JP2004257933A - Optical fiber type displacement gauge - Google Patents

Optical fiber type displacement gauge Download PDF

Info

Publication number
JP2004257933A
JP2004257933A JP2003050681A JP2003050681A JP2004257933A JP 2004257933 A JP2004257933 A JP 2004257933A JP 2003050681 A JP2003050681 A JP 2003050681A JP 2003050681 A JP2003050681 A JP 2003050681A JP 2004257933 A JP2004257933 A JP 2004257933A
Authority
JP
Japan
Prior art keywords
displacement
optical fiber
gear
elastic member
fiber type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003050681A
Other languages
Japanese (ja)
Other versions
JP3848272B2 (en
Inventor
Kazuhiko Fujihashi
一彦 藤橋
Masaru Okutsu
大 奥津
Hiroyuki Komatsu
宏至 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003050681A priority Critical patent/JP3848272B2/en
Publication of JP2004257933A publication Critical patent/JP2004257933A/en
Application granted granted Critical
Publication of JP3848272B2 publication Critical patent/JP3848272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical fiber type displacement gauge hardly affected by external factors such as weather and high-voltage electrical power lines, having high durability and capable being monitored from a remote place. <P>SOLUTION: This optical fiber type displacement gauge comprises a plate member receiving the displacement in accordance with the displacement of a measured object and having a rack at least on a part of it, a gear engaged with the rack, a displacement converting part for converting the rotation in accompany with the displacement of the plate member, of the gear into the displacement in the rotating axis direction, of the rotation, an elastic member having the cylindrical shape rotationally symmetric to the rotating axis of the gear, an elastic member elastically deformed in the direction approximately perpendicular to the moving direction in accordance with the movement in the rotating axis direction, of the gear on the basis of the conversion by a displacement converting part, and an optical fiber approximately orthogonal to the displacement direction of the elastic member, and wound around the elastic member. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、橋梁の橋桁等の大型の土木構造物に設置し、地震動等によるその土木構造物の状態変化、特に変位を監視する場合に好適な光ファイバ式変位計に関する。
【0002】
【従来の技術】
従来、大型の土木構造物の状態変化の監視は、保安要員による巡回点検や、電気式変位計(例えば、非特許文献1乃至3を参照)等によって行われている。
【0003】
【非特許文献1】
”土木・建築用計測機器、変位計”、[online]、株式会社共和電業、[平成15年2月25日検索]、インターネット<URL:http://www.kyowa−ei.co.jp/japanese/product/index_2002−10.htm>
【0004】
【非特許文献2】
”変位計”、[online]、東京測器研究所、[平成15年2月25日検索]、インターネット<URL:http://www.tokyosokki.co.jp/product/transducer/displacement.html>
【0005】
【非特許文献3】
”マルチ変位計”、[online]、株式会社興和、[平成15年2月25日検索]、インターネット<URL:http://www.kowa−net.co.jp/product/multi/multi.htm>
【0006】
【発明が解決しようとする課題】
上述した従来技術のうち、保安要員による巡回点検は、即応性に欠けるとともに安全性に課題があった。
【0007】
また、電気式変位計は、高精度ではあるものの雷害等の影響を受けるほか、耐久性や頻繁なメンテナンスを必要とする点に課題があった。
【0008】
本発明は上述した事情に鑑みてなされたものであり、その目的は、天候や高圧電線等の外的要因の影響を受けにくく耐久性にも優れ、なおかつ遠隔で監視可能な光ファイバ式変位計を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の発明は、測定対象の変位を検知する光ファイバ式変位計であって、測定対象の変位に追従して変位を受け、その少なくとも一部にラックが設けられた板状部材と、前記ラックと噛合する歯車と、この歯車の前記板状部材の変位に伴う回転を当該回転の回転軸方向への変位に変換する変位変換部と、前記歯車の回転軸に対して回転対称な円筒形状をなし、前記変位変換部による変換に基づく前記歯車の回転軸方向への移動に応じて当該移動方向と略直交する方向へ弾性的に変形する弾性部材と、この弾性部材の変形方向に略直交し、当該弾性部材の周囲に巻回された光ファイバとを備えたことを要旨とする。
【0010】
請求項1記載の発明によれば、光ファイバをセンサ及び伝送路として用いるため遠隔地から監視することができる。また、光ファイバ式変位計に電気的な部品を用いないため、雷や高圧電線等の誘導の影響を受けないで済む。
【0011】
請求項2記載の発明は、請求項1記載の発明において、前記変位変換部は、前記歯車の回転軸表面が螺旋形状に加工され、当該回転軸表面と同様に螺旋形状に加工された前記歯車の中心に螺合されて成ることを要旨とする。
【0012】
請求項3記載の発明は、請求項1または2記載の発明において、前記弾性部材は、前記歯車と当該歯車の回転軸に固定された略中空円盤状の部材との間に配置されることを要旨とする。
【0013】
【発明の実施の形態】
次に、添付図面を参照して本発明の実施の形態を説明する。
【0014】
図1は、本発明の一実施形態に係る光ファイバ式変位計の概略構成を示す説明図である。同図に示す光ファイバ式変位計1は、光ファイバ11に加わる引っ張り荷重に起因する引っ張り歪みを利用して測定対象の変位を検知するものである。図2は、図1の矢視A方向の矢視図である。なお、光ファイバ式変位計1の測定対象として想定されるのは、例えばトンネル、橋梁、ダム、ビル、河川堤防、港湾施設等の大型の土木構造物の地震や経年変化によって生じる変位や、地盤や山岳地帯の斜面における雪氷の崩壊等であるが、必ずしもそれらに限定されるものではないことは勿論である。
【0015】
これらの図1および図2に示す光ファイバ式変位計1は、自身が設置される測定対象の変位に追従して移動する板状部材12と、この板状部材12の移動を補助するために測定対象に対して固定配置される複数のローラー16とを備えている。この板状部材12の図1の上面部の少なくとも一部にはラック13が設けられており、このラック13と噛合する歯車14の回転軸である軸15は、その表面が螺旋形状に加工されており、この軸15の表面と同様に螺旋形状に加工されて成る歯車14の中心に螺合されることにより、歯車14が軸15を回転軸とする回転に伴って軸15の軸心方向(図2の上下方向)に移動する。すなわち、軸15は測定対象の変位に伴う板状部材12の変位を歯車14の軸心方向(図2の上方向)への変位に変換するように加工されている。この意味で、歯車14と軸15とは、それぞれがナットとボルトとに相当する構造となっており、この両者が全体として、歯車14の板状部材12の変位に伴う回転を軸15方向への変位に変換する変位変換部をなしている。
【0016】
この歯車14には、軸15を歯車と共有し、例えばゴム等の弾性範囲が広くポアソン比が大きい弾性部材から形成された略中空円筒形状を有する変状部17が固着されている。変状部17の歯車14側とは異なる端部には同軸上に取り付けられた略中空円盤状の部材から成る円盤部18が軸15に固定して取り付けられており、この変状部17には光ファイバ11が巻回されている。
【0017】
次に、本実施形態の光ファイバ式変位計1の作用について、図3の説明図を用いて説明する。同図においては、比較のため、測定対象の変位発生前(図3(a))と変位発生後(図3(b))における光ファイバ式変位計1の状態を上下に併記している。
【0018】
図3(a)に示す変位発生前の状態(初期状態)では、光ファイバ11の歪み(ひずみ)分布は、変状部17に巻回した部分で初期張力に応じた値となっている。
【0019】
次に、測定対象が図3で右方向に変位すると、その変位に伴って板状部材12も右方向に変位し、ラック13の移動によって歯車14が回転する。ちなみに、このときの歯車14の回転方向は、図1で反時計回りの方向である。歯車14は回転によって軸15に沿って図2中上方向に移動する。他方、円盤部18は、前述したように軸15に固定されており、変状部17は前述した弾性部材から形成されているため、歯車14の円盤部18側への変位に応じて変状部17は軸15の軸心方向に押圧されて、歯車14の移動方向と略直交する方向のうち軸15から遠ざかる方向(軸15から見て外向き)に樽状に弾性変形する。この弾性変形により、変状部17に巻回された光ファイバ11には引っ張り荷重が印加され、引っ張り歪みが発生する。
【0020】
このように、本実施形態によれば、測定対象部位ひいては板状部材12に位置変化(変位)が生じると、その変位量を光ファイバ11に生じた引っ張り歪みにより検出することができる。したがって、本実施形態の光ファイバ式変位計1を測定対象部位に設置した上で、光ファイバ11の歪み分布を測定する歪み分布測定器を光ファイバ式変位計1に接続し、変位前の初期状態との差分から、測定対象部位の変位量を検知、換算することが可能となる。
【0021】
すなわち、本実施形態によれば、測定対象部位の位置変化(変位)に基づく物理量を電気的に計測するのではなく、位置変化に基づく光ファイバ11の引っ張り歪みに応じて計測することができるため、例えば雷等の天候変化、高圧電線等の外的要因に対する影響を受けにくくなり、測定精度の向上とともに、耐久性の向上、および誤作動の防止を図ることが可能となる。
【0022】
また、本実施形態によれば、電気的構成要素を用いることなく、測定対象部位の荷重変化に基づく物理量を計測することができるため、光ファイバ式変位計1自体のコストを低減することができる。
【0023】
この結果、光ファイバ式変位計1を測定対象部位の荷重変化検出用として最初に設置する場合のコスト(初期設置コスト)および交換時等のメンテナンスに伴う維持コストをそれぞれ低減することが可能になる。
【0024】
なお、ラック13は板状部材12の少なくとも一部に設けてあればよく、ラック13の長さ、および歯車14の径や歯の数は、監視する測定対象構造物の許容変位量に応じて決定されることはいうまでもない。また、板状部材12上に、少なくとも(ラック13、歯車14、軸15、変状部17、円盤部18)の組を複数箇所設けることによって測定対象の変位を測定する構成にすることも勿論可能である。
【0025】
図4は、本実施形態の光ファイバ式変位計1を複数個用いて測定対象の変位を計測する変位計測システムの概略構成を示す説明図である。同図に示す変位計測システム100は、光ファイバ式変位計1を複数個用いて光ファイバ11に発生した引っ張り歪みを検知するものである。以後の説明においては、複数の光ファイバ式変位計を1−1、1−2、・・・、1−n(nは2以上の正の整数)と表す。
【0026】
図4に示す各光ファイバ式変位計1−1、1−2、・・・、1−nは、同一の光ファイバ11を介して直列に接続されており、その各々が、例えば測定対象部位に設置されている。より具体的な例については、図5を用いて後述する。なお、各光ファイバ式変位計1−1、1−2、・・・、1−nのその他の構成要素については、図1を用いて説明した光ファイバ式変位計1と同様であるため、その説明は省略する。
【0027】
また、同一の光ファイバ11を介して直列接続された複数の光ファイバ式変位計1−1、・・・、1−nにおける一端側の光ファイバ式変位計1−1から外側に引き出された光ファイバ11は、その光ファイバ11の歪み分布を測定して電気的な歪みデータに変換して出力する歪み分布測定器20に接続されている。この歪み分布測定器20は、パーソナルコンピュータ等の電子計算機である計算機30と、LAN、公衆回線、専用線等の通信ネットワークを介して通信可能に接続されている。計算機30は、歪み分布測定器20から出力された歪みデータを受信し、受信した歪みデータに基づいて測定対象の荷重変化量や変化位置を算出し、算出結果に基づいて予め設定された閾値に応じた位置変化発生の有無を判定して警報等を発出する。
【0028】
ここで、歪み分布測定器20の概略構成について、図4を用いて説明する。図4に示す歪み分布測定器20は、光ファイバ11に沿って連続的な歪み分布の測定が可能なブリルアン後方散乱光を用いた光学時間領域反射測定法(BOTDR:Brillouin Optical−fiber Time Domain Reflectometer)に基づく測定器である。
【0029】
すなわち、歪み分布測定器20は、レーザ光等の信号光S1および参照光S2をそれぞれ出力する光源21と、この光源21から出力された信号光S1の光周波数を、例えば約10GHz上昇した周波数に変換する光周波数変換器22と、この光周波数変換器22により周波数変換された信号光S1をパルス変調して光パルスP1を生成して出力する光パルス変調器23と、この光パルス変調器23から出力された光パルスP1を光ファイバ11に出力する一方で、自身に戻ってくるブリルアン散乱に起因した後方散乱光B1を分岐(スプリット)して後述するコヒーレント光受信機25に出力するビームスプリッタ24とを備えている。
【0030】
また、歪み分布測定器20は、複数の光ファイバ式変位計1−1、1−2、・・・、1−n側からビームスプリッタ24を介して戻ってくる後方散乱光B1を受信し、受信された後方散乱光B1と参照光S2とを比較して、光ファイバ11全体、すなわち、複数の光ファイバ式変位計1−1、・・・、1−n内での歪み分布を測定し、測定された歪み分布を電気的な歪みデータに変換して計算機30に出力するコヒーレント光受信機25を備えている。
【0031】
次に、変位計測システム100全体の作用を説明する。
【0032】
複数の光ファイバ式変位計1−1、1−2、・・・、1−nには、歪み分布測定器20から光パルスP1が送出されて光ファイバ11に入射されている。
【0033】
このとき、複数の光ファイバ式変位計1−1、1−2、・・・、1−nのうちで少なくとも一つの光ファイバ式変位計1−j(1≦j≦n;jは整数)が設置された測定対象部位に変位が生じると、この光ファイバ式変位計1−jの変状部17−jは、板状部材12−jの変位量に応じて歯車14−jがラック13−jを介して移動することによって歯車14−jと軸15−jに固定された円盤部18−jに挟まれて押圧されることにより、軸15−jの軸心方向に対して略直交する方向(径方向)に沿って外方へ樽状に弾性変形する(前掲図2参照)。この弾性変形により、光ファイバ11における光ファイバ式変位計1−jにおける変状部17−jの環状側面部に巻回された部分(以下、この部位をファイバ部位と称する)には引っ張り荷重が印加され、この結果、ファイバ部位に引っ張り歪みが発生する。ここで、光ファイバ式変位計1−jの構成要素の符号には、すべて「−j」を追加している。
【0034】
このとき、光ファイバ11に入射された光パルスP1は、その光ファイバ11内を伝播しながらブリルアン散乱に基づく後方散乱光B1(戻り光;約10GHz周波数ダウンする)を発生している。
【0035】
特に、光ファイバ11における少なくとも一つ以上のファイバ部位において引っ張り歪みが生じているため、ファイバ部位からの後方散乱光には、引っ張り歪みに起因した周波数シフトが発生している。
【0036】
このようにして発生した後方散乱光B1は、光ファイバ11内を光パルス入射側、すなわち歪み分布測定器20側に向かって伝播し、ビームスプリッタ24を介して分岐してコヒーレント光受信機25に入射する。
【0037】
このコヒーレント光受信機25では、入射された後方散乱光B1および参照光S2間において、例えば光ヘテロダイン検波が実行され、上記後方散乱光B1および参照光S2間の周波数差を表す分布(周波数分布)に対応する電気データ、すなわち、上記引っ張り歪みに起因した周波数シフト部分に対応する周波数差の分布(歪み分布)を表す歪みデータが生成される。
【0038】
生成された歪みデータは、計算機30に送信される。計算機30では、歪みデータに基づいて解析処理が実行され、測定対象部位の荷重変化量や位置変化(変位)が算出される。
【0039】
また、算出された測定対象部位の荷重変化量および位置変化に基づいて、予め設定された閾値(例えば、測定対象の許容できる最大の荷重変位レベルを表す)に応じた荷重変化発生の有無が判定され、その結果、閾値を超えた荷重変化が発生したと判定された場合には、計算機30から警報が出力される。
【0040】
以上述べたように、図1に示す光ファイバ式変位計1と同等のものを複数個用いて変位計測システム100を構成する場合にも、例えば雷等の天候変化、高圧電線等の外的要因からの影響を大幅に低減して測定精度を向上し、さらに、各光ファイバ式変位計1−1、・・・、1−nのコスト低減に基づいて変位計測システム100全体のコストを低減させることができ、初期設置コストおよび維持コストをそれぞれ低減することが可能になる。
【0041】
このような変位計測システム100は、特に大型の測定対象に対して複数箇所で計測する場合に好適である。すなわち、それぞれの測定部位に設けられる光ファイバ式変位計1−1、・・・、1−nと一つの歪み分布測定器20との間を1本の光ファイバ11を用いて直列に配線することができ、光ファイバ式変位計1−1、・・・、1−n毎に個別に配線する必要がないため、変位計測システム100全体を簡素化することが可能になる。
【0042】
さらに、各光ファイバ式変位計1−1、・・・、1−nに対して電源は不要であり、電源分のコストを低減し、また、電源交換等のメンテナンスも不要になる。
【0043】
そして、上述したように、光ファイバ式変位計1−1、・・・、1−nと歪み分布測定器20との間を光ファイバ11のみで配線することができるため、歪み分布測定器20を光ファイバ式変位計1−1、・・・、1−nに対して遠隔配置することに適しており、遠隔側において測定対象部位の荷重変化を一元的に監視することができる。
【0044】
本実施形態に係る変位計測システム100は、例えば橋梁における橋桁の連結部分に設置され、橋桁の移動を検知する場合に適用することが出来る。図5は、本実施形態に係る光ファイバ式変位計を橋桁の連結部分に取り付けた場合の側面図である。同図に示す二つの橋桁41および42は、橋脚51を台座として連結されており、両橋桁41および42には落橋防止装置61が連結して設けられている。
【0045】
この連結部分側面に設置される光ファイバ式変位計に対して便宜上符号1−j(1≦j≦n;jは整数)を付し、その光ファイバ式変位計1−jの各部位の符号にも「−j」を追加して記載する。板状部材12−jは、その右端が橋桁42に固定して取り付けられ、さらに各ローラー16の回転軸も橋桁41または42に取り付けられている。橋桁41には、軸15−jも取り付けられている。したがって、橋桁42が図5の右方向に変位することに伴って板状部材12−jも右方向に変位する。これにより、変状部17−jが弾性変形を受け、この変状部17−jの周囲に巻回された光ファイバ11に引っ張り歪みが発生することにより、橋桁42の変位を検知することが出来る。
【0046】
なお、同図に示す場合には、左方向への変位には対応できないが、これは例えば図の反対側(紙面の反対側)に同様の光ファイバ式変位計1を設けることによって検知可能にすることが出来る。
【0047】
また、光ファイバ式変位計1−jに対して適宜カバー部材を用いて被覆等の処理を施しておけば、一段と耐久性を増すことが出来る。
【0048】
【発明の効果】
以上の説明からも明らかなように、本発明によれば、天候や高圧電線等の外的要因の影響を受けにくく耐久性にも優れ、なおかつ遠隔で監視可能な光ファイバ式変位計を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る光ファイバ式変位計の概略構成を示す説明図である。
【図2】図1の矢視A方向の側面図である。
【図3】変位前後の光ファイバ式変位計の変化を示す説明図である。
【図4】本発明の一実施形態に係る光ファイバ式変位計を複数個備えた変位計測システムの概略構成を示す説明図である。
【図5】図4に示す変位計測システムの一適用例を示す橋梁の連結部分の側面図である。
【符号の説明】
1、1−1、1−2、・・・、1−n 光ファイバ式変位計
11 光ファイバ
12 板状部材
13 ラック
14 歯車
15 軸
16 ローラー
17 変状部
18 円盤部
20 歪み分布測定器
21 光源
22 光周波数変換器
23 光パルス変調器
24 ビームスプリッタ
25 コヒーレント光受信機
30 計算機
41、42 橋桁
51 橋脚
61 落橋防止装置
100 変位計測システム
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical fiber type displacement meter which is suitable for, for example, installing on a large civil engineering structure such as a bridge girder of a bridge and monitoring a state change, particularly a displacement, of the civil engineering structure due to seismic motion or the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, state changes of large civil engineering structures are monitored by patrol inspections by security personnel, electric displacement meters (for example, see Non-Patent Documents 1 to 3) and the like.
[0003]
[Non-patent document 1]
"Measurement equipment for civil engineering and construction, displacement meter", [online], Kyowa Dengyo Co., Ltd., [searched on February 25, 2003], Internet <URL: http: // www. kyowa-ei. co. jp / japanese / product / index_2002-10. htm>
[0004]
[Non-patent document 2]
"Displacement meter", [online], Tokyo Sokki Laboratory, [searched on February 25, 2003], Internet <URL: http: // www. tokyosoki. co. jp / product / transducer / displacement. html>
[0005]
[Non-Patent Document 3]
"Multi Displacement Meter", [online], Kowa Co., Ltd., [searched on February 25, 2003], Internet <URL: http: // www. kowa-net. co. jp / product / multi / multi. htm>
[0006]
[Problems to be solved by the invention]
Among the above-mentioned prior arts, the patrol inspection by security personnel lacks responsiveness and has a problem in safety.
[0007]
In addition, although the electric displacement meter has high accuracy, it has a problem in that it is affected by lightning damage and the like, and requires durability and frequent maintenance.
[0008]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has as its object to provide an optical fiber displacement meter which is hardly affected by external factors such as weather and high-voltage wires, has excellent durability, and can be monitored remotely. Is to provide.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 is an optical fiber type displacement meter for detecting a displacement of a measurement target, which receives a displacement following the displacement of the measurement target, and at least a part of which receives a rack. Provided, a gear that meshes with the rack, a displacement conversion unit that converts rotation of the gear due to the displacement of the plate member into a displacement of the rotation in the rotation axis direction, An elastic member having a cylindrical shape that is rotationally symmetric with respect to the rotation axis, and elastically deforming in a direction substantially orthogonal to the moving direction in accordance with the movement of the gear in the rotation axis direction based on the conversion by the displacement conversion unit; An optical fiber wound substantially around the elastic member and substantially orthogonal to the deformation direction of the elastic member.
[0010]
According to the first aspect of the present invention, since the optical fiber is used as a sensor and a transmission line, it can be monitored from a remote place. Further, since no electrical parts are used for the optical fiber type displacement meter, there is no need to be affected by induction such as lightning and high-voltage electric wires.
[0011]
According to a second aspect of the present invention, in the first aspect of the present invention, in the displacement conversion section, the rotation shaft surface of the gear is processed into a spiral shape, and the gear is processed into a spiral shape similarly to the rotation shaft surface. The gist is that it is screwed to the center of the.
[0012]
According to a third aspect of the present invention, in the first or second aspect, the elastic member is disposed between the gear and a substantially hollow disk-shaped member fixed to a rotation shaft of the gear. Make a summary.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the accompanying drawings.
[0014]
FIG. 1 is an explanatory diagram showing a schematic configuration of an optical fiber displacement meter according to one embodiment of the present invention. The optical fiber type displacement meter 1 shown in FIG. 1 detects displacement of an object to be measured by using a tensile strain caused by a tensile load applied to the optical fiber 11. FIG. 2 is a view in the direction of arrow A in FIG. The measurement targets of the optical fiber type displacement meter 1 are, for example, displacements caused by earthquakes and secular changes of large civil engineering structures such as tunnels, bridges, dams, buildings, river embankments, port facilities, and the like. And the collapse of snow and ice on the slopes of mountainous areas, but it is needless to say that the present invention is not necessarily limited thereto.
[0015]
The optical fiber type displacement meter 1 shown in FIGS. 1 and 2 has a plate-like member 12 which moves following the displacement of a measurement object on which the optical fiber-type displacement meter 1 is installed, and a movement of the plate-like member 12. And a plurality of rollers 16 fixedly arranged with respect to the measurement object. A rack 13 is provided on at least a part of the upper surface of FIG. 1 of the plate-like member 12. A shaft 15, which is a rotation shaft of a gear 14 meshing with the rack 13, has a helical surface. The screw 14 is screwed to the center of a gear 14 formed into a spiral shape in the same manner as the surface of the shaft 15, so that the gear 14 rotates with the shaft 15 as a rotation axis in the axial direction of the shaft 15. (Vertical direction in FIG. 2). That is, the shaft 15 is processed so as to convert the displacement of the plate-shaped member 12 accompanying the displacement of the measurement target into the displacement of the gear 14 in the axial direction (the upward direction in FIG. 2). In this sense, the gear 14 and the shaft 15 each have a structure corresponding to a nut and a bolt, and both of them rotate the gear 14 in the direction of the shaft 15 in accordance with the displacement of the plate member 12 as a whole. A displacement conversion unit for converting the displacement into a displacement.
[0016]
A deformed portion 17 having a substantially hollow cylindrical shape formed of an elastic member having a wide elastic range such as rubber and having a large Poisson's ratio is fixed to the gear 14, which shares a shaft 15 with the gear. At the end of the deformed portion 17 different from the gear 14 side, a disk portion 18 made of a substantially hollow disk-shaped member coaxially mounted is fixedly attached to the shaft 15. Has an optical fiber 11 wound therearound.
[0017]
Next, the operation of the optical fiber displacement meter 1 of the present embodiment will be described with reference to the explanatory diagram of FIG. In the figure, for comparison, the state of the optical fiber type displacement meter 1 before and after the displacement of the measurement target is generated (FIG. 3A) and after the displacement is generated (FIG. 3B) are also shown above and below.
[0018]
In the state (initial state) before the occurrence of displacement shown in FIG. 3A, the strain (strain) distribution of the optical fiber 11 has a value corresponding to the initial tension in the portion wound around the deformed portion 17.
[0019]
Next, when the measurement target is displaced rightward in FIG. 3, the plate-like member 12 is displaced rightward with the displacement, and the gear 14 is rotated by the movement of the rack 13. Incidentally, the rotation direction of the gear 14 at this time is a counterclockwise direction in FIG. The gear 14 moves upward along the axis 15 in FIG. 2 by rotation. On the other hand, the disk portion 18 is fixed to the shaft 15 as described above, and the deformed portion 17 is formed of the above-described elastic member, so that the deformed portion is deformed according to the displacement of the gear 14 toward the disk portion 18. The portion 17 is pressed in the axial direction of the shaft 15 and elastically deforms in a barrel shape in a direction away from the shaft 15 (outward from the shaft 15) in a direction substantially perpendicular to the moving direction of the gear 14. Due to this elastic deformation, a tensile load is applied to the optical fiber 11 wound around the deformed portion 17, and tensile strain is generated.
[0020]
As described above, according to the present embodiment, when a position change (displacement) occurs in the measurement target portion and thus in the plate member 12, the amount of the displacement can be detected by the tensile strain generated in the optical fiber 11. Therefore, after the optical fiber type displacement meter 1 of the present embodiment is installed at the measurement target site, a strain distribution measuring device for measuring the strain distribution of the optical fiber 11 is connected to the optical fiber type displacement meter 1, and the initial position before the displacement is measured. From the difference from the state, the displacement amount of the measurement target part can be detected and converted.
[0021]
That is, according to the present embodiment, the physical quantity based on the position change (displacement) of the measurement target portion can be measured according to the tensile strain of the optical fiber 11 based on the position change, rather than electrically. For example, it is less susceptible to weather changes such as lightning and external factors such as high-voltage wires, so that measurement accuracy can be improved, durability can be improved, and malfunction can be prevented.
[0022]
Further, according to the present embodiment, it is possible to measure a physical quantity based on a change in load on a measurement target portion without using an electrical component, and thus it is possible to reduce the cost of the optical fiber displacement meter 1 itself. .
[0023]
As a result, it is possible to reduce the cost (initial installation cost) when the optical fiber displacement meter 1 is first installed for detecting a change in the load of the measurement target site and the maintenance cost involved in maintenance such as replacement. .
[0024]
Note that the rack 13 may be provided on at least a part of the plate member 12, and the length of the rack 13, the diameter of the gear 14, and the number of teeth are determined according to the allowable displacement of the structure to be monitored. It goes without saying that it is decided. Further, it is a matter of course that the displacement of the object to be measured is measured by providing at least a plurality of sets of (the rack 13, the gear 14, the shaft 15, the deformed portion 17, and the disk portion 18) on the plate member 12. It is possible.
[0025]
FIG. 4 is an explanatory diagram illustrating a schematic configuration of a displacement measurement system that measures displacement of a measurement target using a plurality of optical fiber displacement meters 1 of the present embodiment. The displacement measurement system 100 shown in FIG. 1 detects a tensile strain generated in the optical fiber 11 by using a plurality of optical fiber displacement meters 1. In the following description, a plurality of optical fiber displacement meters are represented as 1-1, 1-2,..., 1-n (n is a positive integer of 2 or more).
[0026]
Each of the optical fiber displacement meters 1-1, 1-2,..., 1-n shown in FIG. 4 is connected in series via the same optical fiber 11, and each of them is, for example, a measurement target site. It is installed in. A more specific example will be described later with reference to FIG. The other components of the optical fiber type displacement meters 1-1, 1-2,..., 1-n are the same as those of the optical fiber type displacement meter 1 described with reference to FIG. The description is omitted.
[0027]
Also, the plurality of optical fiber type displacement meters 1-1,..., 1-n connected in series via the same optical fiber 11 are pulled out from the optical fiber type displacement meter 1-1 on one end side. The optical fiber 11 is connected to a strain distribution measuring device 20 that measures a strain distribution of the optical fiber 11, converts the strain distribution into electrical strain data, and outputs the data. The distortion distribution measuring device 20 is communicably connected to a computer 30 which is an electronic computer such as a personal computer via a communication network such as a LAN, a public line, and a dedicated line. The calculator 30 receives the strain data output from the strain distribution measuring device 20, calculates a load change amount and a change position of the measurement target based on the received strain data, and sets a predetermined threshold based on the calculation result. The presence or absence of the corresponding position change is determined, and an alarm or the like is issued.
[0028]
Here, a schematic configuration of the strain distribution measuring device 20 will be described with reference to FIG. A strain distribution measuring device 20 shown in FIG. 4 is a Brillouin optical-fiber time domain reflectometer (BOTDR) using Brillouin backscattered light capable of continuously measuring a strain distribution along the optical fiber 11. ).
[0029]
That is, the strain distribution measuring device 20 includes a light source 21 that outputs the signal light S1 such as a laser beam and the reference light S2, and an optical frequency of the signal light S1 output from the light source 21 raised to, for example, about 10 GHz. An optical frequency converter 22 for conversion; an optical pulse modulator 23 for pulse-modulating the signal light S1 frequency-converted by the optical frequency converter 22 to generate and output an optical pulse P1; A beam splitter that outputs the optical pulse P1 output from the optical fiber 11 to the optical fiber 11, splits the backscattered light B1 due to Brillouin scattering returning to itself, and outputs the split light to a coherent optical receiver 25 described later. 24.
[0030]
Further, the strain distribution measuring device 20 receives the backscattered light B1 returning from the plurality of optical fiber displacement meters 1-1, 1-2,..., 1-n via the beam splitter 24, By comparing the received backscattered light B1 with the reference light S2, the strain distribution in the entire optical fiber 11, that is, the plurality of optical fiber displacement meters 1-1,..., 1-n is measured. And a coherent optical receiver 25 that converts the measured strain distribution into electrical strain data and outputs the converted data to the computer 30.
[0031]
Next, the operation of the entire displacement measurement system 100 will be described.
[0032]
An optical pulse P1 is sent from the strain distribution measuring device 20 to the optical fiber type displacement meters 1-1, 1-2,..., 1-n.
[0033]
At this time, at least one optical fiber displacement meter 1-j (1 ≦ j ≦ n; j is an integer) among the plurality of optical fiber displacement meters 1-1, 1-2,..., 1-n. When the displacement occurs in the measurement target portion where the is installed, the deformed portion 17-j of the optical fiber type displacement meter 1-j causes the gear 14-j to move the rack 13 in accordance with the displacement amount of the plate member 12-j. -J, and is pressed between the gear 14-j and the disk portion 18-j fixed to the shaft 15-j, thereby being substantially orthogonal to the axial direction of the shaft 15-j. In the barrel direction (radial direction) (see FIG. 2). Due to this elastic deformation, a tensile load is applied to a portion (hereinafter, this portion is referred to as a fiber portion) of the optical fiber 11 wound around the annular side surface of the deformed portion 17-j in the optical fiber displacement meter 1-j. Applied, which results in tensile strain at the fiber site. Here, "-j" is added to all the reference numerals of the components of the optical fiber type displacement meter 1-j.
[0034]
At this time, the optical pulse P1 incident on the optical fiber 11 generates backscattered light B1 (return light; frequency of about 10 GHz is reduced) based on Brillouin scattering while propagating in the optical fiber 11.
[0035]
In particular, since tensile strain occurs in at least one or more fiber portions of the optical fiber 11, a frequency shift occurs in the backscattered light from the fiber portion due to the tensile strain.
[0036]
The backscattered light B1 generated in this manner propagates through the optical fiber 11 toward the optical pulse incident side, that is, toward the strain distribution measuring device 20, and branches via the beam splitter 24 to the coherent optical receiver 25. Incident.
[0037]
In the coherent light receiver 25, for example, optical heterodyne detection is performed between the incident backscattered light B1 and the reference light S2, and a distribution (frequency distribution) representing a frequency difference between the backscattered light B1 and the reference light S2 is obtained. , That is, strain data representing the distribution (strain distribution) of the frequency difference corresponding to the frequency shift portion caused by the tensile strain.
[0038]
The generated distortion data is transmitted to the computer 30. The computer 30 performs an analysis process based on the strain data, and calculates a load change amount and a position change (displacement) of the measurement target portion.
[0039]
Also, based on the calculated load change amount and position change of the measurement target portion, it is determined whether or not a load change has occurred according to a preset threshold value (for example, representing a maximum allowable load displacement level of the measurement target). As a result, when it is determined that a load change exceeding the threshold value has occurred, the calculator 30 outputs an alarm.
[0040]
As described above, even when the displacement measurement system 100 is configured using a plurality of optical fiber displacement meters 1 shown in FIG. 1, for example, weather changes such as lightning, external factors such as high-voltage wires, etc. , Greatly improve the measurement accuracy, and further reduce the cost of the entire displacement measurement system 100 based on the cost reduction of each of the optical fiber displacement meters 1-1,..., 1-n. And the initial installation cost and the maintenance cost can be reduced.
[0041]
Such a displacement measurement system 100 is particularly suitable for measuring a large measurement target at a plurality of locations. That is, the optical fiber displacement gauges 1-1,..., 1-n provided at the respective measurement sites and one strain distribution measuring device 20 are wired in series using one optical fiber 11. Since it is not necessary to individually wire each of the optical fiber displacement meters 1-1,..., 1-n, the entire displacement measurement system 100 can be simplified.
[0042]
Further, no power supply is required for each of the optical fiber displacement meters 1-1,..., 1-n, so that the cost for the power supply is reduced, and maintenance such as power supply replacement is also unnecessary.
[0043]
As described above, since the optical fiber type displacement gauges 1-1,..., 1-n and the strain distribution measuring instrument 20 can be wired with only the optical fiber 11, only the strain distribution measuring instrument 20 can be used. Is remotely arranged with respect to the optical fiber displacement gauges 1-1,..., 1-n, and a change in the load of the measurement target portion can be integrally monitored on the remote side.
[0044]
The displacement measurement system 100 according to the present embodiment is installed, for example, at a connection portion of a bridge girder in a bridge, and can be applied to a case where movement of the bridge girder is detected. FIG. 5 is a side view when the optical fiber type displacement meter according to the present embodiment is attached to a connecting portion of a bridge girder. The two bridge girders 41 and 42 shown in the figure are connected with a pier 51 as a pedestal, and both bridge girders 41 and 42 are provided with a fall prevention device 61 connected thereto.
[0045]
For convenience, the reference numeral 1-j (1 ≦ j ≦ n; j is an integer) is given to the optical fiber type displacement meter installed on the side surface of the connecting portion, and the reference number of each part of the optical fiber type displacement meter 1-j. "-J" is additionally described. The right end of the plate member 12-j is fixedly attached to the bridge girder 42, and the rotating shaft of each roller 16 is also attached to the bridge girder 41 or 42. A shaft 15-j is also attached to the bridge girder 41. Accordingly, the plate member 12-j is also displaced rightward as the bridge girder 42 is displaced rightward in FIG. As a result, the deformed portion 17-j undergoes elastic deformation, and the optical fiber 11 wound around the deformed portion 17-j undergoes a tensile strain, whereby the displacement of the bridge girder 42 can be detected. I can do it.
[0046]
In the case shown in the figure, the displacement in the left direction cannot be handled, but this can be detected, for example, by providing a similar optical fiber type displacement meter 1 on the opposite side of the figure (opposite side of the paper). You can do it.
[0047]
If the optical fiber type displacement meter 1-j is subjected to a treatment such as coating using a cover member as appropriate, the durability can be further increased.
[0048]
【The invention's effect】
As is clear from the above description, according to the present invention, there is provided an optical fiber type displacement meter which is hardly affected by external factors such as weather and high voltage wires, has excellent durability, and can be monitored remotely. be able to.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a schematic configuration of an optical fiber displacement meter according to an embodiment of the present invention.
FIG. 2 is a side view in the direction of arrow A in FIG.
FIG. 3 is an explanatory diagram showing a change of an optical fiber type displacement meter before and after displacement.
FIG. 4 is an explanatory diagram illustrating a schematic configuration of a displacement measurement system including a plurality of optical fiber displacement meters according to an embodiment of the present invention.
FIG. 5 is a side view of a connection portion of a bridge showing one application example of the displacement measurement system shown in FIG. 4;
[Explanation of symbols]
1, 1-1, 1-2,..., 1-n Optical fiber displacement meter 11 Optical fiber 12 Plate member 13 Rack 14 Gear 15 Shaft 16 Roller 17 Deformed portion 18 Disk portion 20 Strain distribution measuring device 21 Light source 22 Optical frequency converter 23 Optical pulse modulator 24 Beam splitter 25 Coherent optical receiver 30 Computers 41 and 42 Bridge girder 51 Bridge pier 61 Falling bridge prevention device 100 Displacement measurement system

Claims (3)

測定対象の変位を検知する光ファイバ式変位計であって、
測定対象の変位に追従して変位を受け、その少なくとも一部にラックが設けられた板状部材と、
前記ラックと噛合する歯車と、
この歯車の前記板状部材の変位に伴う回転を当該回転の回転軸方向への変位に変換する変位変換部と、
前記歯車の回転軸に対して回転対称な円筒形状をなし、前記変位変換部による変換に基づく前記歯車の回転軸方向への移動に応じて当該移動方向と略直交する方向へ弾性的に変形する弾性部材と、
この弾性部材の変形方向に略直交し、当該弾性部材の周囲に巻回された光ファイバと
を備えたことを特徴とする光ファイバ式変位計。
An optical fiber displacement meter that detects a displacement of a measurement object,
A plate-shaped member that receives a displacement following the displacement of the measurement target and at least a part of which is provided with a rack,
A gear that meshes with the rack;
A displacement conversion unit that converts the rotation of the gear due to the displacement of the plate-like member into a displacement of the gear in the rotation axis direction,
The gear has a cylindrical shape that is rotationally symmetric with respect to the rotation axis of the gear, and elastically deforms in a direction substantially orthogonal to the moving direction in accordance with the movement of the gear in the rotation axis direction based on the conversion by the displacement conversion unit. An elastic member;
An optical fiber which is substantially perpendicular to the direction of deformation of the elastic member and which is wound around the elastic member.
前記変位変換部は、前記歯車の回転軸表面が螺旋形状に加工され、当該回転軸表面と同様に螺旋形状に加工された前記歯車の中心に螺合されて成ることを特徴とする請求項1記載の光ファイバ式変位計。2. The displacement converter, wherein a surface of a rotation shaft of the gear is formed into a helical shape, and screwed to a center of the gear processed into a helical shape similarly to the surface of the rotation shaft. 3. An optical fiber type displacement meter as described in the above. 前記弾性部材は、前記歯車と当該歯車の回転軸に固定された略中空円盤状の部材との間に配置されることを特徴とする請求項1または2記載の光ファイバ式変位計。The optical fiber type displacement meter according to claim 1, wherein the elastic member is disposed between the gear and a substantially hollow disk-shaped member fixed to a rotation shaft of the gear.
JP2003050681A 2003-02-27 2003-02-27 Optical fiber displacement meter Expired - Lifetime JP3848272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003050681A JP3848272B2 (en) 2003-02-27 2003-02-27 Optical fiber displacement meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003050681A JP3848272B2 (en) 2003-02-27 2003-02-27 Optical fiber displacement meter

Publications (2)

Publication Number Publication Date
JP2004257933A true JP2004257933A (en) 2004-09-16
JP3848272B2 JP3848272B2 (en) 2006-11-22

Family

ID=33116031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003050681A Expired - Lifetime JP3848272B2 (en) 2003-02-27 2003-02-27 Optical fiber displacement meter

Country Status (1)

Country Link
JP (1) JP3848272B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120178A (en) * 2005-10-28 2007-05-17 Ntt Data Corp Bridge-monitoring system, bridge-monitoring method, and its program
CN106770481A (en) * 2016-12-14 2017-05-31 吉林省公路管理局 Bridge sling monitors sensor
CN110360984A (en) * 2019-07-08 2019-10-22 扬州市市政建设处 A kind of a wide range of distributed monitoring system and method for ground settlement
CN111561894A (en) * 2020-06-12 2020-08-21 湖北吉祥安全技术服务有限公司 Multipoint displacement monitoring device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120178A (en) * 2005-10-28 2007-05-17 Ntt Data Corp Bridge-monitoring system, bridge-monitoring method, and its program
JP4609892B2 (en) * 2005-10-28 2011-01-12 株式会社エヌ・ティ・ティ・データ Bridge monitoring apparatus, bridge monitoring method and program
CN106770481A (en) * 2016-12-14 2017-05-31 吉林省公路管理局 Bridge sling monitors sensor
CN110360984A (en) * 2019-07-08 2019-10-22 扬州市市政建设处 A kind of a wide range of distributed monitoring system and method for ground settlement
CN110360984B (en) * 2019-07-08 2024-04-30 扬州市市政建设处 Large-scale distributed monitoring system and method for surface subsidence
CN111561894A (en) * 2020-06-12 2020-08-21 湖北吉祥安全技术服务有限公司 Multipoint displacement monitoring device and method

Also Published As

Publication number Publication date
JP3848272B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
Bao et al. Tensile and compressive strain measurement in the lab and field with the distributed Brillouin scattering sensor
Hubbard et al. Dynamic structural health monitoring of a model wind turbine tower using distributed acoustic sensing (DAS)
Culshaw et al. Smart structures and applications in civil engineering
Zhang et al. Micro-fiber-based FBG sensor for simultaneous measurement of vibration and temperature
JP5242098B2 (en) Optical fiber sensor and variation position detection method
KR101446022B1 (en) A Fiber optic bolt loosening monitoring system and method
Alamandala et al. Study on bridge weigh in motion (BWIM) system for measuring the vehicle parameters based on strain measurement using FBG sensors
Komatsu et al. Application of optical sensing technology to the civil engineering field with optical fiber strain measurement device (BOTDR)
Zheng et al. Design, sensing principle and testing of a novel fiber optic displacement sensor based on linear macro-bending loss
JP3848272B2 (en) Optical fiber displacement meter
Kurashima et al. Application of fiber optic distributed sensor for strain measurement in civil engineering
CN115420410B (en) Bridge stress detection system
Mao et al. The online monitoring system of transmission lines weight based on fiber sensing technology
Sun et al. The distributed dynamic combined-stresses measurement of ship thruster inner-skin using fiber Bragg grating sensor rosette array
JP2004257932A (en) Optical fiber type displacement gauge
JP2006138757A (en) Optical fiber type multiple sensor system
US20140354973A1 (en) Structural health monitoring method and apparatus based on optical fiber bend loss measurement
WO2011033649A1 (en) Distributed optical fiber sensor device having a plurality of sensing regions
Zou et al. Pipeline corrosion monitoring by fiber optic distributed strain and temperature sensors
JP2004257772A (en) Optical fiber type load cell
Willshire et al. Dynamic strain measurement using an extrinsic Fabry-Perot interferometric sensor and an arrayed waveguide grating device
Ohno et al. Reduction of the effect of temperature in a fiber optic distributed sensor used for strain measurements in civil structures
JP3910924B2 (en) Optical fiber displacement meter
Fujihashi et al. Monitoring system based on optical fiber sensing technology for tunnel structures and other infrastructure
JP5634663B2 (en) Water level detection system and detector diagnostic method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060824

R150 Certificate of patent or registration of utility model

Ref document number: 3848272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100901

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110901

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130901

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term