JP2004257475A - Liquefied gas force feed method, hydrogen manufacturing method, and liquefied gas force feed equipment - Google Patents

Liquefied gas force feed method, hydrogen manufacturing method, and liquefied gas force feed equipment Download PDF

Info

Publication number
JP2004257475A
JP2004257475A JP2003049020A JP2003049020A JP2004257475A JP 2004257475 A JP2004257475 A JP 2004257475A JP 2003049020 A JP2003049020 A JP 2003049020A JP 2003049020 A JP2003049020 A JP 2003049020A JP 2004257475 A JP2004257475 A JP 2004257475A
Authority
JP
Japan
Prior art keywords
liquefied gas
pump
pressure
gas
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003049020A
Other languages
Japanese (ja)
Inventor
Akihiro Komatsuzaki
明広 小松崎
Hodaka Tsuge
穂高 柘植
Hiroaki Shimizu
洋昭 清水
Tadaaki Yamada
忠明 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003049020A priority Critical patent/JP2004257475A/en
Publication of JP2004257475A publication Critical patent/JP2004257475A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Reciprocating Pumps (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquefied gas force feed method capable of easily force-feeding liquefied gas, a hydrogen manufacturing method for controlling increase in the number of steps by using the liquefied gas force feed method, and liquefied gas force feed equipment capable of simplifying the configuration. <P>SOLUTION: In the method in which liquefied gas sealed in a gas cylinder is boosted and fed by at least two pumps disposed in series, liquefied gas is fed to a first pump out of the pumps, and the liquefied gas is preliminarily pressurized by the first pump so that the minimum pressure of the liquefied gas reaches the pressure pmin higher than the saturated vapor pressure PV when sucking the liquefied gas of the second pump disposed on the downstream side of the first pump. Generation of bubbles in the first pump can be easily prevented, and liquefied gas can be reliably and easily fed at the predetermined pressure without using any special method such as a known super-cooling method. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複数のポンプによる液化ガス圧送方法、水素製造方法及び液化ガス圧送装置に関する。
【0002】
【従来の技術】
液化ガス圧送装置及び液化ガス圧送方法として、過冷却手段を用いたものが知られている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2002−106789公報(第3−4頁、図1)
【0004】
特許文献1の図1を以下の図4で説明する。なお、符号は振り直した。
図4は従来の液化ガス圧送装置の系統図であり、液化ガス容器101、液溜め容器102、ポンプ103、蒸発器104及び高圧ガス容器105を順に接続した液化ガス圧送設備を示す。
【0005】
過冷却手段としての液溜め容器102は、断熱構造を有する密閉容器であって、液化ガス容器102に接続した液化ガス流入経路107と、液溜め容器102の液相部108とポンプ103の吸込口111とを接続する液化ガス流出経路112と、液溜め容器102の気相部113のガスを放出するガス放出経路114及びガス放出経路114に設けたガス放出弁115と、ポンプ103のガス抜き口117に接続したガス抜き経路118とを備える。
【0006】
【発明が解決しようとする課題】
上記した液化ガス圧送設備では、過冷却状態とするために上記した多くの構成を備える液溜め容器102を必要とするため、設備の構成が複雑になり、コストアップを招く。
また、過冷却状態とするために液化ガスの温度や圧力の管理を精度よく行う必要があり、液化ガス圧送方法として工程が複雑になる。
【0007】
更に、例えば、この液化ガス圧送設備を水素製造方法に用いる場合、液化ガス圧送設備、改質器、水素分離装置の順に設けて、液化ガスから水素を得るようにすると、液化ガス圧送設備の工程が複雑であるから、水素製造方法全体の工程数が増え、生産性が低下することになる。
【0008】
そこで、本発明の目的は、液化ガスを容易に圧送できる液化ガス圧送方法と、この液化ガス圧送方法を用いて工程数の増加を抑えた水素製造方法と、構成を簡素化できる液化ガス圧送装置とを提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために請求項1は、容器内に封入した液化ガスを、直列に配置した少なくとも2台のポンプで昇圧して送出する方法であって、液化ガスを液体状態でポンプのうちの上流側ポンプに供給し、この上流側ポンプによって、上流側ポンプの下流側に配置した下流側ポンプの液化ガス吸引時に、液化ガスをその飽和蒸気圧よりも高い圧力となるように予備加圧することを特徴とする。
【0010】
上流側ポンプによって、下流側ポンプの液化ガス吸引時に、液化ガスをその飽和蒸気圧よりも高い圧力となるようにを予備加圧することで、下流側ポンプ内での気泡の発生を容易に防止することができ、従来のような過冷却等の特別な方法を用いずに液化ガスを所定の圧力で確実に送出することが容易にできる。
【0011】
請求項2は、炭化水素を原料として改質反応により改質ガスを生成し、この改質ガスから水素分離膜により水素を選択的に分離することにより高純度の水素を製造する水素製造方法であって、容器内に封入した炭化水素からなる液化ガスを、直列に配置した少なくとも2台のポンプで昇圧して送出するために、液化ガスを液体状態で上流側ポンプに供給し、この上流側ポンプによって、上流側ポンプの下流側に配置した下流側ポンプの液化ガス吸引時に、液化ガスをその飽和蒸気圧よりも高い圧力となるようにを予備加圧することで、この予備加圧後の液化ガスを原料として水素を得ることを特徴とする。
【0012】
水素製造方法に上記液化ガス圧送方法を採用することで、液化ガス圧送方法を含む水素製造方法の工程数の増加を抑え、生産性を高めることができる。
【0013】
請求項3は、容器内に封入した液化ガスを直列に配置した少なくとも2台のポンプで昇圧して送出する液化ガス圧送装置において、この液化ガス圧送装置を、容器内の液化ガスを吸引して昇圧させる上流側ポンプと、この上流側ポンプの下流側に接続するとともに液化ガスを所定の圧力に昇圧させる下流側ポンプとから構成し、上流側ポンプでは、下流側ポンプの液化ガス吸引時に、液化ガスをその飽和蒸気圧よりも高い圧力となるように予備加圧することを特徴とする。
【0014】
液化ガス圧送装置を上流側ポンプと下流側ポンプとから構成し、この液化ガス圧送装置で液化ガスを圧送することで、簡単な構成で液化ガスを所定の圧力の液体状態として確実に送出することができる。
【0015】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に係る液化ガス圧送装置を備える水素製造装置の系統図であり、水素製造装置10は、液化ガス11aを入れた容器としてのガスボンベ11と、このガスボンベ11から延ばした液化ガス配管12と、この液化ガス配管12の先端に接続した水素発生装置13と、この水素発生装置13から排出するガスの出口となるガス出口管13aに設けたバックプレッシャレギュレータ14と、上記の液化ガス配管12の途中に設けた液化ガス流量調整バルブ15、上流側ポンプとしての第1ポンプ16及び下流側ポンプとしての第2ポンプ17とからなる。
上記した第1ポンプ16及び第2ポンプ17は、液化ガス圧送装置18を構成するものである。
【0016】
ガスボンベ11は、倒立させることで出口21を最下部に位置するようにして出口21に液相22が臨むようにしたものである。なお、23はガスボンベ11内にできる気相である。
液化ガスとしては、ノルマルブタンガス、イソブタンガス、プロパンガス、オートガス、液化天然ガスが好適である。
【0017】
水素発生装置13は、改質触媒を充填した改質触媒層26と、この改質触媒層26の内側に配置した水素分離層27と、改質触媒層26内の改質触媒を所定温度まで昇温させて改質反応を促進させるために改質触媒層26の外方に設けたヒータ28,28と、改質触媒層26に水を供給する水供給管31と、改質触媒層26に空気を供給する空気供給管32と、前述のガス出口管13aと、水素分離層27から水素を回収する水素回収管33とからなる。
【0018】
改質触媒層26は、改質触媒を内蔵するものであり、この改質触媒を高温に保った状態で原料ガス及び水(場合によっては、原料ガス及び空気、あるいは原料ガス、水及び空気)を供給することで改質反応を起こし、水素、二酸化炭素、微量の一酸化炭素を生成する。
【0019】
水素分離層27は、改質触媒層26内で改質してできた改質ガス中の水素のみを改質触媒層26内の圧力で水素分離膜を介して分離するものであり、改質触媒層26に隣接させた水素分離膜と、水素分離膜の内側に形成したチャンバとからなる。
【0020】
第1ポンプ16は、液化ガスを予備加圧して第1ポンプ17へ送る装置であり、第2ポンプ17が液化ガスを吸引するときに、液化ガスをその飽和蒸気圧よりも高い圧力となるようにを加圧する。
【0021】
第2ポンプ17は、第1ポンプ16で予備加熱された液化ガスを液体状態で所定圧力まで加圧して水素発生装置13へ圧送する装置である。
バックプレッシャレギュレータ14は、第2ポンプ17により加圧するときの圧力値を調整する装置、即ち、水素発生装置13の改質触媒層26内の圧力を調整する装置である。
【0022】
このように、水素製造装置10は、液化ガス11aを原料とすることで、例えば、高圧ガス等を原料とするのに比べて、ガスボンベ11内の圧力が低圧で済み、またガスボンベ11が小型になって、取り扱い性を向上させることができる。
【0023】
図2(a)〜(c)は本発明に係る第1・第2ポンプを示す説明図であり、(a)で構造を説明し、(b),(c)で作用を説明する。なお、第1ポンプ16と第2ポンプ17とは同一構造であり、以下では第1ポンプ16について説明し、第2ポンプ17の説明は省略する。
(a)において、第1ポンプ16は、ダイヤフラム形式のものであり、ポンプケース36と、このポンプケース36に付設した駆動部37とからなる。
ポンプケース36は、ポンプ室41と、このポンプ室41の側壁を形成するダイヤフラム42と、ポンプ室41の入口に設けた入口バルブ43と、ポンプ室41の出口に設けた出口バルブ44とからなる。
【0024】
ダイヤフラム42は、断面を円弧状に形成した弾性を有する部材である。
入口バルブ43は、一方向弁であり、ポンプ室41に一体成形した入口バルブケース46と、この入口バルブケース46のガスボンベ11(図1参照)側に設けた入口管47と、この入口管47を閉じることができるように入口バルブケース46内に設けたボール48と、入口バルブケース46のポンプ室41側に設けた通孔51…(…は複数個を表す。以下同じ。)付きの隔壁52とからなる。
【0025】
出口バルブ44は、一方向弁であり、ポンプ室41に一体成形した出口バルブケース54、この出口バルブケース54の第2ポンプ17(図1参照)側に設けた出口管55と、この出口管55を閉じることができるように出口バルブケース54内に設けたボール56と、出口バルブケース46の第2ポンプ17側に設けた通孔57…付きの隔壁58とからなる。
【0026】
駆動部37は、ダイヤフラム42に取付けたプランジャ61と、このプランジャ61に一体に設けたフランジ62と、このフランジ62を吸引するソレノイド63と、プランジャ61の一部及びフランジ62を移動可能に収納するとともにソレノイド63を内蔵する駆動ケース64とからなる。
【0027】
以上に述べた第1ポンプ16の作用を次に説明する。
(a)において、ソレノイド63に通電してフランジ62をソレノイド63側に吸引すると、(b)に示すように、プランジャ61が軸方向に移動し、ダイヤフラム42がほぼ平坦になるように撓み、ポンプ室41の容積を減少させてポンプ室41内の圧力を高める。この結果、ポンプ室41内に貯まっていた液化ガスは出口バルブ44のボール56を押し退け、隔壁58の通孔57…を通って第2ポンプ側に流れる。
【0028】
次に、ソレノイドの通電を止めると、ダイヤフラム42は弾性力によって、(c)に示すように、元の状態((a)の状態)に戻る。この結果、ポンプ室41の容積が増加し、ポンプ室41内の圧力が低下する。従って、液化ガスがガスボンベ側からボール48を押し退けて入口バルブ43内に流れ込み、更に隔壁52の通孔51…を通ってポンプ室41内に流れ込む。
以上に述べたソレノイドへの通電を間欠的に行うことで、液化ガスの送出を連続的に行うことができる。
【0029】
図3は本発明に係る第1・第2ポンプにより発生する圧力を示すグラフであり、縦軸は第1ポンプ内圧P11、第1ポンプ出口圧P12、第2ポンプ内圧P21及び第2ポンプ出口圧P22、横軸は時間Tを表す。
第1ポンプ内圧P11及び第2ポンプ内圧P21は、ポンプ室41(図2参照)内の圧力(図2(a)に示したA点の圧力であり、ゲージ圧である。)、第1ポンプ出口圧P12及び第2ポンプ出口圧P22は出口バルブ44内の圧力(図2(a)に示したB点の圧力であり、ゲージ圧である。)である。
【0030】
図1において、液化ガス流量調整バルブ15を開けて液化ガスの流量を所定流量に調整し、第1ポンプ16のソレノイド63(図2(a)参照)に通電を開始する。これにより、ガスボンベ11内の気相23の圧力、即ち液化ガスの蒸気圧によって、液化ガスが第1ポンプ16側に流出する。
【0031】
図3において、第1ポンプ内圧P11は、時間t1を始点として前述の液化ガスの飽和蒸気圧PV(以下、単に「蒸気圧PV」と記す。)を中央値とした振幅(p4−p3)、周期dt1のパルス状の変化を繰り返す。
【0032】
第1ポンプ出口圧P12は、第1ポンプ内圧P11が蒸気圧PVより小さくなったときでも、図2(c)に示したように、出口バルブ44内はボール56によってポンプ室41内と隔離されるために、図3において、蒸気圧PVよりも低下しない。
【0033】
従って、第1ポンプ出口圧P12は、時間t1にて蒸気圧PVからp5まで立ち上がる。この圧力p5は圧力p4にほぼ等しい。
そして、第1ポンプ出口圧P12が立ち上がった後は、第1ポンプ内圧P11がp4のときにp5となり、第1ポンプ内圧P11がp3のときには徐徐に低下する。このときの圧力低下量はdr1である。
【0034】
第2ポンプ内圧P21は、まず、第1ポンプ出口圧P12と同様に、時間t1を始点として蒸気圧PVから圧力p6まで立ち上がり、時間t2までその圧力p6を維持する。そして、時間t2にて第2ポンプのソレノイドに通電を開始する。この結果、第2ポンプ内圧P21は時間t2で圧力p6から圧力p7まで立ち上がり、以降は圧力p6を中央値として振幅(p7−pmin)、周期dt2のパルス状の変化を繰り返す。
【0035】
このとき、第2ポンプ内圧P21の圧力最小値pminは蒸気圧PVよりも大きくなるように設定する。即ち、第2ポンプ圧力P21を液化ガスの蒸気圧PVよりも大きくすることで、第2ポンプ内で液化ガスが気泡になるのを防止することができ、液化ガスを液体の状態で且つ圧力の低下を抑えつつ確実に水素発生装置へ供給することができる。
【0036】
第2ポンプ出口圧P22は、時間t1にて蒸気圧PVから圧力p8まで立ち上がり、時間t2まで圧力p8を維持し、時間t2にて圧力p8から圧力p9まで立ち上がる。この圧力p9は圧力p7にほぼ等しい。
そして、以降は第2ポンプ内圧P21がp7のときにp9となり、第2ポンプ内圧P21がpminのときには徐徐に低下する。このときの圧力低下量はdr2である。
【0037】
以上に示したように、第1ポンプでは、出口圧P12を圧力p5まで予備加圧し、第2ポンプでは、第1ポンプの出口圧p5をベースにして圧力p9まで高める。
【0038】
以上の図1及び図3で説明したように、本発明は第1に、ガスボンベ11内に封入した液化ガス11aを、直列に配置した少なくとも2台のポンプで昇圧して送出する方法であって、液化ガス11aを液体状態でポンプのうちの第1ポンプ16に供給し、この第1ポンプ16によって、第1ポンプ16の下流側に配置した第2ポンプ17の液化ガス吸引時に、液化ガス11aをその飽和蒸気圧PVよりも高い圧力、即ち圧力最小値pminとなるように予備加圧することを特徴とする。
【0039】
第1ポンプ16によって、第2ポンプ17の液化ガス吸引時に、液化ガス11aを、最も小さくてもその飽和蒸気圧PVよりも高い圧力pminとなるように予備加圧することで、第2ポンプ17内での気泡の発生を容易に防止することができ、従来のような過冷却等の特別な方法を用いずに液化ガス11aを所定の圧力p9で確実に送出することが容易にできる。
【0040】
本発明は第2に、炭化水素を原料として改質反応により改質ガスを生成し、この改質ガスから水素分離膜により水素を選択的に分離することにより高純度の水素を製造する水素製造方法であって、ガスボンベ11内に封入した炭化水素からなる液化ガス11aを、直列に配置した少なくとも2台のポンプで昇圧して送出するために、液化ガス11aを液体状態で第1ポンプ16に供給し、この第1ポンプ16によって、第1ポンプ16の下流側に配置した第2ポンプ17の液化ガス吸引時に、液化ガス11aを、最も小さくてもその飽和蒸気圧PVよりも高い圧力pminとなるように予備加圧することで、この予備加圧後の液化ガス11aを原料として水素を得ることを特徴とする。
水素製造方法に上記液化ガス圧送方法を採用することで、液化ガス圧送方法を含む水素製造方法の工程数の増加を抑え、生産性を高めることができる。
【0041】
本発明は第3に、ガスボンベ11内に封入した液化ガス11aを直列に配置した少なくとも2台のポンプで昇圧して送出する液化ガス圧送装置18において、この液化ガス圧送装置18を、ガスボンベ11内の液化ガス11aを吸引して昇圧させる第1ポンプ16と、この第1ポンプ16の下流側に接続するとともに液化ガス11aを所定の圧力p9に昇圧させる第2ポンプ17とから構成し、第1ポンプ16では、第2ポンプ17の液化ガス吸引時に、液化ガス11aを、最も小さくてもその飽和蒸気圧PVよりも高い圧力pminとなるように予備加圧することを特徴とする。
【0042】
液化ガス圧送装置18を第1ポンプ16と第2ポンプ17とから構成し、この液化ガス圧送装置18で液化ガス11aを圧送することで、簡単な構成で液化ガス11aを所定の圧力の液体状態として確実に送出することができる。
【0043】
尚、本実施の形態では、ポンプを第1ポンプと第2ポンプとしたが、これに限らず、水素発生装置内の圧力設定に応じてこれらの第1ポンプ及び第2ポンプに別のポンプを更に直列に接続してもよい。
【0044】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1の液化ガス圧送方法は、液化ガスを液体状態でポンプのうちの上流側ポンプに供給し、この上流側ポンプによって、上流側ポンプの下流側に配置した下流側ポンプの液化ガス吸引時に、液化ガスをその飽和蒸気圧よりも高い圧力となるように予備加圧するので、下流側ポンプ内での気泡の発生を容易に防止することができ、従来のような過冷却等の特別な方法を用いずに液化ガスを所定の圧力で確実に送出することが容易にできる。
【0045】
請求項2の水素製造方法は、容器内に封入した炭化水素からなる液化ガスを、直列に配置した少なくとも2台のポンプで昇圧して送出するために、液化ガスを液体状態で上流側ポンプに供給し、この上流側ポンプによって、上流側ポンプの下流側に配置した下流側ポンプの液化ガス吸引時に、液化ガスをその飽和蒸気圧よりも高い圧力となるようにを予備加圧することで、この予備加圧後の液化ガスを原料として水素を得るので、水素製造方法に上記液化ガス圧送方法を採用することにより、液化ガス圧送方法を含む水素製造方法の工程数の増加を抑え、生産性を高めることができる。
【0046】
請求項3の液化ガス圧送装置は、容器内の液化ガスを吸引して昇圧させる上流側ポンプと、この上流側ポンプの下流側に接続するとともに液化ガスを所定の圧力に昇圧させる下流側ポンプとから構成し、上流側ポンプでは、下流側ポンプの液化ガス吸引時に、液化ガスをその飽和蒸気圧よりも高い圧力となるように予備加圧するので、簡単な構成で液化ガスを所定の圧力の液体状態として確実に送出することができる。
【図面の簡単な説明】
【図1】本発明に係る液化ガス圧送装置を備える水素製造装置の系統図
【図2】本発明に係る第1・第2ポンプを示す説明図
【図3】本発明に係る第1・第2ポンプにより発生する圧力を示すグラフ
【図4】従来の液化ガス圧送装置の系統図
【符号の説明】
11…容器(ガスボンベ)、11a…液化ガス、16…上流側ポンプ(第1ポンプ)、17…下流側ポンプ(第2ポンプ)、18…液化ガス圧送装置、p9…所定の圧力、PV…飽和蒸気圧。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquefied gas pumping method using a plurality of pumps, a hydrogen production method, and a liquefied gas pumping apparatus.
[0002]
[Prior art]
As a liquefied gas pumping device and a liquefied gas pumping method, a device using supercooling means is known (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-2002-106789 (page 3-4, FIG. 1)
[0004]
FIG. 1 of Patent Document 1 will be described with reference to FIG. The reference numerals have been re-assigned.
FIG. 4 is a system diagram of a conventional liquefied gas pumping apparatus, and shows liquefied gas pumping equipment in which a liquefied gas container 101, a liquid storage container 102, a pump 103, an evaporator 104, and a high-pressure gas container 105 are connected in this order.
[0005]
The liquid storage container 102 as the supercooling means is a closed container having a heat insulating structure, and includes a liquefied gas inflow path 107 connected to the liquefied gas container 102, a liquid phase portion 108 of the liquid storage container 102, and a suction port of the pump 103. A liquefied gas outflow path 112 connecting the gas reservoir 111, a gas discharge path 114 for discharging gas from the gas phase portion 113 of the liquid reservoir 102, a gas discharge valve 115 provided in the gas discharge path 114, and a gas vent of the pump 103. 117, and a degassing path 118 connected to the degassing path 117.
[0006]
[Problems to be solved by the invention]
In the above-mentioned liquefied gas pumping equipment, since the liquid storage container 102 having many of the above-described structures is required in order to be in a supercooled state, the structure of the equipment is complicated, and the cost is increased.
In addition, it is necessary to precisely control the temperature and pressure of the liquefied gas in order to bring it into a supercooled state, and the process becomes complicated as a liquefied gas pumping method.
[0007]
Furthermore, for example, when this liquefied gas pumping equipment is used for a hydrogen production method, if liquefied gas pumping equipment, a reformer, and a hydrogen separator are provided in this order to obtain hydrogen from liquefied gas, Is complicated, the number of steps in the entire hydrogen production method increases, and productivity decreases.
[0008]
Accordingly, an object of the present invention is to provide a liquefied gas pumping method capable of easily pumping a liquefied gas, a hydrogen production method using the liquefied gas pumping method to suppress an increase in the number of steps, and a liquefied gas pumping apparatus capable of simplifying the configuration. And to provide.
[0009]
[Means for Solving the Problems]
To achieve the above object, a first aspect of the present invention is a method of increasing the pressure of a liquefied gas enclosed in a container by at least two pumps arranged in series and sending out the liquefied gas in a liquid state. Liquefied gas is pre-pressurized by the upstream pump so that the liquefied gas becomes higher than its saturated vapor pressure when the liquefied gas is sucked by the downstream pump arranged downstream of the upstream pump. It is characterized by the following.
[0010]
By pre-pressurizing the liquefied gas to a pressure higher than its saturated vapor pressure when the liquefied gas is sucked by the downstream pump by the upstream pump, it is possible to easily prevent the generation of bubbles in the downstream pump. Thus, the liquefied gas can be easily delivered at a predetermined pressure without using a special method such as conventional supercooling.
[0011]
Claim 2 is a hydrogen production method for producing high-purity hydrogen by generating a reformed gas by a reforming reaction using hydrocarbon as a raw material and selectively separating hydrogen from the reformed gas by a hydrogen separation membrane. The liquefied gas is supplied to the upstream pump in a liquid state so that the liquefied gas composed of hydrocarbons sealed in the container is pressurized and sent out by at least two pumps arranged in series. The liquefaction after the pre-pressurization is performed by pre-pressurizing the liquefied gas to a pressure higher than its saturated vapor pressure at the time of suction of the liquefied gas by the downstream pump arranged downstream of the upstream pump by the pump. It is characterized by obtaining hydrogen using gas as a raw material.
[0012]
By adopting the liquefied gas pumping method as the hydrogen producing method, it is possible to suppress an increase in the number of steps of the hydrogen producing method including the liquefied gas pumping method, and to increase productivity.
[0013]
Claim 3 is a liquefied gas pumping device which pressurizes and sends out a liquefied gas enclosed in a container by at least two pumps arranged in series, wherein the liquefied gas pumping device sucks the liquefied gas in the container. It comprises an upstream pump for increasing the pressure and a downstream pump connected to the downstream side of the upstream pump and increasing the liquefied gas to a predetermined pressure. It is characterized in that the gas is pre-pressurized to a pressure higher than its saturated vapor pressure.
[0014]
The liquefied gas pumping device is composed of an upstream pump and a downstream pump, and liquefied gas is pumped by the liquefied gas pumping device, so that the liquefied gas can be reliably sent as a liquid state at a predetermined pressure with a simple configuration. Can be.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the accompanying drawings. The drawings should be viewed in the direction of reference numerals.
FIG. 1 is a system diagram of a hydrogen production apparatus provided with a liquefied gas pumping apparatus according to the present invention. A hydrogen production apparatus 10 includes a gas cylinder 11 as a container containing a liquefied gas 11a and a liquefied gas pipe extending from the gas cylinder 11. 12; a hydrogen generator 13 connected to the tip of the liquefied gas pipe 12; a back pressure regulator 14 provided in a gas outlet pipe 13a serving as an outlet for gas discharged from the hydrogen generator 13; A liquefied gas flow control valve 15 is provided in the middle of 12, a first pump 16 as an upstream pump, and a second pump 17 as a downstream pump.
The above-described first pump 16 and second pump 17 constitute a liquefied gas pumping device 18.
[0016]
The gas cylinder 11 is configured such that the outlet 21 is located at the lowermost position by inverting the gas cylinder 11 so that the liquid phase 22 faces the outlet 21. Reference numeral 23 denotes a gas phase formed in the gas cylinder 11.
As the liquefied gas, normal butane gas, isobutane gas, propane gas, auto gas, and liquefied natural gas are suitable.
[0017]
The hydrogen generator 13 converts the reforming catalyst layer 26 filled with the reforming catalyst, the hydrogen separation layer 27 disposed inside the reforming catalyst layer 26, and the reforming catalyst in the reforming catalyst layer 26 to a predetermined temperature. Heaters 28, 28 provided outside the reforming catalyst layer 26 to raise the temperature to promote the reforming reaction; a water supply pipe 31 for supplying water to the reforming catalyst layer 26; An air supply pipe 32 for supplying air to the HFC, a gas outlet pipe 13a described above, and a hydrogen recovery pipe 33 for recovering hydrogen from the hydrogen separation layer 27.
[0018]
The reforming catalyst layer 26 has a built-in reforming catalyst, and the raw material gas and water (or raw material gas and air, or the raw material gas, water and air in some cases) while maintaining the reforming catalyst at a high temperature. Supplies hydrogen to cause a reforming reaction, producing hydrogen, carbon dioxide, and trace amounts of carbon monoxide.
[0019]
The hydrogen separation layer 27 separates only hydrogen in the reformed gas formed by reforming in the reforming catalyst layer 26 with the pressure in the reforming catalyst layer 26 through the hydrogen separation membrane. It comprises a hydrogen separation membrane adjacent to the catalyst layer 26 and a chamber formed inside the hydrogen separation membrane.
[0020]
The first pump 16 is a device for pre-pressurizing the liquefied gas and sending it to the first pump 17 so that when the second pump 17 sucks the liquefied gas, the liquefied gas has a pressure higher than its saturated vapor pressure. Press.
[0021]
The second pump 17 is a device that pressurizes the liquefied gas preheated by the first pump 16 in a liquid state to a predetermined pressure and feeds the liquefied gas to the hydrogen generator 13 under pressure.
The back pressure regulator 14 is a device that adjusts a pressure value when pressurized by the second pump 17, that is, a device that adjusts the pressure in the reforming catalyst layer 26 of the hydrogen generator 13.
[0022]
As described above, by using the liquefied gas 11a as a raw material, the hydrogen production apparatus 10 requires a lower pressure in the gas cylinder 11 as compared with, for example, using a high-pressure gas or the like as a raw material, and the gas cylinder 11 can be reduced in size. As a result, handleability can be improved.
[0023]
2 (a) to 2 (c) are explanatory views showing the first and second pumps according to the present invention. FIG. 2 (a) explains the structure, and FIGS. 2 (b) and 2 (c) explain the operation. The first pump 16 and the second pump 17 have the same structure. Hereinafter, the first pump 16 will be described, and the description of the second pump 17 will be omitted.
1A, the first pump 16 is of a diaphragm type, and includes a pump case 36 and a driving unit 37 attached to the pump case 36.
The pump case 36 includes a pump chamber 41, a diaphragm 42 forming a side wall of the pump chamber 41, an inlet valve 43 provided at an inlet of the pump chamber 41, and an outlet valve 44 provided at an outlet of the pump chamber 41. .
[0024]
The diaphragm 42 is an elastic member having a circular cross section.
The inlet valve 43 is a one-way valve, and has an inlet valve case 46 integrally formed with the pump chamber 41, an inlet pipe 47 provided on the gas cylinder 11 (see FIG. 1) side of the inlet valve case 46, and an inlet pipe 47. A ball 48 provided in the inlet valve case 46 so that the inlet valve case 46 can be closed, and a partition wall having through holes 51 provided on the pump chamber 41 side of the inlet valve case 46 (wherein represents a plurality, the same applies hereinafter). 52.
[0025]
The outlet valve 44 is a one-way valve, and includes an outlet valve case 54 integrally formed with the pump chamber 41, an outlet pipe 55 provided on the second pump 17 (see FIG. 1) side of the outlet valve case 54, and an outlet pipe 55. A ball 56 is provided in the outlet valve case 54 so that the valve 55 can be closed, and a partition 58 with through holes 57 provided on the second pump 17 side of the outlet valve case 46.
[0026]
The drive unit 37 accommodates a plunger 61 attached to the diaphragm 42, a flange 62 provided integrally with the plunger 61, a solenoid 63 for sucking the flange 62, and a part of the plunger 61 and the flange 62 so as to be movable. And a drive case 64 containing a solenoid 63.
[0027]
The operation of the first pump 16 described above will now be described.
In (a), when the solenoid 63 is energized and the flange 62 is attracted to the solenoid 63 side, the plunger 61 moves in the axial direction as shown in (b), the diaphragm 42 bends so as to be substantially flat, and the pump The pressure in the pump chamber 41 is increased by reducing the volume of the chamber 41. As a result, the liquefied gas stored in the pump chamber 41 pushes back the ball 56 of the outlet valve 44 and flows to the second pump side through the through holes 57 of the partition wall 58.
[0028]
Next, when the energization of the solenoid is stopped, the diaphragm 42 returns to the original state (state of (a)) as shown in FIG. As a result, the volume of the pump chamber 41 increases, and the pressure in the pump chamber 41 decreases. Therefore, the liquefied gas pushes the ball 48 from the gas cylinder side and flows into the inlet valve 43, and further flows into the pump chamber 41 through the through holes 51 of the partition wall 52.
By intermittently energizing the solenoid described above, the liquefied gas can be continuously delivered.
[0029]
FIG. 3 is a graph showing the pressure generated by the first and second pumps according to the present invention, wherein the vertical axis represents the first pump internal pressure P11, the first pump outlet pressure P12, the second pump internal pressure P21, and the second pump outlet pressure. P22, the horizontal axis represents time T.
The first pump internal pressure P11 and the second pump internal pressure P21 are the pressure in the pump chamber 41 (see FIG. 2) (the pressure at the point A shown in FIG. 2A and the gauge pressure), and the first pump. The outlet pressure P12 and the second pump outlet pressure P22 are the pressures in the outlet valve 44 (the pressure at point B shown in FIG. 2A and the gauge pressure).
[0030]
In FIG. 1, the liquefied gas flow control valve 15 is opened to adjust the flow rate of the liquefied gas to a predetermined flow rate, and the solenoid 63 of the first pump 16 (see FIG. 2A) is energized. Thereby, the liquefied gas flows out to the first pump 16 side due to the pressure of the gas phase 23 in the gas cylinder 11, that is, the vapor pressure of the liquefied gas.
[0031]
In FIG. 3, the first pump internal pressure P11 is an amplitude (p4-p3) with the saturation vapor pressure PV of the liquefied gas (hereinafter simply referred to as "vapor pressure PV") as a median value starting from time t1. The pulse-like change of the cycle dt1 is repeated.
[0032]
Even when the first pump internal pressure P11 becomes lower than the vapor pressure PV, the first pump outlet pressure P12 is isolated from the pump chamber 41 by the ball 56 as shown in FIG. Therefore, in FIG. 3, the pressure does not drop below the vapor pressure PV.
[0033]
Therefore, the first pump outlet pressure P12 rises from the vapor pressure PV to p5 at time t1. This pressure p5 is substantially equal to the pressure p4.
Then, after the first pump outlet pressure P12 rises, the pressure becomes p5 when the first pump internal pressure P11 is p4, and gradually decreases when the first pump internal pressure P11 is p3. The amount of pressure decrease at this time is dr1.
[0034]
First, similarly to the first pump outlet pressure P12, the second pump internal pressure P21 rises from the vapor pressure PV to the pressure p6 starting at the time t1, and maintains the pressure p6 until the time t2. Then, energization of the solenoid of the second pump is started at time t2. As a result, the second pump internal pressure P21 rises from the pressure p6 to the pressure p7 at the time t2, and thereafter, the pulse-like change of the amplitude (p7−pmin) and the cycle dt2 is repeated with the pressure p6 as a central value.
[0035]
At this time, the pressure minimum value pmin of the second pump internal pressure P21 is set to be higher than the vapor pressure PV. That is, by making the second pump pressure P21 higher than the vapor pressure PV of the liquefied gas, it is possible to prevent the liquefied gas from becoming bubbles in the second pump, and to keep the liquefied gas in a liquid state and at a reduced pressure. The supply to the hydrogen generator can be ensured while suppressing the decrease.
[0036]
The second pump outlet pressure P22 rises from the vapor pressure PV to the pressure p8 at time t1, maintains the pressure p8 until time t2, and rises from the pressure p8 to the pressure p9 at time t2. This pressure p9 is substantially equal to the pressure p7.
Thereafter, when the second pump internal pressure P21 is p7, the pressure becomes p9, and when the second pump internal pressure P21 is pmin, the pressure gradually decreases. The amount of pressure drop at this time is dr2.
[0037]
As described above, in the first pump, the outlet pressure P12 is pre-pressurized to the pressure p5, and in the second pump, the outlet pressure is increased to the pressure p9 based on the outlet pressure p5 of the first pump.
[0038]
As described above with reference to FIGS. 1 and 3, the present invention firstly provides a method of sending out a pressurized liquefied gas 11 a enclosed in a gas cylinder 11 by using at least two pumps arranged in series. The liquefied gas 11a is supplied in a liquid state to a first pump 16 of the pumps, and when the liquefied gas is sucked by a second pump 17 arranged downstream of the first pump 16, the liquefied gas 11a Is pre-pressurized to a pressure higher than the saturated vapor pressure PV, that is, a minimum pressure value pmin.
[0039]
The liquefied gas 11a is pre-pressurized by the first pump 16 so that the liquefied gas 11a is at least a pressure pmin higher than the saturated vapor pressure PV at the time of suction of the liquefied gas by the second pump 17, so that the inside of the second pump 17 Can be easily prevented, and the liquefied gas 11a can be easily delivered at a predetermined pressure p9 without using a special method such as conventional supercooling.
[0040]
The second aspect of the present invention is a hydrogen production method in which a reformed gas is produced by a reforming reaction using a hydrocarbon as a raw material, and hydrogen is selectively separated from the reformed gas by a hydrogen separation membrane to produce high-purity hydrogen. In the method, the liquefied gas 11a is supplied to the first pump 16 in a liquid state in order to pump out the liquefied gas 11a composed of hydrocarbon sealed in the gas cylinder 11 by using at least two pumps arranged in series. When the liquefied gas is sucked by the second pump 17 disposed downstream of the first pump 16, the liquefied gas 11a is supplied by the first pump 16 to a pressure pmin which is at least higher than its saturated vapor pressure PV. The pre-pressurization is performed so that hydrogen is obtained from the liquefied gas 11a after the pre-pressurization as a raw material.
By adopting the liquefied gas pumping method as the hydrogen producing method, it is possible to suppress an increase in the number of steps of the hydrogen producing method including the liquefied gas pumping method, and to increase productivity.
[0041]
Thirdly, the present invention relates to a liquefied gas pumping device 18 which pressurizes and sends out a liquefied gas 11a sealed in a gas cylinder 11 with at least two pumps arranged in series. And a second pump 17 connected to the downstream side of the first pump 16 for increasing the pressure of the liquefied gas 11a to a predetermined pressure p9. The pump 16 is characterized in that when the second pump 17 sucks the liquefied gas, the liquefied gas 11a is pre-pressurized so as to have a pressure pmin that is at least the higher than the saturated vapor pressure PV.
[0042]
The liquefied gas pumping device 18 is composed of a first pump 16 and a second pump 17, and the liquefied gas 11a is pumped by the liquefied gas pumping device 18. Can be transmitted reliably.
[0043]
In the present embodiment, the first and second pumps are used as pumps. However, the present invention is not limited to this, and another pump may be used as the first and second pumps according to the pressure setting in the hydrogen generator. Further, they may be connected in series.
[0044]
【The invention's effect】
The present invention has the following effects by the above configuration.
In the liquefied gas pumping method according to the first aspect, the liquefied gas is supplied in a liquid state to an upstream pump of the pumps, and when the liquefied gas is sucked by a downstream pump arranged downstream of the upstream pump by the upstream pump. Since the liquefied gas is pre-pressurized to a pressure higher than its saturated vapor pressure, the generation of bubbles in the downstream pump can be easily prevented, and a special method such as conventional supercooling can be used. It is possible to easily send the liquefied gas at a predetermined pressure without using the gas.
[0045]
In the hydrogen production method according to the second aspect, the liquefied gas is sent to the upstream pump in a liquid state in order to pump out the liquefied gas composed of the hydrocarbon sealed in the container by increasing the pressure by at least two pumps arranged in series. When the liquefied gas is suctioned by a downstream pump arranged downstream of the upstream pump, the liquefied gas is pre-pressurized so that the liquefied gas has a pressure higher than its saturated vapor pressure. Since hydrogen is obtained using the liquefied gas after pre-pressurization as a raw material, by adopting the liquefied gas pumping method as the hydrogen production method, the number of steps in the hydrogen production method including the liquefied gas pumping method is suppressed, and productivity is reduced. Can be enhanced.
[0046]
A liquefied gas pumping device according to claim 3 includes an upstream pump that suctions and raises the liquefied gas in the container, and a downstream pump that is connected to the downstream side of the upstream pump and pressurizes the liquefied gas to a predetermined pressure. The upstream pump pre-pressurizes the liquefied gas to a pressure higher than its saturated vapor pressure when the downstream pump sucks the liquefied gas. The state can be reliably transmitted.
[Brief description of the drawings]
FIG. 1 is a system diagram of a hydrogen production apparatus provided with a liquefied gas pumping device according to the present invention. FIG. 2 is an explanatory view showing first and second pumps according to the present invention. FIG. Graph showing pressure generated by two pumps. [FIG. 4] System diagram of conventional liquefied gas pumping apparatus. [Description of symbols]
11: container (gas cylinder), 11a: liquefied gas, 16: upstream pump (first pump), 17: downstream pump (second pump), 18: liquefied gas pumping device, p9: predetermined pressure, PV: saturation Vapor pressure.

Claims (3)

容器内に封入した液化ガスを、直列に配置した少なくとも2台のポンプで昇圧して送出する方法であって、
前記液化ガスを液体状態で前記ポンプのうちの上流側ポンプに供給し、
この上流側ポンプによって、上流側ポンプの下流側に配置した下流側ポンプの液化ガス吸引時に、前記液化ガスをその飽和蒸気圧よりも高い圧力となるように予備加圧することを特徴とする液化ガス圧送方法。
A method in which a liquefied gas sealed in a container is pressurized and sent by at least two pumps arranged in series,
Supplying the liquefied gas in a liquid state to an upstream pump of the pumps,
A liquefied gas characterized by pre-pressurizing the liquefied gas to a pressure higher than its saturated vapor pressure when the liquefied gas is sucked by a downstream pump arranged downstream of the upstream pump by the upstream pump. Pumping method.
炭化水素を原料として改質反応により改質ガスを生成し、この改質ガスから水素分離膜により水素を選択的に分離することにより高純度の水素を製造する水素製造方法であって、
容器内に封入した前記炭化水素からなる液化ガスを、直列に配置した少なくとも2台のポンプで昇圧して送出するために、前記液化ガスを液体状態で上流側ポンプに供給し、この上流側ポンプによって、上流側ポンプの下流側に配置した下流側ポンプの液化ガス吸引時に、前記液化ガスをその飽和蒸気圧よりも高い圧力となるようにを予備加圧することで、この予備加圧後の液化ガスを原料として水素を得ることを特徴とする水素製造方法。
A hydrogen production method for producing high-purity hydrogen by generating a reformed gas by a reforming reaction using hydrocarbon as a raw material and selectively separating hydrogen from the reformed gas by a hydrogen separation membrane,
Supplying the liquefied gas in a liquid state to an upstream pump in order to pressurize and send out the liquefied gas composed of the hydrocarbon enclosed in a container by at least two pumps arranged in series; Thus, when the liquefied gas is sucked by the downstream pump disposed downstream of the upstream pump, the liquefied gas is pre-pressurized so as to have a pressure higher than its saturated vapor pressure, whereby the liquefaction after the pre-pressurization is performed. A method for producing hydrogen, comprising obtaining hydrogen from a gas.
容器内に封入した液化ガスを直列に配置した少なくとも2台のポンプで昇圧して送出する液化ガス圧送装置において、
この液化ガス圧送装置は、容器内の液化ガスを吸引して昇圧させる上流側ポンプと、この上流側ポンプの下流側に接続するとともに前記液化ガスを所定の圧力に昇圧させる下流側ポンプとからなり、上流側ポンプは、下流側ポンプの液化ガス吸引時に、前記液化ガスをその飽和蒸気圧よりも高い圧力となるように予備加圧することを特徴とする液化ガス圧送装置。
In a liquefied gas pumping device that pressurizes and sends out liquefied gas enclosed in a container by at least two pumps arranged in series,
The liquefied gas pumping device comprises an upstream pump for sucking and increasing the pressure of the liquefied gas in the container, and a downstream pump connected to the downstream side of the upstream pump and for increasing the pressure of the liquefied gas to a predetermined pressure. A liquefied gas pumping device, wherein the upstream pump pre-pressurizes the liquefied gas to a pressure higher than its saturated vapor pressure when the downstream pump sucks the liquefied gas.
JP2003049020A 2003-02-26 2003-02-26 Liquefied gas force feed method, hydrogen manufacturing method, and liquefied gas force feed equipment Pending JP2004257475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049020A JP2004257475A (en) 2003-02-26 2003-02-26 Liquefied gas force feed method, hydrogen manufacturing method, and liquefied gas force feed equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049020A JP2004257475A (en) 2003-02-26 2003-02-26 Liquefied gas force feed method, hydrogen manufacturing method, and liquefied gas force feed equipment

Publications (1)

Publication Number Publication Date
JP2004257475A true JP2004257475A (en) 2004-09-16

Family

ID=33114826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049020A Pending JP2004257475A (en) 2003-02-26 2003-02-26 Liquefied gas force feed method, hydrogen manufacturing method, and liquefied gas force feed equipment

Country Status (1)

Country Link
JP (1) JP2004257475A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144821A (en) * 2007-12-14 2009-07-02 Chugoku Electric Power Co Inc:The Gas supply system, power generation system and gas supply method
CN112432053A (en) * 2020-11-19 2021-03-02 深圳市凯丰实业发展有限公司 Zero discharge system device of liquid nitrogen storage tank

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144821A (en) * 2007-12-14 2009-07-02 Chugoku Electric Power Co Inc:The Gas supply system, power generation system and gas supply method
CN112432053A (en) * 2020-11-19 2021-03-02 深圳市凯丰实业发展有限公司 Zero discharge system device of liquid nitrogen storage tank

Similar Documents

Publication Publication Date Title
RU2107843C1 (en) Method of operation of liquid - gas jet device
US8641018B2 (en) Device and method for the intermittent impregnation and output of drinking water
WO2016133068A1 (en) Gas filling system
RU2008128441A (en) GAS VOLUME DAMPING DEVICE FOR DUMPING PULSATIONS IN THE SUPPLY OF THE PUMPED IN MEDIA
MY140516A (en) A system and process for pumping multiphase fluids
US20130255801A1 (en) Fluid supply device
JP4276682B2 (en) Gas-liquid separation system and fuel cell system
WO2022085423A1 (en) Hydrogen generation device, hydrogen generation system, raw material cartridge, and hydrogen generation method
US20210162321A1 (en) Degassing Electrorheological Fluid
JP2004257475A (en) Liquefied gas force feed method, hydrogen manufacturing method, and liquefied gas force feed equipment
JP2006049756A (en) Chemical feeding system
JP6574166B2 (en) Pumping system and method for beverage production equipment
JP2008104983A (en) Ultra-fine air bubble generating apparatus and system
JP2019142807A (en) Methane production apparatus and methane production method
CN107021557B (en) Functional water production device and functional water production method
JP2001221163A5 (en)
JP4302147B2 (en) Gas-liquid separation system and fuel cell system
GB2377928A (en) Desalination system
CA2865275C (en) Unsteady-state gas permeation process
JP4594686B2 (en) Gas-liquid contact reaction method and gas-liquid contact reaction apparatus
US7220504B2 (en) Gas generation system with pressurized reactant reservoirs
JP5717245B2 (en) Fine bubble-containing liquid generation apparatus and fine bubble-containing liquid generation method
AU2019260498A1 (en) Systems and methods for dispensing a beverage
JP5399323B2 (en) Vapor compression system
JP6321437B2 (en) Steam system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090930