JP2004257882A - Measuring device and measuring method of angle of deviation - Google Patents

Measuring device and measuring method of angle of deviation Download PDF

Info

Publication number
JP2004257882A
JP2004257882A JP2003049524A JP2003049524A JP2004257882A JP 2004257882 A JP2004257882 A JP 2004257882A JP 2003049524 A JP2003049524 A JP 2003049524A JP 2003049524 A JP2003049524 A JP 2003049524A JP 2004257882 A JP2004257882 A JP 2004257882A
Authority
JP
Japan
Prior art keywords
light
measured
shielding plate
measurement
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003049524A
Other languages
Japanese (ja)
Inventor
Kengo Goto
健吾 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2003049524A priority Critical patent/JP2004257882A/en
Publication of JP2004257882A publication Critical patent/JP2004257882A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a drift angle measuring device and a method having high measurement accuracy by using a compact optical system. <P>SOLUTION: This measuring device of the angle of deviation is constituted of a light source 1 for emitting measuring light, a lens 4 for condensing the measuring light emitted from the light source 1 to form a beam, a measuring object 2 where the measuring light enters to measure the angle of deviation, a light receiver 5 arranged on the optical axis of the beam-shaped measuring light, a light shielding plate 7 arranged on the front face on the light source side of the light receiver 5, a guide 8 to which the shielding plate 7 is fixed, a motor 9 for generating a power for moving the light shielding plate 7 in parallel with the light receiver 5 and recognizing the moving quantity, and a gear 10 fixed on the motor and engaged with planar teeth provided on the guide 8, for moving the light shielding plate 7. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は偏角の測定装置及び方法に関し、特に光学部品において規定される光路偏角を、コンパクトで精度良く測定可能とする偏角測定装置及び方法に関する。
【0002】
【従来の技術】
光学部品においては、特開2001−281602号公報に開示されている通り、入射する光線を所定の位置に精度良く出射する性能を有する必要があり、入射光線に対して所定の角度で曲げられた出射光線との関係を光路偏角として規定している。
図5は、従来の偏角測定装置の一例である。図5は、光路偏角を簡易的に測定する方法を示すものであり、測定光を出射する光源1と、被測定物2と、被測定物2が出射する光を投射するスクリーン3とにより構成する。
【0003】
図5の動作を説明すると、光源1よりビーム光を被測定物2の入射面に照射し、被測定物2が出射するビーム光をスクリーン3に投射する。スクリーン3は、例えば板状のものに所定の間隔で目盛りが振られたものであり、被測定物2の光軸に対して投射されたビーム光が曲げられた距離を測定する。この時、被測定物2の偏角θは、被測定物2とスクリーン3との最短距離をAとし、被測定物2によりビーム光が曲げられた距離をBとすると、
偏角θ=tan−1(B/A)
として求めることが出来る。
【0004】
【発明が解決しようとする課題】
しかしながら、従来の偏角測定方法は、測定精度を高めるために、被測定物2から投射されるビーム光が曲げられた距離Bを相対的に大きくする必要があり、従って、被測定物2とスクリーン3間の距離Aも大きくなる。そのため、測定に要する光学系が大きなものになってしまうと共に、スクリーン3に投射されるビーム径が大きくなり、前述の距離Bの微小な変動を読み取ることが困難であることから、測定精度の高い偏角測定が難しいという問題が生じていた。因みに、従来の偏角測定方法により得られる分解能は、被測定物2とスクリーン3との距離A=8mの時に、距離Bの判別可能距離=2mmとした際に、偏角θが、0.86′程度である。
本発明は、上述したような問題を解決させるためになされたものであって、コンパクトな光学系を用いて測定精度の高い偏角測定装置及び方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために本発明に係わる偏角測定装置及び方法は、以下の構成をとる。
請求項1記載の偏角測定装置は、測定光を出射する光源と、該光源が出射した測定光を集光しビーム化するレンズと、ビーム化した測定光の光軸上に配置した受光器と、前記受光器の光源側前面にスリット孔を有する遮光板と、該遮光板を移動するための駆動手段と、前記遮光板の移動量を検出する移動量検出手段とを備えており、前記レンズから出射する測定光の光軸上に被測定物を配置して該被測定物の光路偏角を測定するよう構成する。
【0006】
請求項2記載の偏角測定装置は、前記遮光板をその主面が前記レンズから出射する測定光の光軸に対してほぼ直交するよう配置すると共に、前記主面に平行な方向に移動可能とするよう構成する。
【0007】
請求項3記載の偏角測定装置は、前記スリット孔がその長手方向が前記遮光板の移動方向と直交するように形成されるよう構成する。
【0008】
請求項4記載の偏角測定方法は、測定光を出射する光源と、該光源が出射した測定光を集光しビーム化するレンズと、ビーム化した測定光の光軸上に配置した受光器と、前記受光器の光源側前面にスリット孔を有する遮光板と、該遮光板を移動するための駆動手段と、前記遮光板の移動量を検出する移動量検出手段とを備えた偏角測定装置を用いて、前記レンズから出射する測定光の光軸上に戴置された被測定物の光路偏角を測定する方法であって、被測定物を前記偏角測定装置に戴置しない状態において、前記遮光板を移動させながらその移動量と前記受光器の出力とを測定し、前記受光器の出力が最大となったときの前記遮光板の位置を第一のピーク値として認識するステップと、被測定物を戴置した状態において、前記遮光板を移動させながらその移動量と前記受光器の出力とを測定し、前記受光器の出力が最大となったときの前記遮光板の位置を第二のピーク値として認識するステップと、被測定物を戴置した位置から前記受光器までの距離をAとし前記第一のピーク位置から第二のピーク位置までの距離をBとして、被測定物の偏角θを次式 θ=tan−1(B/A)に基づいて算出するステップとを含むよう構成する。
【0009】
請求項5記載の偏角測定装置は、測定光を出射する光源と、該光源が出射した測定光の光軸上に配置した角度プリズムと、該角度プリズムから出射した測定光の光軸上に配置した受光器とを備えており、前記光源から出射する測定光の光軸上に基準となる光学部品及び被測定物を順次配置して被測定物の偏角誤差を測定するよう構成する。
【0010】
請求項6記載の偏角測定方法は、測定光を出射する光源と、該光源が出射した測定光の光軸上に配置した角度プリズムと、該角度プリズムから出射した測定光の光軸上に配置した受光器とを備えた偏角測定装置を用いて、前記光源から出射する測定光の光軸上に戴置された被測定物の偏角誤差を測定する方法であって、基準となる光学部品を前記偏角測定装置に戴置して、前記光源が出射する測定光を受光器に結像させた点を基準点とするステップと、被測定物を前記偏角測定装置に戴置して、前記光源が出射する測定光を受光器に結像させた結像点と前記基準点との間の距離を計測するステップと、計測した前記距離を基に基準となる光学部品が有する偏角に対する被測定物が有する偏角誤差を算出するステップとを含むよう構成する。
【0011】
【発明の実施の形態】
以下、図示した実施例に基づいて本発明を詳細に説明する。
図1は、本発明に係る偏角測定装置及び方法の第一の実施形態を示す機能図である。本実施例は、測定光を出射する光源1と、光源1が出射する測定光を集光しビーム化するレンズ4と、測定光を入射し偏角を測定する被測定物2と、ビーム化した測定光の光軸上に配置した受光器5と、受光器5の光源側前面に配置しスリット孔6を有する遮光板7と、該遮光板7を固定したガイド8と、前記遮光板7を受光器5に平行に移動させるための動力となると共に移動量を認識するモータ9と、該モータ9に固定して前記ガイド8に設けた板状の歯に噛合い、遮光板7を移動させる歯車10とにより構成する。又、遮光板7は、レンズから出射する測定光の光軸に対してほぼ直交するよう配置すると共に、受光器5に平行に移動する。
【0012】
図1の動作を説明すると、光源1から出射される測定光は、レンズ4に入射して集光し、受光器5に結像するように光学系が調整されている。そこで、先ず、測定にあたって偏角測定のための測定系の基準データを得るため、被測定物を配置しない状態で遮光板7を移動させ、受光器5において検出する測定光の受光量を測定する。受光器5には、図示していないパソコン等が接続されており、遮光板7の移動量と受光量の測定データを入力してグラフ化し、基準データを出力する。
【0013】
本実施例において使用している遮光板7は、例えば薄い金属プレート等の中央に、長さ6mm、幅0.1mm程度のスリット孔6を設けたものであり、この遮光板7を所定の間隔で受光器5に平行に移動させた際に、スリット孔6を通過する測定光の強度を受光器5により検出する。モータ9は、遮光板7を所定の間隔で移動させる際の動力源であり、このモータ9は、印加されるパルスによって回転する機能を有しており、パルスが入力される度に所定の間隔で回転すると共に、遮光板7の移動量を認識する。
【0014】
そこで、モータ9には歯車10が固定されており、モータ9が回転すると、この歯車10と噛合っている板状のガイド8が所定のステップで移動し、従って、ガイド8に固定された遮光板7が、受光器5に平行に移動する。図1に示したスリット基点とスリット終点の範囲をスリット孔6は移動し、基準となる測定光が受光器5に結像する位置と、被測定物2が出射する測定光が受光器5に結像する位置とは、この移動範囲に含まれるものとする。
【0015】
次に、基準データ採取後、被測定物2を偏角測定装置の所定の位置に配置し、基準データ採取時と同様に、スリット基点からスリット終点まで、モータ9へ入力するパルス数により制御される所定の間隔で遮光板7を移動させ、その時に受光器5で検出される受光量を測定する。受光器5には、図示していないパソコン等が接続されており、遮光板7の移動量と受光量の測定データを入力してグラフ化し、受光特性を出力する。
【0016】
図2は、本発明に係わる偏角測定装置及び方法の第一の実施形態において、基準データと被測定データをグラフ化した図である。図2は、上述したように、被測定物を配置しない時(基準データ)と被測定物を配置した時(被測定データ)に、スリット孔をスリッド基点からスリット終点まで所定の間隔で移動させた時の、受光器が検出した受光量をグラフ化したものである。図2(a)は、スリット基点からスリット終点までに検出した受光量を示し、図2(b)は、基準データと被測定データのピーク点を拡大したものである。図2(b)の拡大図において、Lは、スリット孔を移動させる際のステップ距離を示す。そこで、基準データと被測定データのピーク値間の距離Bを求めると、距離Bは、被測定物を光学測定系に配置したことにより測定光が曲げられた距離を示し、従って、偏角θは、図1に示したように被測定物と受光器間の最短距離をAとすると、
偏角θ=tan−1(B/A)
により求めることが出来る。
【0017】
本実施例における最小分解能は、距離Aを100mm、Lを1μmと設定すると、約0.04′が可能となり高精度な偏角測定が可能となると共に、被測定物と受光器間の距離を短縮することが出来ることから、コンパクトな偏角測定装置を構成可能である。
【0018】
図3は、本発明に係る偏角測定装置及び方法の第二の実施形態を示す機能図である。本実施例は、測定光を出射する光源1と、測定光を入射し偏角を測定する被測定物2と、光源が出射した測定光の光軸上に配置した角度プリズム11と、測定光を結像させる受光器となるCCDカメラ12とにより構成する。
図3の動作を説明すると、光源1が出射する測定光は、被測定物2に入射された後、角度プリズム11に出射する。角度プリズム11は、被測定物2において発生した光路偏角θを任意の倍率αで拡大するためのもので、角度プリズム11に入射した測定光は、偏角がα倍拡大してCCDカメラ12に出射される。
【0019】
次に、CCDカメラに出射した測定光を用いて具体的に偏角の計算方法を説明する。本実施例においては、被測定物の偏角を直接計測する目的のものではなく、基準となる光学部品の偏角と比較して被測定物の偏角がどの程度の微小な誤差を有しているかを精度良く計測するためのものである。そのため、偏角測定にあたって、先ず、偏角が既知である基準となる光学部品を被測定物の代わりに測定系に挿入して、測定光を基準となる光学部品に照射し、角度プリズムを経由してCCDカメラのモニターの中心部に結像させ、この結像点を基準値とする。次に、基準となる光学部品に代え被測定物を測定系に挿入して、測定光を被測定物に照射し、角度プリズムを経由してCCDカメラのモニターに結像させ、この結像点と既知である基準値との距離の差を計測することにより基準となる光学部品と被測定物との偏角の誤差を識別するものである。そこで、両者の偏角の差と、CCDカメラに結像した基準値と測定値と間の距離の関係がどのようになるか具体的な計算例を用いて説明する。
【0020】
図4は、本発明に係わる偏角測定装置及び方法の第二の実施形態において、測定光が出射される様子を示す。
角度プリズムを挿入しない状態で、測定光が被測定物を透過し、CCDカメラに出射した際に測定光が曲げられた距離をS1、被測定物からCCDカメラまでの距離をL1、その時の偏角をθ2−θ1とし、測定系に角度プリズムを挿入した状態で、測定光が被測定物を透過した後、角度プリズムを介してCCDカメラに出射した際に測定光が曲げられた距離をS2、角度プリズムからCCDカメラまでの距離をL4、及び、θ3、θ4、θ5を図4に示した角度とすると以下の関係式であらわすことが出来る。
S2=L4×tan(θ5−θ4) ・・・・・(1)
又、大気の屈折率をn0、被測定物の屈折率をn1、角度プリズムの屈折率をn2とすると、
n0×sinθ5=n2×sin(θ4+θ3) ・・・・・(2)
n2×sinθ3=n0×sin(θ2−θ1) ・・・・・(3)
n0×sinθ2=n1×sinθ1 ・・・・・(4)
の関係式が成り立つので、式(1)、(2)、(3)、(4)よりθ5は、
θ5=sin−1((n1/n0)×sin(θ4+sin−1((n0/n2
)×sin(sin−1((n1/n0)×sinθ1)−θ1))))・・・・・(5)
により求められる。
【0021】
そこで、先ず、測定系に基準となる光学部品を挿入した場合について、これを計算例Aとして、L1=1000mm(L2=50mm、L3=10mm、L4=940mm)、n0=1、n1=n2=1.51、θ1=1°、θ4=30°としθ5Aを求めてみると、式(5)より
θ5A≒49.70°
S2Aは、式(1)より
S2A≒336.57mm
が求められる。
【0022】
一方、次に被測定物を測定系に挿入し、これを計算例Bとして、 L1=1000mm(L2=50mm、L3=10mm、L4=940mm)、n0=1、n1=n2=1.51、θ1=1.05°、θ4=30°の場合について、同様にθ5Bを求めてみると、式(5)より
θ5B≒56.56°
S2Bは、式(1)より
S2B≒469.9mm
が求められる。従って、計算例AとBの両者の差を求めると
S2B−S2A=133.33mm
となり、基準となる光学部品の偏角に対して、被測定物の偏角が0.05°(3′)の角度差を有する時に、S2の距離に換算すると133.33mmとなる。従って、上述したような計算例を基に各角度差に対するS2の距離が換算できるので、本測定系において、被測定物を挿入しCCDカメラに測定光を結像させた際に、この結像点と前記基準点との距離を計測することにより、基準となる光学部品に対して被測定物の偏角がどの程度誤差を有しているかの計測が可能となる。
【0023】
次に、本第二の実施形態が、従来の偏角測定方法の如く測定系に角度プリズムを挿入しない場合に比べ、どの程度分解能が改善されたかを説明する。
そこで、角度プリズムを挿入しない場合について、前述したような計算方法と同様に、図4を用いて角度差に対する距離を計算する。
測定光が被測定物を透過し、CCDカメラに出射した際に測定光が曲げられた距離をS1、被測定物からCCDカメラまでの距離をL1、その時の偏角をθ2−θ1とすると以下の関係式であらわすことが出来る。
S1=L1×tan(θ2−θ1) ・・・・・(6)
又、大気の屈折率をn0、被測定物の屈折率をn1とすると、
n0×sinθ2=n1sinθ1 ・・・・・(7)
の関係式が成り立つので、式(6)、(7)よりS1は、
S1=L1×tan(sin−1(n1×sinθ1/n0)) ・・・(8)
により求められる。
【0024】
そこで、先ず、測定系に基準となる光学部品を挿入した場合について、これを計算例Cとして、L1=1000mm、n0=1、n1=1.51、
θ1=1°とし、S1Cを求めてみると、式(8)より
S1C≒26.36mm
が求められる。
【0025】
一方、次に被測定物を測定系に挿入し、これを計算例Dとして、L1=1000mm、n0=1、n1=1.51、θ1=1.05°の場合についてS1Dを求めてみると、式(8)より
S1D≒27.68mm
が求められる。従って、両者の差を求めると
S1D−S1C=1.32mm
となり、基準となる光学部品の偏角に対して、被測定物の偏角が0.05°(3′)の角度差を有する時に、S1の距離に換算すると1.32mmとなる。従って、角度プリズムを挿入した場合の分解能に比べて大きく劣化している。
【0026】
以上の計算結果より、角度θ4の角度プリズムを測定系に挿入することにより、偏角量に対する距離の関係が拡大し、より精度の高い偏角測定が可能となる。又、偏角量に対する距離の関係の拡大量は、角度プリズムのθ4の角度で調整することが可能である。
尚、第二の実施形態においては、結像点の距離の計測にCCDカメラを使用したが、板状のスクリーンを用意し投射される結像点の距離を計測しても良い。
従って本第二の実施形態においても、コンパクトで高精度な偏角測定装置が実現出来る。
【0027】
【発明の効果】
上述したように、請求項1及び4記載の発明は、受光器の前面にスリット孔を有する遮光板を設け、この遮光板を移動させて受光量のピーク値を求め、基準値とピーク値との距離を求めることにより高精度な偏角測定と、且つ、コンパクトな測定系を構成出来、光学部品の偏角を測定する上で著しい効果を発揮することが可能である。
【0028】
請求項5及び6記載の発明は、測定系に角度プリズムを挿入することにより偏角が拡大され、基準となる光学部品が有する偏角に対して、被測定物が有する偏角の微小な誤差を高精度で計測でき、光学部品の偏角を測定する上で著しい効果を発揮することが可能である。
【図面の簡単な説明】
【図1】本発明に係る偏角測定装置及び方法の第一の実施形態を示す機能図である。
【図2】本発明に係わる偏角測定装置及び方法の第一の実施形態において、基準データと被測定データをグラフ化した図である。
【図3】本発明に係る偏角測定装置及び方法の第二の実施形態を示す機能図である。
【図4】本発明に係わる偏角測定装置及び方法の第二の実施形態において、測定光が出射される様子を示す。
【図5】従来の偏角測定装置の一例である。
【符号の説明】
1・・光源、 2・・被測定物、
3・・スクリーン、 4・・レンズ、
5・・受光器、 6・・スリット孔、
7・・遮光板、 8・・ガイド、
9・・モータ、 10・・歯車、
11・・角度プリズム、 12・・CCDカメラ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a declination measuring apparatus and method, and particularly to a declination measuring apparatus and method capable of measuring an optical path declination defined in an optical component in a compact and accurate manner.
[0002]
[Prior art]
As disclosed in Japanese Patent Application Laid-Open No. 2001-281602, an optical component needs to have a performance of accurately emitting an incident light beam to a predetermined position, and is bent at a predetermined angle with respect to the incident light beam. The relationship with the emitted light beam is defined as an optical path deviation angle.
FIG. 5 is an example of a conventional argument measuring apparatus. FIG. 5 shows a method for simply measuring the optical path deflection angle, which includes a light source 1 that emits measurement light, an object 2 to be measured, and a screen 3 that projects light emitted from the object 2. Constitute.
[0003]
5, the light source 1 irradiates a light beam onto the incident surface of the device under test 2 and projects the beam light emitted from the device under test 2 onto the screen 3. The screen 3 is, for example, a plate-like object with scales arranged at predetermined intervals, and measures the distance that the projected light beam is bent with respect to the optical axis of the DUT 2. At this time, the deflection angle θ of the DUT 2 is defined as follows: A is the shortest distance between the DUT 2 and the screen 3, and B is the distance at which the light beam is bent by the DUT 2.
Declination θ = tan −1 (B / A)
Can be obtained as
[0004]
[Problems to be solved by the invention]
However, in the conventional declination measuring method, it is necessary to relatively increase the distance B at which the light beam projected from the DUT 2 is bent in order to increase the measurement accuracy. The distance A between the screens 3 also increases. For this reason, the optical system required for the measurement becomes large, and the beam diameter projected on the screen 3 becomes large, and it is difficult to read the above-mentioned minute fluctuation of the distance B. There has been a problem that declination measurement is difficult. Incidentally, the resolution obtained by the conventional declination measuring method is such that when the distance A between the DUT 2 and the screen 3 is 8 m, and when the discriminable distance of the distance B is 2 mm, the declination .theta. 86 '.
The present invention has been made to solve the above-described problem, and has as its object to provide a declination measuring apparatus and method with high measurement accuracy using a compact optical system.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, an argument measuring apparatus and method according to the present invention have the following configurations.
2. The declination measuring apparatus according to claim 1, wherein the light source emits the measurement light, a lens collects the measurement light emitted by the light source to form a beam, and a light receiver disposed on the optical axis of the beamed measurement light. A light-shielding plate having a slit hole on the light source side front surface of the light receiver, a driving unit for moving the light-shielding plate, and a movement amount detection unit for detecting the movement amount of the light-shielding plate, An object to be measured is arranged on the optical axis of the measurement light emitted from the lens, and the optical path deviation of the object to be measured is measured.
[0006]
In the declination measuring apparatus according to claim 2, the light shielding plate is arranged such that a main surface thereof is substantially orthogonal to an optical axis of measurement light emitted from the lens, and is movable in a direction parallel to the main surface. It is configured as follows.
[0007]
According to a third aspect of the present invention, in the declination measuring device, the slit hole is formed such that a longitudinal direction thereof is orthogonal to a moving direction of the light shielding plate.
[0008]
5. The declination measuring method according to claim 4, wherein the light source emits the measuring light, a lens collects the measuring light emitted by the light source to form a beam, and a photodetector arranged on the optical axis of the beamed measuring light. A light-shielding plate having a slit hole on the light-source-side front surface of the light receiver, a driving unit for moving the light-shielding plate, and a moving-amount detecting unit for detecting a moving amount of the light-shielding plate. A method for measuring an optical path deviation of an object placed on an optical axis of measurement light emitted from the lens using an apparatus, wherein the object is not placed on the declination measuring device. Measuring the amount of movement and the output of the light receiver while moving the light-shielding plate, and recognizing the position of the light-shielding plate when the output of the light-receiving device is maximized as a first peak value. In the state where the object to be measured is placed, the light shielding plate is moved. Measuring the amount of movement and the output of the light receiver while recognizing the position of the light shielding plate as the second peak value when the output of the light receiver is maximized, and placing the device under test. The distance from the measured position to the photodetector is A, and the distance from the first peak position to the second peak position is B, and the declination θ of the measured object is given by the following equation: θ = tan −1 (B / A ).
[0009]
The declination measuring device according to claim 5, wherein a light source for emitting the measuring light, an angle prism disposed on the optical axis of the measuring light emitted by the light source, and an optical axis of the measuring light emitted from the angle prism are arranged on the optical axis. The optical receiver is disposed, and a reference optical component and an object to be measured are sequentially arranged on the optical axis of the measurement light emitted from the light source, and the deviation angle of the object to be measured is measured.
[0010]
The declination measuring method according to claim 6, further comprising: a light source that emits the measurement light; an angle prism disposed on the optical axis of the measurement light emitted by the light source; and an angle prism disposed on the optical axis of the measurement light emitted from the angle prism. A method for measuring a declination error of an object to be measured placed on an optical axis of measurement light emitted from the light source, using a declination measurement device having a light receiver disposed therein, which serves as a reference. Placing an optical component on the declination measuring device, and setting a point at which a measurement light emitted from the light source is imaged on a light receiver as a reference point, and placing an object to be measured on the declination measuring device Measuring a distance between an imaging point where the measurement light emitted from the light source is formed on a light receiver and the reference point; and an optical component serving as a reference based on the measured distance. Calculating a declination error of the DUT with respect to the declination.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
FIG. 1 is a functional diagram showing a first embodiment of an argument measuring apparatus and method according to the present invention. In the present embodiment, a light source 1 for emitting measurement light, a lens 4 for condensing the measurement light emitted from the light source 1 and forming a beam, an object 2 for receiving the measurement light and measuring a deflection angle, A light receiving device 5 arranged on the optical axis of the measured light, a light shielding plate 7 having a slit hole 6 arranged on the front surface of the light receiving device 5 on the light source side, a guide 8 to which the light shielding plate 7 is fixed, and the light shielding plate 7 And a motor 9 that serves as a power for moving the light in parallel to the light receiver 5 and recognizes the amount of movement. The motor 9 is fixed to the motor 9 and meshes with plate-shaped teeth provided on the guide 8 to move the light shielding plate 7. And the gear 10 to be driven. Further, the light shielding plate 7 is disposed so as to be substantially orthogonal to the optical axis of the measurement light emitted from the lens, and moves in parallel with the light receiver 5.
[0012]
The operation of FIG. 1 will be described. The optical system is adjusted so that the measurement light emitted from the light source 1 is incident on the lens 4 and condensed, and forms an image on the light receiver 5. Therefore, first, in order to obtain the reference data of the measurement system for the declination measurement in the measurement, the light shielding plate 7 is moved in a state where the object to be measured is not arranged, and the amount of the measurement light received by the light receiver 5 is measured. . A personal computer (not shown) or the like is connected to the light receiver 5, and the measured data of the amount of movement of the light shielding plate 7 and the amount of received light is input and graphed, and reference data is output.
[0013]
The light-shielding plate 7 used in the present embodiment has a slit hole 6 having a length of about 6 mm and a width of about 0.1 mm at the center of a thin metal plate or the like. The intensity of the measurement light passing through the slit hole 6 is detected by the light receiving device 5 when the measuring light is moved in parallel with the light receiving device 5. The motor 9 is a power source for moving the light-shielding plate 7 at a predetermined interval. The motor 9 has a function of rotating by an applied pulse. And the amount of movement of the light shielding plate 7 is recognized.
[0014]
Therefore, a gear 10 is fixed to the motor 9, and when the motor 9 rotates, the plate-shaped guide 8 meshing with the gear 10 moves in a predetermined step. The plate 7 moves parallel to the light receiver 5. The slit hole 6 moves in the range between the slit base point and the slit end point shown in FIG. 1, the position where the reference measurement light forms an image on the light receiver 5, and the measurement light emitted from the device under test 2 is transmitted to the light receiver 5. The image forming position is included in this moving range.
[0015]
Next, after the reference data is collected, the device under test 2 is placed at a predetermined position of the declination measuring device, and is controlled by the number of pulses input to the motor 9 from the slit base point to the slit end point, as in the case of the reference data collection. The light shielding plate 7 is moved at predetermined intervals, and the amount of light received by the light receiver 5 at that time is measured. The light receiver 5 is connected to a personal computer (not shown) or the like, and inputs the movement data of the light-shielding plate 7 and the measurement data of the light reception amount, graphs them, and outputs the light reception characteristics.
[0016]
FIG. 2 is a graph in which reference data and measured data are graphed in the first embodiment of the argument measuring apparatus and method according to the present invention. FIG. 2 shows that, as described above, the slit hole is moved at a predetermined interval from the slide base point to the slit end point when the object is not arranged (reference data) and when the object is arranged (measurement data). FIG. 6 is a graph of the amount of light received by the light receiver when the light is detected. FIG. 2A shows the amount of received light detected from the slit base point to the slit end point, and FIG. 2B is an enlarged view of the peak points of the reference data and the measured data. In the enlarged view of FIG. 2B, L indicates a step distance when the slit hole is moved. Then, when the distance B between the reference data and the peak value of the data to be measured is obtained, the distance B indicates the distance at which the measurement light is bent by arranging the object to be measured in the optical measurement system. Is the shortest distance between the DUT and the light receiver as shown in FIG.
Declination θ = tan −1 (B / A)
Can be obtained by
[0017]
When the distance A is set to 100 mm and the distance L is set to 1 μm, the minimum resolution in this embodiment can be about 0.04 ′, which enables highly accurate declination measurement, and reduces the distance between the object to be measured and the light receiver. Since it can be shortened, a compact argument measuring device can be configured.
[0018]
FIG. 3 is a functional diagram showing a second embodiment of the argument measuring apparatus and method according to the present invention. In the present embodiment, a light source 1 for emitting measurement light, an object to be measured 2 for entering measurement light and measuring a deflection angle, an angle prism 11 arranged on an optical axis of the measurement light emitted from the light source, and a measurement light And a CCD camera 12 serving as a light receiver for forming an image.
3 will be described. The measuring light emitted from the light source 1 is emitted to the angle prism 11 after being incident on the DUT 2. The angle prism 11 is for enlarging the optical path deviation angle θ generated in the device under test 2 by an arbitrary magnification α. Is emitted.
[0019]
Next, a method of calculating the declination will be specifically described using the measurement light emitted to the CCD camera. The present embodiment is not intended to directly measure the angle of deviation of the object to be measured, but has a small error in the angle of deviation of the object to be measured as compared with the angle of deviation of the reference optical component. This is for accurately measuring whether or not it is being performed. Therefore, when measuring the declination, first, a reference optical component having a known declination is inserted into the measurement system instead of the object to be measured, and the measurement light is irradiated to the reference optical component, and is passed through the angle prism. Then, an image is formed at the center of the monitor of the CCD camera, and this image forming point is used as a reference value. Next, the object to be measured is inserted into the measuring system in place of the reference optical component, the measuring light is irradiated on the object to be measured, and an image is formed on the monitor of the CCD camera via the angle prism. By measuring the difference in distance between the reference optical component and a known reference value, the deviation error between the reference optical component and the object to be measured is identified. Therefore, a description will be given of the relationship between the difference between the two angles and the distance between the reference value and the measured value formed on the CCD camera using a specific calculation example.
[0020]
FIG. 4 shows how measurement light is emitted in the second embodiment of the declination measuring apparatus and method according to the present invention.
In a state where the angle prism is not inserted, the distance at which the measuring light is bent when the measuring light passes through the object to be measured and is emitted to the CCD camera is S1, the distance from the object to the CCD camera is L1, and the polarization at that time is L1. The angle is defined as θ2−θ1. With the angle prism inserted into the measurement system, the distance by which the measurement light is bent when the measurement light is transmitted to the object to be measured and then emitted to the CCD camera through the angle prism is represented by S2. When the distance from the angle prism to the CCD camera is L4, and θ3, θ4, and θ5 are the angles shown in FIG. 4, the following relational expression can be obtained.
S2 = L4 × tan (θ5−θ4) (1)
If the refractive index of the atmosphere is n0, the refractive index of the device under test is n1, and the refractive index of the angle prism is n2,
n0 × sin θ5 = n2 × sin (θ4 + θ3) (2)
n2 × sin θ3 = n0 × sin (θ2−θ1) (3)
n0 × sin θ2 = n1 × sin θ1 (4)
Holds, θ5 is calculated from the equations (1), (2), (3), and (4) as follows:
θ5 = sin −1 ((n1 / n0) × sin (θ4 + sin −1 ((n0 / n2
) × sin (sin −1 ((n1 / n0) × sin θ1) −θ1)))) (5)
Required by
[0021]
Therefore, first, when a reference optical component is inserted into the measurement system, this is taken as calculation example A, where L1 = 1000 mm (L2 = 50 mm, L3 = 10 mm, L4 = 940 mm), n0 = 1, and n1 = n2 = When 1.51 and θ1 = 1 ° and θ4 = 30 ° and θ5A is obtained, θ5A ≒ 49.70 ° is obtained from Expression (5).
From equation (1), S2A is S2A 式 336.57 mm.
Is required.
[0022]
On the other hand, an object to be measured is next inserted into the measurement system, and this is used as a calculation example B. L1 = 1000 mm (L2 = 50 mm, L3 = 10 mm, L4 = 940 mm), n0 = 1, n1 = n2 = 1.51, Similarly, when θ1 = 1.05 ° and θ4 = 30 °, θ5B is obtained. From Expression (5), θ5B ≒ 56.56 °
From equation (1), S2B is S2B ≒ 469.9 mm.
Is required. Therefore, when the difference between both calculation examples A and B is obtained, S2B−S2A = 133.33 mm
When the angle of deviation of the object to be measured has an angle difference of 0.05 ° (3 ′) with respect to the angle of deviation of the reference optical component, it is 133.33 mm when converted to the distance of S2. Therefore, since the distance of S2 with respect to each angle difference can be converted based on the above-described calculation example, when the object to be measured is inserted and the measurement light is imaged on the CCD camera in this measurement system, this image formation is performed. By measuring the distance between a point and the reference point, it is possible to measure how much the deviation angle of the measured object has with respect to the reference optical component.
[0023]
Next, how the resolution is improved in the second embodiment as compared with the case where the angle prism is not inserted into the measurement system as in the conventional argument measurement method will be described.
Therefore, in the case where the angle prism is not inserted, the distance to the angle difference is calculated using FIG. 4 in the same manner as the calculation method described above.
When the measuring light is transmitted through the object to be measured and is emitted to the CCD camera, the distance at which the measuring light is bent is S1, the distance from the object to the CCD camera is L1, and the declination at that time is θ2−θ1. Can be expressed as
S1 = L1 × tan (θ2−θ1) (6)
Also, assuming that the refractive index of the atmosphere is n0 and the refractive index of the device under test is n1,
n0 × sin θ2 = n1 sin θ1 (7)
Is satisfied, S1 is obtained from Expressions (6) and (7).
S1 = L1 × tan (sin −1 (n1 × sin θ1 / n0)) (8)
Required by
[0024]
Therefore, first, when a reference optical component is inserted into the measurement system, this is set as a calculation example C, where L1 = 1000 mm, n0 = 1, n1 = 1.51,
When S1C is obtained by setting θ1 = 1 °, S1C ≒ 26.36 mm is obtained from Expression (8).
Is required.
[0025]
On the other hand, next, an object to be measured is inserted into the measurement system, and using this as a calculation example D, S1D is obtained in the case of L1 = 1000 mm, n0 = 1, n1 = 1.51, and θ1 = 1.05 °. From equation (8), S1D ≒ 27.68 mm
Is required. Therefore, when the difference between them is obtained, S1D-S1C = 1.32 mm
When the angle of deviation of the object to be measured has an angle difference of 0.05 ° (3 ′) with respect to the angle of deviation of the reference optical component, it is 1.32 mm when converted into the distance of S1. Therefore, the resolution is greatly deteriorated as compared with the resolution when the angle prism is inserted.
[0026]
From the above calculation results, by inserting the angle prism having the angle θ4 into the measurement system, the relationship between the amount of declination and the distance is expanded, and more accurate declination measurement becomes possible. Further, the amount of expansion of the relationship of the distance to the amount of declination can be adjusted by the angle θ4 of the angle prism.
In the second embodiment, a CCD camera is used to measure the distance between the imaging points. However, a plate-like screen may be prepared to measure the distance between the projected imaging points.
Therefore, also in the second embodiment, a compact and highly accurate declination measuring device can be realized.
[0027]
【The invention's effect】
As described above, according to the first and fourth aspects of the present invention, a light-shielding plate having a slit hole is provided on the front surface of a light receiver, and the light-shielding plate is moved to obtain a peak value of a received light amount. By determining the distance, it is possible to configure a highly accurate declination measurement and a compact measurement system, and to exhibit a remarkable effect in measuring the declination of an optical component.
[0028]
According to the fifth and sixth aspects of the present invention, the angle of deviation is enlarged by inserting an angle prism into the measurement system, and a small error of the angle of deviation of the object to be measured with respect to the angle of deviation of the reference optical component. Can be measured with high accuracy, and a remarkable effect can be exhibited in measuring the deflection angle of the optical component.
[Brief description of the drawings]
FIG. 1 is a functional diagram showing a first embodiment of a declination measuring apparatus and method according to the present invention.
FIG. 2 is a graph in which reference data and measured data are graphed in the first embodiment of the declination measuring apparatus and method according to the present invention.
FIG. 3 is a functional diagram showing a second embodiment of the argument measuring apparatus and method according to the present invention.
FIG. 4 shows how measurement light is emitted in a second embodiment of the declination measuring apparatus and method according to the present invention.
FIG. 5 is an example of a conventional argument measuring apparatus.
[Explanation of symbols]
1. Light source, 2. DUT,
3. Screen, 4. Lens,
5 ・ ・ Receiver 、 6 ・ ・ Slit hole 、
7 ... light shield plate, 8 ... guide,
9 ... motor, 10 ... gear,
11. Angle prism, 12. CCD camera

Claims (6)

測定光を出射する光源と、該光源が出射した測定光を集光しビーム化するレンズと、ビーム化した測定光の光軸上に配置した受光器と、前記受光器の光源側前面にスリット孔を有する遮光板と、該遮光板を移動するための駆動手段と、前記遮光板の移動量を検出する移動量検出手段とを備えており、
前記レンズから出射する測定光の光軸上に被測定物を配置して該被測定物の光路偏角を測定することを特徴とする偏角測定装置。
A light source for emitting measurement light, a lens for condensing and beaming the measurement light emitted by the light source, a light receiver arranged on the optical axis of the beamed measurement light, and a slit on the light source side front surface of the light receiver A light-shielding plate having holes, a driving unit for moving the light-shielding plate, and a movement amount detecting unit for detecting a movement amount of the light-shielding plate,
A deflection angle measuring apparatus, wherein an object to be measured is arranged on an optical axis of measurement light emitted from the lens, and an optical path deviation of the object to be measured is measured.
前記遮光板をその主面が前記レンズから出射する測定光の光軸に対してほぼ直交するよう配置すると共に、前記主面に平行な方向に移動可能としたことを特徴とする請求項1に記載の偏角測定装置。2. The light-shielding plate according to claim 1, wherein the light-shielding plate is arranged such that a main surface thereof is substantially orthogonal to an optical axis of measurement light emitted from the lens, and is movable in a direction parallel to the main surface. The declination measuring device according to the above. 前記スリット孔はその長手方向が前記遮光板の移動方向と直交するように形成されていることを特徴とする請求項1又は2に記載の偏角測定装置。The deflection angle measuring device according to claim 1, wherein the slit hole is formed such that a longitudinal direction thereof is orthogonal to a moving direction of the light shielding plate. 測定光を出射する光源と、該光源が出射した測定光を集光しビーム化するレンズと、ビーム化した測定光の光軸上に配置した受光器と、前記受光器の光源側前面にスリット孔を有する遮光板と、該遮光板を移動するための駆動手段と、前記遮光板の移動量を検出する移動量検出手段とを備えた偏角測定装置を用いて、
前記レンズから出射する測定光の光軸上に戴置された被測定物の光路偏角を測定する方法であって、
被測定物を前記偏角測定装置に戴置しない状態において、前記遮光板を移動させながらその移動量と前記受光器の出力とを測定し、前記受光器の出力が最大となったときの前記遮光板の位置を第一のピーク値として認識するステップと、
被測定物を戴置した状態において、前記遮光板を移動させながらその移動量と前記受光器の出力とを測定し、前記受光器の出力が最大となったときの前記遮光板の位置を第二のピーク値として認識するステップと、
被測定物を戴置した位置から前記受光器までの距離をAとし前記第一のピーク位置から第二のピーク位置までの距離をBとして、被測定物の偏角θを次式
θ=tan−1(B/A)
に基づいて算出するステップとを含んだことを特徴とする偏角測定方法。
A light source for emitting measurement light, a lens for condensing and beaming the measurement light emitted by the light source, a light receiver arranged on the optical axis of the beamed measurement light, and a slit on the light source side front surface of the light receiver A light shielding plate having a hole, a driving means for moving the light shielding plate, and a deflection angle measuring device including a movement amount detecting means for detecting a movement amount of the light shielding plate,
A method for measuring an optical path deviation angle of an object to be measured placed on an optical axis of measurement light emitted from the lens,
In a state where the object to be measured is not placed on the declination measuring device, the amount of movement and the output of the light receiver are measured while moving the light shielding plate, and the output of the light receiver is maximized. Recognizing the position of the light blocking plate as a first peak value;
In the state where the object to be measured is placed, the moving amount of the light shielding plate and the output of the light receiver are measured while moving the light shielding plate, and the position of the light shielding plate when the output of the light receiver is maximized is set to the second position. Recognizing as a second peak value;
The distance from the position on which the object is placed to the photodetector is A, and the distance from the first peak position to the second peak position is B, and the argument θ of the object is expressed by the following equation θ = tan -1 (B / A)
Calculating on the basis of the angle of deviation.
測定光を出射する光源と、該光源が出射した測定光の光軸上に配置した角度プリズムと、該角度プリズムから出射した測定光の光軸上に配置した受光器とを備えており、
前記光源から出射する測定光の光軸上に基準となる光学部品及び被測定物を順次配置して被測定物の偏角誤差を測定することを特徴とする偏角測定装置。
A light source that emits measurement light, an angle prism disposed on the optical axis of the measurement light emitted by the light source, and a light receiver disposed on the optical axis of the measurement light emitted from the angle prism,
A declination measuring apparatus characterized by sequentially arranging an optical component serving as a reference and an object to be measured on an optical axis of measurement light emitted from the light source and measuring a deviation angle of the object to be measured.
測定光を出射する光源と、該光源が出射した測定光の光軸上に配置した角度プリズムと、該角度プリズムから出射した測定光の光軸上に配置した受光器とを備えた偏角測定装置を用いて、
前記光源から出射する測定光の光軸上に戴置された被測定物の偏角誤差を測定する方法であって、
基準となる光学部品を前記偏角測定装置に戴置して、前記光源が出射する測定光を受光器に結像させた点を基準点とするステップと、
被測定物を前記偏角測定装置に戴置して、前記光源が出射する測定光を受光器に結像させた結像点と前記基準点との間の距離を計測するステップと、
計測した前記距離を基に基準となる光学部品が有する偏角に対する被測定物が有する偏角誤差を算出するステップとを含んだことを特徴とする偏角測定方法。
Declination measurement comprising a light source for emitting measurement light, an angle prism arranged on the optical axis of the measurement light emitted by the light source, and a light receiver arranged on the optical axis of the measurement light emitted from the angle prism With the device,
A method for measuring a deviation error of an object to be measured placed on an optical axis of measurement light emitted from the light source,
A reference optical component is placed on the declination measuring apparatus, and a step of forming a measurement light emitted from the light source on a light receiver as a reference point, and
Placing the object to be measured on the declination measuring apparatus, measuring the distance between the imaging point and the reference point where the measurement light emitted by the light source is imaged on a light receiver,
Calculating a deviation error of the object to be measured with respect to a deviation of the reference optical component based on the measured distance.
JP2003049524A 2003-02-26 2003-02-26 Measuring device and measuring method of angle of deviation Withdrawn JP2004257882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049524A JP2004257882A (en) 2003-02-26 2003-02-26 Measuring device and measuring method of angle of deviation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049524A JP2004257882A (en) 2003-02-26 2003-02-26 Measuring device and measuring method of angle of deviation

Publications (1)

Publication Number Publication Date
JP2004257882A true JP2004257882A (en) 2004-09-16

Family

ID=33115223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049524A Withdrawn JP2004257882A (en) 2003-02-26 2003-02-26 Measuring device and measuring method of angle of deviation

Country Status (1)

Country Link
JP (1) JP2004257882A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103791858A (en) * 2014-01-26 2014-05-14 中国人民解放军国防科学技术大学 Common light path laser interference device for small-angle measurement and measuring method
CN104568382A (en) * 2014-12-20 2015-04-29 中国科学院西安光学精密机械研究所 System and method for measuring angle errors of two arms of Sagnac interferometer
CN107228755A (en) * 2017-06-09 2017-10-03 中国工程物理研究院激光聚变研究中心 One kind reflection pitch-angle drift system for testing stability and method
CN108918086A (en) * 2018-06-28 2018-11-30 江苏轩博电子科技有限公司 A kind of intelligent access control system display screen illumination detection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103791858A (en) * 2014-01-26 2014-05-14 中国人民解放军国防科学技术大学 Common light path laser interference device for small-angle measurement and measuring method
CN104568382A (en) * 2014-12-20 2015-04-29 中国科学院西安光学精密机械研究所 System and method for measuring angle errors of two arms of Sagnac interferometer
CN107228755A (en) * 2017-06-09 2017-10-03 中国工程物理研究院激光聚变研究中心 One kind reflection pitch-angle drift system for testing stability and method
CN108918086A (en) * 2018-06-28 2018-11-30 江苏轩博电子科技有限公司 A kind of intelligent access control system display screen illumination detection device
CN108918086B (en) * 2018-06-28 2020-07-10 丹阳博亚新材料技术服务有限公司 Intelligent entrance guard system display screen illumination detection device

Similar Documents

Publication Publication Date Title
TWI507659B (en) Three-dimensional shape measuring apparatus
US10209505B2 (en) Optical device for measuring the position of an object
EP1840502B1 (en) Optical interferometer for measuring changes in thickness
US10942063B2 (en) Apparatus and method for measuring amplitude of scanning reflector
WO2017119551A1 (en) Plasma diagnostic system using multiple path thomson scattering
CN111220088B (en) Measurement system and method
JP2004257882A (en) Measuring device and measuring method of angle of deviation
JP2008026049A (en) Flange focal distance measuring instrument
US20110057093A1 (en) Method for calibrating a deflection unit in a tirf microscope, tirf microscope, and method for operating the same
CN203286992U (en) Detection device for verticality of laser beam
US20040196448A1 (en) Optical assembly to be mounted on a microscope for measuring periodic movements of a microstructure
KR101647063B1 (en) Plasma diagnostic system using multiple round trip Thomson scattering
JPH0599659A (en) Method and device for measuring light-beam incident angle and usage of distance measuring equipment
JP3281857B2 (en) Temperature distribution measuring device in combustor
KR100738387B1 (en) Wavefront measuring devices with off-axis illumination
JP2001004544A (en) Raman spectrometric apparatus
JP4629835B2 (en) Abbe number measuring apparatus and Abbe number measuring method
JPH1026515A (en) Step-measuring apparatus
RU2282170C2 (en) Device for test of lenses
JPS6316232A (en) Measuring method for diameter of laser beam
JP3039623U (en) Distance measuring device
CN108713135A (en) A kind of spectroscopic analysis system
JP2008051785A (en) Inspection apparatus
CN112539705A (en) Light-emitting device and focusing method and detection equipment thereof
JP2012229983A (en) Displacement sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060207

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060207

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070402

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070802