光(R)を透過させると共に、青色光(B)と緑色光(G)を反射させ、BMP5においては青色光(B)を透過させると共に、緑色光(G)を反射させる。光分離後、赤色光(R)及び青色光(B)は、反射ミラー6で反射され、入射側偏光フィルム8を通過し、透過型液晶9に入射する。そして、透過型液晶9から出射された赤色光(R)及び青色光(B)は、出射側偏光フィルム10、波長板12を透過後、合成プリズム11に入射する。また、緑色光(G)は、入射側偏光フィルム8、透過型液晶9、出射側偏光フィルム10を透過した後、合成プリズム11に入射される。各色が合成プリズム11に入射後、光が合成されスクリーン20に画像が投影される。
【0010】本実施形態では、入射側偏光フィルム8及び出射側偏光フィルム10を貼り付けるための放熱板7として水晶基板を用いている。該水晶基板は、オートクレーブと呼ばれる育成炉で製造される人工水晶結晶体から作られる。図2は人工水晶結晶体の構造を示したものである。水晶は安定なSiO2単結晶からなる三方晶系であり、R面、r面、m面などの結晶面に囲まれて結晶が形成されていることは周知である。結晶構造は図示のようにX軸、Y軸、Z軸であらわされ、Z軸は結晶軸と呼ばれている。水晶基板として使うには人工水晶結晶体をある一定の角度で切断する必要がある。水晶基板の主表面とXY平面とのなす角度をθとするとき、θ=90°即ち結晶軸に平行な主平面を有する水晶基板においては熱伝導率が最大となり、θ=0°即ちXY平面を主表面とする水晶基板は熱伝導率が最小となることが知られている。従って、水晶基板を光学部品の放熱板として用いる場合、結晶軸と平行な方向に切断して水晶基板を形成することが常識となっていた。
【0011】ところが、図3に示すように結晶軸に対し平行な方向に切断した水晶基板は面積が大きくとれないため大口径な光学系部品に対応できない。この問題を解決すべく、人工水晶の育成期間を長くすることにより結晶軸方向の厚みを大きくして基板の面積を大きくする方法がある。しかしながら、工業用にもっとも利用されている放熱板の寸法である20〜25mmにおいては2ヶ月程度で育成するが、大口径プロジェクタ装置用の放熱板とするべく30〜40mmまで結晶軸方向を育成させようとすると4〜6ヶ月もかかってしまい製造コストが高くなってしまう。
【0012】そこで、本願発明者は人工水晶結晶体を切断する際に、図4に示すように切断角θを90°より小さくすることで従来の水晶結晶サイズから大面積な水晶基板が得られるのではないかと考えた。
【0013】具体的には、従来の結晶軸方向の厚さ20〜25mmの人工水晶の結晶体において、切断角θ(deg)を0<θ<45の範囲にすることで、結晶軸方向の厚みが20mm程度の人工水晶の結晶体であっても、30〜40mmの大面積な水晶基板が多数枚得られる。従って、人工水晶結晶体の育成期間を増加させずに大面積な水晶基板が製造できるのでコストダウンに大きく寄与する。
【0014】ここで、人工水晶結晶体の切断角と水晶基板の熱伝導率の関係について検討を行った。図5は室温(25℃)条件下における人工水晶結晶体の切断角と水晶基板の熱伝導率の関係を示したものであり、横軸を人工水晶結晶体のXY平面と水晶基板の主表面とのなす切断角θ(deg)を表しており、縦軸はその角度で切断した時の水晶基板の熱伝導率(W/m・K)を表している。同図より人工水晶結晶体の切断角がθ=0°即ち結晶軸と垂直な方向に切断した時の水晶基板の熱伝導率は約6.2(W/m・K)であり、切断角を大きくするにつれて熱伝導率は徐々に高くなり、切断角θ=90°即ち結晶軸と平行な方向に切断した時の水晶基板の熱伝導率は約10.7(W/m・K)と最大値をとる。従来のガラス基板の熱伝導率は1(W/m・K)であるから、どの切断角においても熱伝導率は水晶基板の方が数倍優れていることが分かる。
【0015】以上のことから、人工水晶結晶体の切断角θ(deg)を0<θ<45の範囲にすることで従来の水晶結晶サイズにおいても大面積な水晶基板が低コストで製造でき、また、結晶軸に対し平行な方向に切断した時よりも熱伝導率は多少劣るものの、ガラス基板より数倍高い熱伝導率が得られるので光量をあげて熱量が増加しても効率よく熱を放出することができる。また、大きな水晶基板に光学フィルムを貼り付けた後、小分けに分割することで従前より用いられている小口径の光学部品を所謂バッチ処理にて製造可能となることから小サイズの光学部品のコスト低減をも実現できる。
【0016】これまで、0<θ<45の切断角θ(deg)を有する水晶基板を放熱板として使用する場合についてのみ説明してきたが、他の実施例として波長板にこの水晶基板を適用した例について説明する。位相をずらすことで光の偏光状態を変化させる働きをもつ波長板は、発散もしくは収束光において位相差にばらつきがあると、光の中央と端の部分で光量にばらつきが生じる可能性があるため、入射角度依存性の高い波長板が要求されている。そこで、切断角θ(deg)を0<θ<45とした水晶基板を用いた波長板の入射角度依存性について検討を行った。1/2λ波長板13における光の発散方向を図6(a)に示すような角度で表し、各発散方向における入射角度依存性を図6(b)に示している。いずれの発散方向においても位相差は入射角度が変化しても180°からほとんど変わらないことから入射角度依存性が非常に優れていることが分かる。従って、切断角θ(deg)を0<θ<45とした水晶基板を波長板として用いれば、大面積で入射角度依存性の優れた波長板を実現でき、且つ、高い量産効果が得られるので低コストで部品を提供できる。
【0017】また、光学系レンズ、ビームスプリッタプレート、透過系液晶などの光学系部品においても本発明の水晶基板を適用できることはいうまでもない。
【発明の効果】
【0018】以上、説明したように本発明によればプロジェクタ装置の光学系部品において、水晶基板を用いることにより放熱効果が向上し、また、基板面積が大きく得られるよう人工水晶結晶体の切断角度を調整したので、小サイズの人工水晶結晶体においても大面積な水晶基板が多数枚得られるので低コストな光学部品を提供でき、高輝度、高鮮明なプロジェクタ装置を実現できる。
【図面の簡単な説明】
【図1】本発明に係るプロジェクタ装置の構造を示した図である。
【図2】人工水晶の結晶構造の斜視図である。
【図3】人工水晶を切断角θ=90°で切断した時の図であり、(a)に斜視図、(b)に断面図を示す。
【図4】人工水晶を切断角θで切断した時の図であり、(a)に斜視図、(b)に断面図を示す。
【図5】人工水晶結晶体の切断角と水晶基板の熱伝導率の関係を示したグラフである。
【図6】本発明の第2の実施例に係る1/2波長板において、(a)は光の発散方向を角度で表した図であり、(b)は発散方向における入射角度依存性の関係を示した図である。
【符号の説明】
1…光源
2…偏光発生素子
3…集光レンズ
4、5…ビームスプリッタプレート
6…反射ミラー
7…放熱板
8…入射側偏光フィルム
9…透過型液晶
10…出射側偏光フィルム
11…合成プリズム
12…波長板
13…1/2波長板
20…スクリーン
[0001]
The present invention relates to an optical component used for a projector device.
[0002]
2. Description of the Related Art At present, color liquid crystal projector devices (hereinafter, referred to as projector devices) have been widely used in a wide range of applications from corporate use to general household use. Along with this, in the projector market, demands for higher luminance of images have been increasing. In recent years, optical components of projector devices have been using resin-based materials such as polarizing films in many cases to meet the demand for miniaturization and cost reduction. It is common to maintain the plane of the film by sticking the film. However, if the light amount of the light source is increased to meet the demand for higher brightness of the image, not only the light amount but also the heat amount increases, and deterioration such as deterioration of the resin material constituting the polarizing film occurs. I couldn't do that.
Therefore, Japanese Patent Application Laid-Open Nos. 2000-314809 and 2000-206507 propose a structure in which a polarizing film is attached to the surface of a sapphire substrate instead of a glass substrate. Sapphire has a significantly higher thermal conductivity at room temperature (25 ° C.) than 41 (W / m · K) of a glass substrate, which is 41 (W / m · K). Function as a heat sink, it is possible to suppress the deterioration of the polarizing film.
[0004] However, sapphire substrates are used in some high-end projector devices because their cost is about ten times as expensive as glass substrates, but inexpensive sapphire substrates are increasing in popularity in recent years. In a home projector device, an expensive sapphire substrate cannot be used, and thus an improvement in the amount of light has been a problem.
On the other hand, Japanese Patent Application Laid-Open No. 2002-014419 proposes a projector device using a quartz substrate as a heat radiating plate, which is not as good as a sapphire substrate but has a thermal conductivity which is more than ten times higher than a glass substrate. I have. When a quartz substrate is used, a heat sink can be realized at a price that is about 1/5 to 1/3 times that of a sapphire substrate.
[Problems to be solved by the invention]
Although the cost is lower than that of a sapphire substrate, the cost of a quartz substrate is two to three times that of a glass substrate. Therefore, a further cost reduction is required for use in a general household projector. . On the other hand, there is a problem that not only the brightness of the image projected on the screen is increased but also the definition thereof is high. As a technique for this, means for increasing the diameter of the optical system is used. In order to increase the diameter of the optical system, the area of the optical system components must be increased. Therefore, it is necessary to increase the area of the quartz substrate used for the heat sink.
However, it takes time to grow an artificial quartz crystal as a raw material for a quartz substrate, and the thickness of the artificial quartz crystal most used for industrial purposes in the crystal axis (Z-axis) direction is 20 to 25 mm. A growth period of about two months is required to obtain crystals of the order. In recent years, the size of a heat sink substrate required as an optical component for a projector is about 30 to 40 mm on a side, and it takes about 4 to 6 months to make a large artificial quartz crystal in order to respond to this. And the material cost jumps several times, which causes a problem that the merit in cost is reduced as compared with the sapphire substrate. The present invention solves the above-mentioned problems, and realizes a large-area heat sink plate corresponding to a projector device having a large diameter for high brightness and high definition at low cost by using quartz. The purpose of the present invention is to reduce the cost of the radiator plate for the above size.
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a surface acoustic wave filter according to the present invention, which is an optical component having a structure in which a resin optical film is attached to a main surface of a quartz substrate, An optical component, wherein an angle θ (deg) between the main surface of the quartz substrate and the XY plane of the crystal is 0 <θ <45. The invention according to claim 2 is the optical component according to claim 1, wherein the optical film is a polarizing film. The invention according to claim 3 is an optical component in which the wavelength plate is formed of a quartz substrate, wherein the angle θ (deg) between the main surface of the quartz substrate and the XY plane of the crystal is 0 <θ <45. An optical component characterized by the following. According to a fourth aspect of the present invention, there is provided a liquid crystal projector including the optical component according to the first aspect.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on an embodiment shown in the drawings. FIG. 1 shows a configuration of a projector device according to the present invention. The light emitted from the light source 1 passes through the polarization generating element 2 and the wavelength plate 12, and is uniformly collected and emitted by the condenser lens 3. Then, the light is decomposed by the beam splitter plate 4 (hereinafter, referred to as BMP). The BMP has a function of forming a multilayer film on an inclined surface of a plate and separating light into two lights, that is, transmitted light and reflected light. BMP4 transmits red light (R) and reflects blue light (B) and green light (G), while BMP5 transmits blue light (B) and reflects green light (G). . After the light separation, the red light (R) and the blue light (B) are reflected by the reflection mirror 6, pass through the incident side polarizing film 8, and enter the transmission type liquid crystal 9. Then, the red light (R) and the blue light (B) emitted from the transmission type liquid crystal 9 pass through the emission side polarizing film 10 and the wave plate 12, and then enter the combining prism 11. The green light (G) passes through the incident side polarizing film 8, the transmission type liquid crystal 9, and the outgoing side polarizing film 10, and then enters the combining prism 11. After each color enters the combining prism 11, the lights are combined and an image is projected on the screen 20.
In this embodiment, a quartz substrate is used as the heat radiating plate 7 for attaching the incident-side polarizing film 8 and the outgoing-side polarizing film 10. The quartz substrate is made of an artificial quartz crystal manufactured in a growing furnace called an autoclave. FIG. 2 shows the structure of the artificial quartz crystal. It is well known that quartz is a trigonal system made of a stable SiO2 single crystal, and a crystal is formed surrounded by crystal planes such as an R plane, an r plane, and an m plane. The crystal structure is represented by an X-axis, a Y-axis, and a Z-axis as shown, and the Z-axis is called a crystal axis. In order to use it as a quartz substrate, it is necessary to cut the artificial quartz crystal at a certain angle. Assuming that the angle between the main surface of the quartz substrate and the XY plane is θ, θ = 90 °, that is, in a quartz substrate having a main plane parallel to the crystal axis, the thermal conductivity becomes maximum, and θ = 0 °, ie, the XY plane. It is known that a quartz substrate having a main surface of has the lowest thermal conductivity. Therefore, when a quartz substrate is used as a heat sink for an optical component, it has been common sense to cut the quartz substrate in a direction parallel to the crystal axis to form the quartz substrate.
However, as shown in FIG. 3, a quartz substrate cut in a direction parallel to the crystal axis cannot have a large area and cannot be used for a large-diameter optical system component. In order to solve this problem, there is a method in which the growth period of the artificial quartz is lengthened to increase the thickness in the crystal axis direction to increase the area of the substrate. However, in the case of 20 to 25 mm, which is the size of the heatsink most used for industrial use, it grows in about two months. If this is attempted, it takes 4 to 6 months, and the production cost increases.
Therefore, when cutting the artificial quartz crystal, the present inventor can obtain a quartz substrate having a large area from the conventional quartz crystal size by making the cutting angle θ smaller than 90 ° as shown in FIG. I thought it might be.
Specifically, in a conventional crystal of artificial quartz having a thickness of 20 to 25 mm in the crystal axis direction, by setting the cutting angle θ (deg) in the range of 0 <θ <45, the cutting angle θ (deg) is set in the range of 0 <θ <45. Even with a crystal of artificial quartz having a thickness of about 20 mm, many large-sized quartz substrates of 30 to 40 mm can be obtained. Therefore, a large-area quartz substrate can be manufactured without increasing the growth period of the artificial quartz crystal, which greatly contributes to cost reduction.
Here, the relationship between the cutting angle of the artificial quartz crystal and the thermal conductivity of the quartz substrate was examined. FIG. 5 shows the relationship between the cutting angle of the artificial quartz crystal and the thermal conductivity of the quartz substrate at room temperature (25 ° C.). The horizontal axis represents the XY plane of the artificial quartz crystal and the main surface of the quartz substrate. And the vertical axis represents the thermal conductivity (W / m · K) of the quartz substrate when cut at that angle. According to the figure, the thermal conductivity of the quartz substrate when the cutting angle of the artificial quartz crystal is θ = 0 °, that is, when it is cut in a direction perpendicular to the crystal axis, is about 6.2 (W / m · K). The thermal conductivity of the quartz substrate when cut at a cutting angle θ = 90 °, ie, in a direction parallel to the crystal axis, is about 10.7 (W / m · K) as Take the maximum value. Since the thermal conductivity of the conventional glass substrate is 1 (W / m · K), it can be seen that the thermal conductivity of the quartz substrate is several times better at any cutting angle.
From the above, by setting the cutting angle θ (deg) of the artificial quartz crystal in the range of 0 <θ <45, a large-sized quartz substrate can be manufactured at low cost even in the conventional quartz crystal size. Although the thermal conductivity is somewhat inferior to that of cutting in the direction parallel to the crystal axis, the thermal conductivity is several times higher than that of the glass substrate. Can be released. In addition, after attaching an optical film to a large quartz substrate, it is possible to manufacture small-diameter optical components that have been conventionally used by so-called batch processing by dividing the optical film into small portions, so that the cost of small-sized optical components is reduced. Reduction can also be realized.
Although only the case where a quartz substrate having a cutting angle θ (deg) of 0 <θ <45 has been described as a heat radiating plate has been described above, this quartz substrate is applied to a wave plate as another embodiment. An example will be described. Wave plates that have the function of changing the polarization state of light by shifting the phase can cause variations in the amount of light at the center and end of the light if there is variation in the phase difference in the divergent or convergent light. There is a demand for a wave plate having a high incident angle dependence. Then, the incident angle dependence of a wavelength plate using a quartz substrate with a cutting angle θ (deg) of 0 <θ <45 was examined. The divergence direction of light in the 1 / 2λ wavelength plate 13 is represented by an angle as shown in FIG. 6A, and the incident angle dependence in each divergence direction is shown in FIG. 6B. In any of the diverging directions, the phase difference hardly changes from 180 ° even when the incident angle changes, indicating that the incident angle dependency is very excellent. Therefore, if a quartz substrate with a cutting angle θ (deg) of 0 <θ <45 is used as the wave plate, a wave plate having a large area and excellent incident angle dependency can be realized, and a high mass production effect can be obtained. Parts can be provided at low cost.
It is needless to say that the quartz substrate of the present invention can be applied to optical parts such as an optical lens, a beam splitter plate, and a transmission liquid crystal.
【The invention's effect】
As described above, according to the present invention, in the optical components of the projector device, the heat radiation effect is improved by using a quartz substrate, and the cutting angle of the artificial quartz crystal is increased so that a large substrate area can be obtained. Is adjusted, a large number of large-sized quartz substrates can be obtained even in a small-sized artificial quartz crystal, so that low-cost optical components can be provided, and a high-brightness and high-clarity projector device can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram showing a structure of a projector device according to the present invention.
FIG. 2 is a perspective view of a crystal structure of an artificial quartz.
FIGS. 3A and 3B are views when the artificial quartz is cut at a cutting angle θ = 90 °, wherein FIG. 3A is a perspective view and FIG.
FIGS. 4A and 4B are views when the artificial quartz is cut at a cutting angle θ, and FIG. 4A is a perspective view and FIG.
FIG. 5 is a graph showing the relationship between the cutting angle of an artificial quartz crystal and the thermal conductivity of a quartz substrate.
FIGS. 6A and 6B are diagrams illustrating an angle of a divergence direction of light in a half-wave plate according to a second embodiment of the present invention, and FIG. It is a figure showing a relation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Polarization generation element 3 ... Condensing lens 4, 5 ... Beam splitter plate 6 ... Reflection mirror 7 ... Heat sink 8 ... Incident side polarizing film 9 ... Transmissive liquid crystal 10 ... Outgoing side polarizing film 11 ... Synthetic prism 12 ... Wave plate 13 1/2 wave plate 20 Screen

Claims (4)

水晶基板の主表面に樹脂製の光学フィルムを貼り付けた構造の光学部品であって、前記水晶基板の主表面と結晶のXY平面とのなす角度θ(deg)が0<θ<45であることを特徴とする光学部品。An optical component having a structure in which a resin optical film is attached to a main surface of a quartz substrate, wherein an angle θ (deg) between the main surface of the quartz substrate and the XY plane of the crystal is 0 <θ <45. An optical component, characterized in that: 前記光学フィルムは偏光フィルムであることを特徴とする請求項1に記載の光学部品。The optical component according to claim 1, wherein the optical film is a polarizing film. 波長板を水晶基板で構成した光学部品であって、前記水晶基板の主表面と結晶のXY平面とのなす角度θ(deg)が0<θ<45であることを特徴とする光学部品。An optical component having a wavelength plate formed of a quartz substrate, wherein an angle θ (deg) between a main surface of the quartz substrate and an XY plane of the crystal satisfies 0 <θ <45. 請求項1または3のいずれか一項に記載の光学部品を有する液晶プロジェクタ。A liquid crystal projector comprising the optical component according to claim 1.
JP2003047907A 2003-02-25 2003-02-25 Optical component and liquid crystal projector using the same Withdrawn JP2004258221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047907A JP2004258221A (en) 2003-02-25 2003-02-25 Optical component and liquid crystal projector using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047907A JP2004258221A (en) 2003-02-25 2003-02-25 Optical component and liquid crystal projector using the same

Publications (1)

Publication Number Publication Date
JP2004258221A true JP2004258221A (en) 2004-09-16

Family

ID=33114025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047907A Withdrawn JP2004258221A (en) 2003-02-25 2003-02-25 Optical component and liquid crystal projector using the same

Country Status (1)

Country Link
JP (1) JP2004258221A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015036790A (en) * 2013-08-15 2015-02-23 ソニー株式会社 Light source device, image display unit, and optical unit
WO2017208572A1 (en) * 2016-05-30 2017-12-07 ソニー株式会社 Image display device and light source device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015036790A (en) * 2013-08-15 2015-02-23 ソニー株式会社 Light source device, image display unit, and optical unit
US10120273B2 (en) 2013-08-15 2018-11-06 Sony Corporation Light source apparatus, image display apparatus, and optical unit
WO2017208572A1 (en) * 2016-05-30 2017-12-07 ソニー株式会社 Image display device and light source device

Similar Documents

Publication Publication Date Title
US11003066B2 (en) Projection display unit and direct-view display unit
US7995275B2 (en) Polarization conversion element, polarization conversion optical system and image projecting apparatus
CN104375367B (en) Light supply apparatus, image display device and optical unit
US10838289B2 (en) Light source device and projection display apparatus including plural light sources, and a lens condensing light from the plural light sources into one spot
US6067128A (en) Liquid-crystal display projector including an optical path adjuster arranged in the light path from the light source to the liquid-crystal display element
JPH08114780A (en) Projection color liquid crystal display device
JP7203317B2 (en) Light source device and projection type image display device
WO2020012751A1 (en) Light source device and projection display device
JP2001272671A (en) Projector
WO2004071070A2 (en) Apparatus for generating a number of color light components
JP2019028442A (en) Light source device and projection type display device
JP3103822B2 (en) Projection type color liquid crystal display
JP2004258221A (en) Optical component and liquid crystal projector using the same
JP2006091625A (en) Optical low pass filter
JP2008185768A (en) Wavelength plate and optical device
JP2004354935A (en) Laminated wave length plate and projector using the same
JP2017211482A (en) Illumination device, method for manufacturing lens, and projector
JP2007093964A (en) Polarization conversion element
JP2019184947A (en) Light source device and projection type display device
JP7129607B2 (en) Light source device and projection display device
WO2017208572A1 (en) Image display device and light source device
JP2007093965A (en) Ps converter
KR20030013932A (en) Optical illumination system of projector using optical device with function of homogenizing and polarizing optical beam
JP2007114375A (en) Light irradiation device, liquid crystal display apparatus and liquid crystal projection apparatus
JP2003121811A (en) Liquid crystal rear projection television

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060207

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20081210