JP2004257745A - Simple determination method of flow direction and flow speed of underground water by ground freezing technology - Google Patents

Simple determination method of flow direction and flow speed of underground water by ground freezing technology Download PDF

Info

Publication number
JP2004257745A
JP2004257745A JP2003045660A JP2003045660A JP2004257745A JP 2004257745 A JP2004257745 A JP 2004257745A JP 2003045660 A JP2003045660 A JP 2003045660A JP 2003045660 A JP2003045660 A JP 2003045660A JP 2004257745 A JP2004257745 A JP 2004257745A
Authority
JP
Japan
Prior art keywords
ground
temperature
groundwater
freezing
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003045660A
Other languages
Japanese (ja)
Other versions
JP3671301B2 (en
Inventor
Yuichi Komura
雄一 甲村
Ryoichi Babasaki
亮一 馬場崎
Akihiko Uchida
明彦 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2003045660A priority Critical patent/JP3671301B2/en
Publication of JP2004257745A publication Critical patent/JP2004257745A/en
Application granted granted Critical
Publication of JP3671301B2 publication Critical patent/JP3671301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of easily determining the flow direction and flow speed of the underground water by using the ground freezing technology. <P>SOLUTION: A boring hole for ground freezing is dug in the ground as an object of examination, and a frozen duct is installed in the hole. A plurality of temperature measuring holes are dug in the ground in a state of surrounding the frozen duct at almost equal distances from the frozen duct, and a plurality of temperature sensors are respectively mounted in the depth direction of each measuring hole. The ground is cooled and frozen through the frozen duct, and the change of the ground temperature is measured by the temperature sensor in each temperature measuring hole with time. The distribution of temperatures in the depth direction of the temperature measuring holes at the same time is determined, so that it is determined that the flow speed of the underground water is relatively high at a measuring point where a temperature lowering degree is small by every depth, and the direction of the measuring point of highest temperature lowering degree by every depth with respect to the frozen duct as a center, is determined as the flow direction of the underground water. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、地盤凍結法により調査対象地盤を冷却、凍結して、その周辺地盤中の各深度の温度分布を計測することにより、簡易に地下水の流向、流速を判定する方法の技術分野に属する。
【0002】
【従来の技術】
近年、地盤中の地下水の移動状況を具体的に把握する必要性がとみに高まっている。例えば近年は環境汚染に対する関心が高まり、地盤中に存在する有害物質の浄化技術が注目されている。地盤中の有害物質の浄化を行う場合には、有害物質が地下水と共に移動することを考慮した上で実施する必要性が大であり、地下水の移動状況を具体的に精緻に把握することが極めて重要である。或いは将来実用化されるであろう高レベル廃棄物の地層処分においても、地盤中の地下水の移動状況を考慮して、各種の移流、拡散を高精度に事前評価し、環境への影響を把握することが重要である。
【0003】
上記の必要性において、特に重要なことは、地盤中の地下水の移動状況、より具体的には地盤中の「地下水の流向、流速」を正確に緻密に把握することである。地盤は長い年月をかけて形成されているため、深度毎に地盤の性質が異なる場合が多い。このため「地下水の流向、流速」の把握は、ある特定の地盤深度でのみ行うのではなくて、もっと広い範囲、とりわけ深度方向に広い範囲にわたって把握することが重要である。
【0004】
従来、地盤中の「地下水の流向、流速」を把握する技術としては、およそ以下に説明するものが知られ実施されている。
▲1▼ 図4に概念図を示したように、地盤にボーリング孔aを掘削し、そのボーリング孔a内に鉄管bを建て込み、両者の隙間をグラウトcで止水する。その後、更に鉄管bの下方にやや小径の下部孔dを掘削し、鉄管b内に地下水の水面レベルよりも高く水を注入する(水位差h)。時間の経過と共に下部孔dから水が逃げてゆき、前記の水位差hが低下してゆく傾向を観察する。前記水位の低下の時間的変化(h/t)を計測して、理論的に水の流れ易さ(透水係数)を計算して評価する方法である。この方法は、地盤工学会で試験方法を基準化され、広く実施されている。
【0005】
▲2▼ 図5に概念図を示したように、やはり地盤にボーリング孔aを掘削し、このボーリング孔a内の所要深度の上下にパッカーe、eを設置して上下方向の地下水流を遮断する。そして、前記上下のパッカーe、eで仕切られた場所に流向、流速計fを設置して、地下水の水平方向の流向、流速を計測して評価する方法である。下記の特許文献3、4に開示された測定方法及び測定装置が、この方法に属する。
【0006】
▲3▼ 下記の特許文献1、2に開示された測定方法及び測定器は、図示は省略したが、地盤中のある地点に測定器を設置し、前記測定器に設置したヒータで地下水中の一点を加熱し、少し離れた位置で地下水の温度を測定し、地下水温の温度変化を計測して流向、流速を測定する方法である。
▲4▼ 特許文献5には、地盤の凍結法に関する技術が開示されている。
【0007】
【特許文献1】
特公平6−64082号公報
【特許文献2】
特開昭59−160788号公報
【特許文献3】
特許第2586735号公報
【特許文献4】
特開平6−273538号公報
【特許文献5】
特開平9−41356号公報
【0008】
【発明が解決しようとする課題】
(1)上記▲1▼の方法は、鉄管bより下方の下部孔dに限った地盤の水の流れ易さ(透水係数)を評価する試験方法であって、地下水の流向、流速を評価することは原理上不可能である。
【0009】
(2)上記▲2▼の方法は、流向、流速計fを設置した場所に限り地下水の流向、流速を評価することが可能である。しかし、本発明が目的とする「地下水の流向、流速」の把握は、上記の段落番号[0003]で述べたように、ある特定の地盤深度でのみ行うのではなく、もっと広い範囲、とりわけ深度方向に広い範囲にわたって把握することが重要であることから考えると、▲2▼の方法は、あまりにも狭い範囲での把握しかできないことが欠点である。広い範囲、とりわけ深度方向に広い範囲にわたって把握するには、それなりに多数のボーリング孔aを掘削して計測を行う必要があり、それに要する時間や費用が膨大なものとなって、到底その目的を達しきれない。また、▲2▼の方法の場合には、パッカーeによってボーリング孔a内の上下を仕切り、上下方向の地下水流を遮断するが、本来の地盤には上下方向の地下水の流れがあると考えられるから、▲2▼の方法は本来の地盤とは異なる地下水の流れを計測することになり、正確さ、信頼性に問題がある。その上、パッカーeの上下にはボーリング孔aが存在するから、その部分のボーリング孔内では周辺の地盤に比して明らかに地下水が移動しやすい条件下にある。このため場合によっては前記透水性の高いボーリング孔が存在することにより、ボーリング孔周辺の地盤中の地下水の移動状況が本来のものと異なる場合も考えられる。ひいては前記流向、流速計fで計測した結果が本来の地下水の移動状況とは異なる可能性があり、正確さ、信頼性に疑問が呈される。
【0010】
(3)上記▲3▼の方法は、地下水の温度変化に着目した点を評価できるが、地下水中の一点を加熱し、そこから少し離れた位置で水温を計測する場合に、どれほどの熱量を加えて、その影響が水温の変化としてどれほど明りょうに把握できるかの実効性と正確さ、信頼性に大いなる疑問が呈される。
【0011】
本発明の目的は、地盤の凍結法として知られる、広域の大がかりな地盤の冷却、凍結に伴う、周辺地盤中の各深度での温度分布を計測することにより、広い範囲、とりわけ深度方向に広い範囲にわたって「地下水の流向、流速」を把握することが可能な簡易判定方法を提供することである。
本発明の目的は、地盤本来の地下水の流れ、移動状況を阻害することなく、地下水の流向、流速を正確に緻密に、しかも比較的簡単で安価に把握することが可能な簡易判定方法を提供することである。
【0012】
【課題を解決するための手段】
上述の課題を解決するための手段として、請求項1に記載した発明に係る地盤凍結法による地下水の流向、流速の簡易判定方法は、
調査対象の地盤中に地盤凍結用のボーリング孔を掘削し、その孔内へ凍結管を設置する段階と、
前記凍結管を中心としてこれをほぼ等距離に取り囲む配置で地盤中に温度測定孔を複数掘削し、各測定孔内の深さ方向に複数の温度センサーを設置する段階と、
前記凍結管を通じて地盤の冷却および凍結を行い、地盤の冷却および凍結に伴う地盤の温度変化を、前記の各温度測定孔内の温度センサーにより経時的に測定する段階と、
同一時刻における各温度測定孔の深度方向の温度分布を求め、深度毎に温度の低下度が小さい測点は相対的に地下水の流速が早いと判定し、また、前記凍結管を中心として深度毎に温度の低下度が最も大きい測点の方向を地下水の流向と判定する段階とからなることを特徴とする。
【0013】
請求項2に記載した発明は、請求項1に記載した地盤凍結法による地下水の流向、流速の簡易判定方法において、
ボーリング孔及びその孔内へ設置する凍結管の深さ、並びに各温度測定孔およびその深さ方向に設置する温度センサーの深さはそれぞれ、調査対象地盤の地下水の移動状況を把握しようとする深度よりも深い位置とすることを特徴とする。
【0014】
本発明の簡易判定方法は、次の現象を応用、利用することに立脚している。
地盤凍結法の実施により経験的に又は理論的に認識されることは、地盤内で地下水の流速が早い場所(地盤)は、他の場所の地盤に比較して、明らかに凍結し難い。流速が早い地盤は、一般的に空隙が大きいため単位体積当たりの含水量が多く、凍結に必要な冷熱量を多量に必要とするからである。また、地下水の流速が早いと、冷熱を供給しても、地下水の流れにより冷熱が下方へ流されてしまい、凍結しにくい。したがって、冷却、凍結の際の温度低下度が小さい(温度が下がりにくい)ほど地下水の流速が相対的に早いと判定できる(以下、これを流速の評価根拠という。)。
次に、地盤中に地下水の流れが存在する場合、流れの上流側に比べて、下流側の方が凍結し易く、下流側で凍結範囲が大きく広がる。地下水の流れにより冷熱は下流側へ流されるからである。したがって、温度低下度の大きい測点の方向が地下水の流れる向き、即ち流向と判定できる(以下、これを流向の評価根拠という)。
【0015】
【発明の実施形態】
以下に、図面に示した本発明の実施形態を説明する。
図1と図2は、本発明に係る流向、流速の簡易判定方法の実施形態を示している。
先ず調査対象の地盤1中に地盤凍結用のボーリング孔2(冷却孔とも称される)を掘削し、その孔内へ凍結管3が設置される。図示することは省略したが、この凍結管3の上端部には、液体窒素やドライアイス溶液などの冷媒を準備して循環方式で供給する冷媒供給装置が接続される。
【0016】
次に、前記凍結管3を中心として、図2に示すとおり、同凍結管3をほぼ等距離Rに取り囲む配置で、地盤1中に温度測定孔4…を複数掘削する。そして、各測定孔4内の深さ方向に、複数の温度センサー5…を設置する。例えば検知棒へ一定の間隔(測点ピッチ)で温度センサー5…を取り付けたものを、前記温度測定孔4の中へ挿入して固定するような方式で設置する。勿論、図示することは省略したが、各温度センサー5…の検出信号を導く信号線の束は、前記検知棒に沿って、又は前記温度測定孔4の中を地上に導かれ、図示を省略した測定、記録装置(所謂パーソナルコンピュータなど)へ接続される。また、前記の距離Rに関しては、図1と図2を合わせて見ると明らかなように、凍結管3による地盤1の冷却、凍結の及ぶ範囲内(点線で図示した凍結範囲6を参照)であって、流向、流速の簡易判定を求める地盤の範囲内の距離とする。
【0017】
なお、上記ボーリング孔2及び同孔内へ設置する凍結管3の深さ、並びに各温度測定孔4…の深さとその中へ深さ方向に設置する温度センサー5の設置深さに関しては、それぞれ調査対象地盤1の地下水の移動状況を把握しようとする深度よりも、判定評価に必要十分に深い位置までとする(請求項2に記載した発明)。
【0018】
以上の準備が完了した段階で、前記凍結管3を通じて冷媒を供給し地盤1の冷却および凍結を行う。その手法は、既往の地盤凍結法(例えば特許文献5を参照)と同様である。そして、地盤1の冷却および凍結に伴う地盤の温度変化を、前記の各温度測定孔4…内の各温度センサー5…により経時的に測定し、その測定結果は一定の経過時間毎に地上の測定、記録装置(所謂パーソナルコンピュータなど)へ取り込んで記録し、保存すると共に集計、検討の評価を行う。
即ち、同一時刻における各温度測定孔4…の深度方向の温度分布を求め、深度毎に温度の低下度の大小を摘示して、等温線分布図7を例えば図3のように作成する。この等温線分布図7によれば、上記段落番号[0014]に説明した流速の評価根拠に従い、温度の低下度が小さい測点、例えばD1、D2は相対的に地下水の流速が早いと判定する。逆に、温度の低下度が大きい測点、例えばD3、D4は相対的に地下水の流速が緩やかであると判定する。
【0019】
また、上記段落番号[0014]に説明した流向の評価根拠に従い、上記凍結管3を中心として深度毎に温度の低下度が最も大きい測点の方向を分布図で探る。例えば図2に矢印Kで示すように温度の低下が最も大きい測点の方向を、地下水の流向と判定する。
【0020】
既に説明してきたように、本発明に係る地盤凍結法による地下水の流向、流速の簡易判定方法は、各温度測定孔4…内の各温度センサー5…により各深度毎の温度変化を測定して、各深度毎の温度分布図を作成して評価する方法であるから、目的とする地盤1の広い範囲、即ち温度測定孔4…を掘削した深さ、及びその中に設置した温度センサー5…の個数とピッチに応じて、深度方向に広い範囲にわたり「地下水の流向、流速」の簡易判定をすることが可能であり、調査目的に極めて有意義な、地下水の移動状況を具体的に把握することが出来る。
更に本発明の方法は、凍結管3から等距離Rの温度測定孔4…群の配置を、図2に示した一重の配置に限らず、地盤の調査目的に照らして必要な二重、三重の配置に多数掘削して、地下水の移動状況を一層具体的に精緻に把握する内容で実施することができる。
【0021】
なお、本発明の方法を実施するにあたり、ボーリング孔2の掘削、及び温度測定孔4の掘削において、それぞ任意の深度の地盤サンプルを採取して、地盤の地層構成の把握に努めることも可能である。前記の地盤サンプルから熱定数を算定し、地盤の温度分布の計測値を用いて地下水の流速をパラメータとした逆解析を実施し、計測値を最も良く再現する地下水の流速を求めることで、地盤中の地下水の流速を定量的に評価することも可能である。
【0022】
本発明の簡易判定方法は、ボーリング孔2(冷却孔)と凍結管3との間には地下水が存在するが、地盤の冷却、凍結の開始後、前記の地下水は凍結する。このためボーリング孔2内は氷で満たされ、地下水の移動を生ずることはない。また、本発明の方法で評価する地下水の流速は、凍結管3から一定の距離だけ離れた位置の各温度測定孔4…が位置する部分の地盤における流向、流速の評価であるから、地盤中の地下水のごく自然な流向、流速の定量的な評価法として実用価値が高いのである。
【0023】
【発明の効果】
請求項1、2に記載した発明に係る地盤凍結法による地下水の流向、流速の簡易判定方法は、地盤の凍結法として知られ既に実用化されている広域の大がかりな地盤の冷却、凍結に伴う、周辺地盤中の各深度での温度分布を計測する方法であり、温度測定孔を必要数だけ必要な配置に必要な深度まで掘削し、各温度測定孔へ必要な深度まで温度センサーを設置することにより、必要にして十分広い範囲、とりわけ深度方向に広い範囲にわたって「地下水の流向、流速」を精緻に把握することが可能であり、地下水の移動状況を把握する必要性に有意義な調査結果を提供できる。
また、本発明の簡易判定方法によれば、計測方法および集計、判定の方法も非常に単純であり、自動計測によって省力化することが可能であり、一度に多深度の流向、流速を求めることが出来る。特に、地盤本来の地下水の流れ、移動状況を阻害することなく、ありのままの地下水の流向、流速を正確に緻密に、しかも比較的簡単で安価に把握することが可能であるから、有意義な判定結果が得られる。
【図面の簡単な説明】
【図1】本発明に係る地下水の流向、流速の簡易判定方法の実施形態を示した縦断面図である。
【図2】図1の平面配置図である。
【図3】測定した温度分布の例を示した縦断面図である。
【図4】従来の判定方法の実施例を概念的に示した縦断面図である。
【図5】従来の判定方法の異なる実施例を概念的に示した縦断面図である。
【符号の説明】
1 地盤
2 ボーリング孔
3 凍結管
4 温度測定孔
5 温度センサー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention belongs to the technical field of a method of easily determining groundwater flow direction and flow velocity by cooling and freezing a surveyed ground by a ground freezing method and measuring a temperature distribution at each depth in the surrounding ground. .
[0002]
[Prior art]
In recent years, the necessity of specifically grasping the state of movement of groundwater in the ground has been increasing. For example, in recent years, interest in environmental pollution has increased, and attention has been paid to techniques for purifying harmful substances present in the ground. When purifying harmful substances in the ground, there is a great need to take into account that harmful substances move together with groundwater, and it is extremely important to understand the state of movement of groundwater specifically and precisely. is important. In addition, in the geological disposal of high-level waste that will be put into practical use in the future, various types of advection and diffusion are evaluated in advance with high accuracy in consideration of the movement of groundwater in the ground, and the impact on the environment is grasped. It is important to.
[0003]
In the above-mentioned necessity, it is particularly important to accurately and precisely grasp the state of movement of groundwater in the ground, more specifically, the “flow direction and velocity of groundwater” in the ground. Since the ground has been formed over a long period of time, the properties of the ground often differ depending on the depth. For this reason, it is important to grasp the “groundwater flow direction and flow velocity” not only at a specific ground depth but also over a wider range, especially in a wider range in the depth direction.
[0004]
2. Description of the Related Art Conventionally, as a technique for grasping the “groundwater flow direction and flow velocity” in the ground, the following techniques are generally known and implemented.
{Circle around (1)} As shown in the conceptual diagram of FIG. 4, a boring hole a is excavated in the ground, an iron pipe b is built in the boring hole a, and the gap between the two is stopped with grout c. Thereafter, a slightly smaller diameter lower hole d is further excavated below the iron pipe b, and water is injected into the iron pipe b at a level higher than the level of groundwater (water level difference h). With the passage of time, the water escapes from the lower hole d, and the water level difference h is observed to decrease. This is a method of measuring the temporal change (h / t) of the decrease in the water level and theoretically calculating and evaluating the ease of flow of water (water permeability). This method is standardized by the Japan Geotechnical Society and is widely practiced.
[0005]
{Circle around (2)} As shown in the conceptual diagram of FIG. 5, a boring hole a is also excavated in the ground, and packers e and e are installed above and below a required depth in the boring hole a to block the groundwater flow in the vertical direction. I do. Then, a flow direction and a flow velocity meter f are installed in places separated by the upper and lower packers e, e, and the horizontal flow direction and flow velocity of the groundwater are measured and evaluated. The measuring methods and measuring devices disclosed in Patent Documents 3 and 4 below belong to this method.
[0006]
(3) Although the measuring methods and measuring instruments disclosed in Patent Documents 1 and 2 below are not shown, a measuring instrument is installed at a certain point in the ground, and the groundwater is heated by a heater installed in the measuring instrument. In this method, one point is heated, the temperature of groundwater is measured at a slightly distant position, the temperature change of the groundwater temperature is measured, and the flow direction and flow velocity are measured.
{Circle around (4)} Patent Document 5 discloses a technique relating to a method of freezing the ground.
[0007]
[Patent Document 1]
Japanese Patent Publication No. 6-64082 [Patent Document 2]
JP-A-59-160788 [Patent Document 3]
Japanese Patent No. 2586735 [Patent Document 4]
JP-A-6-273538 [Patent Document 5]
JP 9-41356 A
[Problems to be solved by the invention]
(1) The method (1) above is a test method for evaluating the ease of flow of water (permeability) in the ground limited to the lower hole d below the iron pipe b, and evaluates the flow direction and flow velocity of groundwater. This is impossible in principle.
[0009]
(2) The method (2) allows the flow direction and flow velocity of the groundwater to be evaluated only at the place where the flow direction and the flow velocity meter f are installed. However, as described in paragraph [0003] above, the grasp of the “groundwater flow direction and flow velocity” aimed at by the present invention is not performed only at a specific ground depth, but rather over a wider range, especially the depth. Considering that it is important to grasp in a wide range in the direction, the method (2) has a disadvantage that it can grasp only in a too narrow range. In order to grasp over a wide range, especially over a wide range in the depth direction, it is necessary to excavate and measure a large number of boring holes a, and the time and cost required for the drilling are enormous. I can't reach it. In the case of the method (2), the packer e separates the upper and lower portions in the borehole a to block the vertical groundwater flow, but it is considered that the original ground has the vertical groundwater flow. Therefore, the method (2) measures the flow of groundwater different from the original ground, and has problems in accuracy and reliability. In addition, since the boring holes a are present above and below the packer e, the groundwater in the boring holes in that portion is clearly under the condition that the groundwater is easily moved as compared with the surrounding ground. For this reason, depending on the case, the presence of the high-permeability boring hole may cause the situation of movement of groundwater in the ground around the boring hole to be different from the original one. Eventually, the results measured by the flow direction and the velocity meter f may be different from the actual groundwater movement state, and the accuracy and reliability are questioned.
[0010]
(3) The method of (3) above can evaluate the point focusing on the temperature change of the groundwater. However, when heating one point of the groundwater and measuring the water temperature at a position slightly away from it, how much heat is required In addition, there are great questions about the effectiveness, accuracy, and reliability of how clearly the effects can be grasped as changes in water temperature.
[0011]
The object of the present invention is a method for freezing the ground, known as a method for freezing the ground, which involves extensive cooling of the ground and accompanying freezing, by measuring the temperature distribution at each depth in the surrounding ground, to provide a wide range, especially in the depth direction. An object of the present invention is to provide a simple determination method capable of grasping “groundwater flow direction and flow velocity” over a range.
An object of the present invention is to provide a simple determination method capable of accurately and precisely grasping the direction and velocity of groundwater flow without obstructing the flow and movement of the groundwater, which is the original ground, and relatively simple and inexpensive. It is to be.
[0012]
[Means for Solving the Problems]
As a means for solving the above-mentioned problems, a simple determination method of the groundwater flow direction and the flow velocity by the ground freezing method according to the invention described in claim 1,
Drilling a borehole for ground freezing in the ground to be surveyed and installing a freezing pipe in the borehole;
Excavating a plurality of temperature measurement holes in the ground in an arrangement surrounding the freeze tube at substantially the same distance around the freeze tube, and installing a plurality of temperature sensors in the depth direction in each measurement hole,
Cooling and freezing the ground through the freezing tube, and measuring the temperature change of the ground due to the cooling and freezing of the ground over time with a temperature sensor in each of the temperature measurement holes,
The temperature distribution in the depth direction of each temperature measurement hole at the same time is obtained, and a measurement point having a small degree of decrease in temperature at each depth is determined to have a relatively high flow rate of the groundwater. Determining the direction of the measuring point having the largest degree of temperature decrease as the direction of groundwater flow.
[0013]
According to a second aspect of the present invention, there is provided a method for easily determining groundwater flow direction and flow velocity by a ground freezing method according to the first aspect,
The depth of the borehole and the freezing pipe installed in the borehole, and the depth of each temperature measurement hole and the temperature sensor installed in the depth direction are the depths at which the state of movement of the groundwater in the surveyed ground is to be grasped. It is characterized in that it is located at a deeper position.
[0014]
The simple determination method of the present invention is based on applying and utilizing the following phenomena.
It is empirically or theoretically recognized by the implementation of the ground freezing method that a place where the flow rate of groundwater is high in the ground (ground) is clearly harder to freeze than the ground in other places. This is because the ground with a high flow velocity generally has a large void and therefore a large water content per unit volume, and requires a large amount of cold energy required for freezing. In addition, if the flow rate of the groundwater is high, even if cold water is supplied, the cold heat flows downward due to the flow of the groundwater, and is not easily frozen. Therefore, it can be determined that the smaller the degree of temperature decrease during cooling and freezing (the lower the temperature is, the lower the temperature is), the relatively faster the flow rate of groundwater is (hereinafter, this is referred to as the basis for evaluating the flow velocity).
Next, when groundwater flows in the ground, the downstream side is more likely to freeze than the upstream side of the flow, and the freezing range is greatly expanded on the downstream side. This is because the cold heat flows downstream due to the flow of groundwater. Therefore, the direction of the measurement point having a large degree of temperature decrease can be determined as the direction of groundwater flow, that is, the flow direction (hereinafter, this is referred to as a flow direction evaluation basis).
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention shown in the drawings will be described.
FIG. 1 and FIG. 2 show an embodiment of a simple flow direction and flow velocity determination method according to the present invention.
First, a boring hole 2 (also referred to as a cooling hole) for freezing the ground is excavated in the ground 1 to be surveyed, and a freezing pipe 3 is installed in the hole. Although illustration is omitted, a refrigerant supply device that prepares a refrigerant such as liquid nitrogen or a dry ice solution and supplies the refrigerant in a circulating manner is connected to the upper end of the freezing tube 3.
[0016]
Next, as shown in FIG. 2, a plurality of temperature measurement holes 4 are excavated in the ground 1 around the freezing pipe 3 at substantially equal distances R around the freezing pipe 3. Then, a plurality of temperature sensors 5 are installed in the depth direction in each measurement hole 4. For example, the temperature sensor 5 is attached to the detection rod at regular intervals (measurement point pitch), and the temperature sensor 5 is inserted into the temperature measurement hole 4 and fixed. Of course, although illustration is omitted, a bundle of signal lines for guiding the detection signals of the temperature sensors 5 is guided to the ground along the detection rod or in the temperature measurement hole 4 and is not shown. Connected to the measured and recorded device (so-called personal computer, etc.). 1 and 2, the distance R is within a range where the ground 1 can be cooled and frozen by the freezing tube 3 (see a freezing range 6 indicated by a dotted line). The distance is within the range of the ground for which the simple determination of the flow direction and the flow velocity is required.
[0017]
The depth of the boring hole 2 and the freezing tube 3 installed in the hole, the depth of each temperature measurement hole 4 and the installation depth of the temperature sensor 5 installed therein in the depth direction are respectively described. The position is set to a position that is deep enough to be used for determination and evaluation than the depth at which the groundwater movement state of the survey target ground 1 is to be grasped (the invention described in claim 2).
[0018]
When the above preparation is completed, a cooling medium is supplied through the freezing tube 3 to cool and freeze the ground 1. The method is the same as the existing ground freezing method (for example, see Patent Document 5). Then, the temperature change of the ground due to the cooling and freezing of the ground 1 is measured over time by the temperature sensors 5 in the temperature measuring holes 4 described above, and the measurement result is obtained every predetermined time. It is taken into a measurement and recording device (a so-called personal computer or the like), recorded and stored, and also evaluated for tabulation and examination.
That is, the temperature distribution in the depth direction of each of the temperature measurement holes 4 at the same time is obtained, and the magnitude of the degree of temperature drop is indicated for each depth, and an isotherm distribution diagram 7 is created as shown in FIG. 3, for example. According to this isotherm distribution diagram 7, according to the evaluation basis of the flow velocity described in the above paragraph number [0014], the measurement points with a small degree of temperature decrease, for example, D1 and D2, determine that the flow velocity of the groundwater is relatively high. . Conversely, measurement points with a large degree of temperature decrease, for example, D3 and D4, determine that the flow rate of groundwater is relatively slow.
[0019]
In addition, in accordance with the grounds for evaluating the flow direction described in the above paragraph [0014], the distribution map is searched for the direction of the measuring point where the degree of temperature decrease is largest at each depth centering on the freezing tube 3. For example, as shown by an arrow K in FIG. 2, the direction of the measurement point where the temperature decreases the most is determined as the direction of groundwater flow.
[0020]
As described above, the simple determination method of the flow direction and the flow velocity of the groundwater by the ground freezing method according to the present invention measures the temperature change at each depth by each temperature sensor 5 in each temperature measurement hole 4. In this method, a temperature distribution map is prepared for each depth and evaluated. Therefore, a wide range of the target ground 1, that is, the depth at which the temperature measurement holes 4 are excavated, and the temperature sensors 5 installed therein are formed. It is possible to make a simple judgment of “groundwater flow direction and flow velocity” over a wide range in the depth direction according to the number and pitch of groundwater, and to specifically grasp the groundwater movement status that is extremely significant for the purpose of the survey. Can be done.
Further, in the method of the present invention, the arrangement of the temperature measurement holes 4... Equidistant R from the freezing tube 3 is not limited to the single arrangement shown in FIG. Excavation can be carried out in many places, and the movement of groundwater can be grasped more specifically and precisely.
[0021]
In carrying out the method of the present invention, it is also possible to collect ground samples at arbitrary depths in excavation of the boring hole 2 and excavation of the temperature measurement hole 4 in order to grasp the stratum composition of the ground. It is. By calculating the thermal constant from the ground sample, performing an inverse analysis using the groundwater flow velocity as a parameter using the measured value of the ground temperature distribution, and obtaining the groundwater flow velocity that reproduces the measured value best, the ground It is also possible to quantitatively evaluate the velocity of groundwater in the ground.
[0022]
According to the simple determination method of the present invention, groundwater exists between the boring hole 2 (cooling hole) and the freezing pipe 3, but the groundwater is frozen after the start of cooling and freezing of the ground. For this reason, the inside of the borehole 2 is filled with ice, and the groundwater does not move. Further, the flow rate of the groundwater evaluated by the method of the present invention is an evaluation of the flow direction and the flow velocity of the ground at the portion where each of the temperature measurement holes 4... It has high practical value as a quantitative evaluation method of the natural flow direction and velocity of groundwater.
[0023]
【The invention's effect】
The simple determination method of the groundwater flow direction and flow velocity by the ground freezing method according to the invention described in claims 1 and 2 involves cooling and freezing of a large-scale ground in a wide area which is known as a ground freezing method and has already been put to practical use. This is a method of measuring the temperature distribution at each depth in the surrounding ground, excavating the required number of temperature measurement holes to the required depth for the required arrangement, and installing temperature sensors at each temperature measurement hole to the required depth. As a result, it is possible to precisely understand the "groundwater flow direction and velocity" over a wide range that is necessary and sufficiently large, especially in the depth direction. Can be provided.
Further, according to the simple determination method of the present invention, the measuring method, the totaling method, and the determining method are also very simple, and it is possible to save labor by automatic measurement. Can be done. In particular, since it is possible to accurately and precisely grasp the flow direction and flow velocity of the groundwater as it is without disturbing the flow and movement of the groundwater, the meaningful judgment result Is obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of a method for simply determining the flow direction and flow velocity of groundwater according to the present invention.
FIG. 2 is a plan layout view of FIG. 1;
FIG. 3 is a longitudinal sectional view showing an example of a measured temperature distribution.
FIG. 4 is a longitudinal sectional view conceptually showing an embodiment of a conventional determination method.
FIG. 5 is a longitudinal sectional view conceptually showing a different embodiment of the conventional judging method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ground 2 Boring hole 3 Freezing tube 4 Temperature measurement hole 5 Temperature sensor

Claims (2)

調査対象の地盤中に地盤凍結用のボーリング孔を掘削し、その孔内へ凍結管を設置する段階と、
前記凍結管を中心としてこれをほぼ等距離に取り囲む配置で地盤中に温度測定孔を複数掘削し、各測定孔内の深さ方向に複数の温度センサーを設置する段階と、
前記凍結管を通じて地盤の冷却および凍結を行い、地盤の冷却および凍結に伴う地盤の温度変化を、前記の各温度測定孔内の温度センサーにより経時的に測定する段階と、
同一時刻における各温度測定孔の深度方向の温度分布を求め、深度毎に温度の低下度が小さい測点は相対的に地下水の流速が早いと判定し、また、前記凍結管を中心として深度毎に温度の低下度が最も大きい測点の方向を地下水の流向と判定する段階とからなることを特徴とする、地盤凍結法による地下水の流向、流速の簡易判定方法。
Drilling a borehole for ground freezing in the ground to be surveyed and installing a freezing pipe in the borehole;
Excavating a plurality of temperature measurement holes in the ground in an arrangement surrounding the freeze tube at substantially the same distance around the freeze tube, and installing a plurality of temperature sensors in the depth direction in each measurement hole,
Cooling and freezing the ground through the freezing tube, and measuring the temperature change of the ground due to the cooling and freezing of the ground over time with a temperature sensor in each of the temperature measurement holes,
The temperature distribution in the depth direction of each temperature measurement hole at the same time is obtained, and a measurement point having a small degree of decrease in temperature at each depth is determined to have a relatively high flow rate of the groundwater. And determining the direction of the measurement point having the largest temperature decrease as the groundwater flow direction.
ボーリング孔及びその孔内へ設置する凍結管の深さ、並びに各温度測定孔およびその深さ方向に設置する温度センサーの深さはそれぞれ、調査対象地盤の地下水の移動状況を把握しようとする深度よりも深い位置とすることを特徴とする、請求項1に記載した地盤凍結法による地下水の流向、流速の簡易判定方法。The depth of the borehole and the freezing pipe installed in the borehole, and the depth of each temperature measurement hole and the temperature sensor installed in the depth direction are the depths at which the groundwater movement of the surveyed ground is to be grasped. 2. The method for easily determining the direction and velocity of groundwater flow by the ground freezing method according to claim 1, wherein the position is set at a deeper position.
JP2003045660A 2003-02-24 2003-02-24 Simple judgment method of groundwater flow direction and flow velocity by ground freezing method Expired - Fee Related JP3671301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003045660A JP3671301B2 (en) 2003-02-24 2003-02-24 Simple judgment method of groundwater flow direction and flow velocity by ground freezing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003045660A JP3671301B2 (en) 2003-02-24 2003-02-24 Simple judgment method of groundwater flow direction and flow velocity by ground freezing method

Publications (2)

Publication Number Publication Date
JP2004257745A true JP2004257745A (en) 2004-09-16
JP3671301B2 JP3671301B2 (en) 2005-07-13

Family

ID=33112410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003045660A Expired - Fee Related JP3671301B2 (en) 2003-02-24 2003-02-24 Simple judgment method of groundwater flow direction and flow velocity by ground freezing method

Country Status (1)

Country Link
JP (1) JP3671301B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271325A (en) * 2006-03-30 2007-10-18 Ngk Insulators Ltd Flow sensor for high temperature
WO2016068736A1 (en) 2014-10-31 2016-05-06 Neostrain Spółka Z Ograniczona Odpowiedzialnoscia Method, system and prefabricated multi-sensor integrated cable for detection and monitoring of a fluid flow, in particular of a fluid flow in filtration processes, especially of leakage in constructions and/or in ground
CN106771332A (en) * 2017-01-13 2017-05-31 重庆交通大学 Groundwater velocity test device in tunnel surrounding
CN107313792A (en) * 2017-07-24 2017-11-03 中国十七冶集团有限公司 A kind of new push pipe built for tunneling space and its construction method
CN107402077A (en) * 2017-09-08 2017-11-28 湖北科技学院 A kind of tunnel freeze thawing circle device for detecting temperature
CN107917690A (en) * 2018-01-08 2018-04-17 河北科技大学 Frost penetration measuring device based on pressure sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271325A (en) * 2006-03-30 2007-10-18 Ngk Insulators Ltd Flow sensor for high temperature
JP4667286B2 (en) * 2006-03-30 2011-04-06 日本碍子株式会社 High-temperature flow sensor
WO2016068736A1 (en) 2014-10-31 2016-05-06 Neostrain Spółka Z Ograniczona Odpowiedzialnoscia Method, system and prefabricated multi-sensor integrated cable for detection and monitoring of a fluid flow, in particular of a fluid flow in filtration processes, especially of leakage in constructions and/or in ground
CN106771332A (en) * 2017-01-13 2017-05-31 重庆交通大学 Groundwater velocity test device in tunnel surrounding
CN106771332B (en) * 2017-01-13 2023-06-13 重庆交通大学 Underground water flow velocity testing device in tunnel surrounding rock
CN107313792A (en) * 2017-07-24 2017-11-03 中国十七冶集团有限公司 A kind of new push pipe built for tunneling space and its construction method
CN107313792B (en) * 2017-07-24 2019-04-09 中国十七冶集团有限公司 A kind of novel push pipe and its construction method for the construction of tunneling space
CN107402077A (en) * 2017-09-08 2017-11-28 湖北科技学院 A kind of tunnel freeze thawing circle device for detecting temperature
CN107402077B (en) * 2017-09-08 2023-10-27 湖北科技学院 Tunnel freeze thawing circle temperature monitoring device
CN107917690A (en) * 2018-01-08 2018-04-17 河北科技大学 Frost penetration measuring device based on pressure sensor

Also Published As

Publication number Publication date
JP3671301B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
Krause et al. Investigating patterns and controls of groundwater up-welling in a lowland river by combining Fibre-optic Distributed Temperature Sensing with observations of vertical hydraulic gradients
Pehme et al. Improved resolution of ambient flow through fractured rock with temperature logs
US11480050B2 (en) Device and method for measuring flow velocity and flow direction and geological parameters of groundwater through cross holes of deep wells
Coleman et al. Groundwater flow characterization in a fractured bedrock aquifer using active DTS tests in sealed boreholes
Wilke et al. Advanced thermal response tests: A review
Cao et al. Investigation of the influence of soil moisture on thermal response tests using active distributed temperature sensing (A–DTS) technology
Chatelier et al. Combined fluid temperature and flow logging for the characterization of hydraulic structure in a fractured karst aquifer
CN102879425A (en) System and method for testing comprehensive heat conductivity coefficient and specific heat capacity of rock-soil body
Pehme et al. Detailed measurement of the magnitude and orientation of thermal gradients in lined boreholes for characterizing groundwater flow in fractured rock
Kurylyk et al. Heat: An overlooked tool in the practicing hydrogeologist's toolbox
Cao et al. A field study on the application of distributed temperature sensing technology in thermal response tests for borehole heat exchangers
Lee et al. Permeability evaluation for artificial single rock fracture according to geometric aperture variation using electrical resistivity
Zhou et al. Practical prediction method on thaw deformation of soft clay subject to artificial ground freezing based on elaborate centrifuge modeling experiments
JP3671301B2 (en) Simple judgment method of groundwater flow direction and flow velocity by ground freezing method
Hurtig et al. Fibre optic temperature sensing: application for subsurface and ground temperature measurements
Godinaud et al. Clogging detection and productive layers identification along boreholes using Active Distributed Temperature Sensing
Kim Locating fires in abandoned underground coal mines
Gimmi et al. Field‐scale water transport in unsaturated crystalline rock
Constantz et al. Analysis of temperature gradients to determine stream exchanges with ground water
Radioti et al. Thermal response test in borehole heat exchangers equipped with fiber optics
JP2612812B2 (en) Measurement system for moisture behavior / migration in stratum and method of exploration thereof
Komulainen Posiva flow log (PFL), tool for detection of groundwater flows in bedrock
Smith et al. Analysis of the annual thermal response of an earth dam for the assessment of the hydraulic conductivity of its compacted till core
Gigot et al. Monitoring of the thermal plume around a thermally activated borehole heat exchanger and characterization of the ground hydro-geothermal parameters
Flynn et al. Identification of zones of preferential groundwater tracer transport using a mobile downhole fluorometer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050405

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees