JP2004257135A - Highly aseismatic pile foundation structure - Google Patents

Highly aseismatic pile foundation structure Download PDF

Info

Publication number
JP2004257135A
JP2004257135A JP2003049786A JP2003049786A JP2004257135A JP 2004257135 A JP2004257135 A JP 2004257135A JP 2003049786 A JP2003049786 A JP 2003049786A JP 2003049786 A JP2003049786 A JP 2003049786A JP 2004257135 A JP2004257135 A JP 2004257135A
Authority
JP
Japan
Prior art keywords
resistance
ground
foundation
pile
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003049786A
Other languages
Japanese (ja)
Other versions
JP3650892B2 (en
Inventor
Tomio Tsuchiya
富男 土屋
Junji Hamada
純次 濱田
Koichi Nagano
浩一 永野
Akihiko Uchida
明彦 内田
Ken Okamoto
謙 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2003049786A priority Critical patent/JP3650892B2/en
Publication of JP2004257135A publication Critical patent/JP2004257135A/en
Application granted granted Critical
Publication of JP3650892B2 publication Critical patent/JP3650892B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pile foundation structure enhancing earthquake resistance while reducing the burden of piles. <P>SOLUTION: In this pile foundation structure which supports the constant vertical force of a structure by the piles and resists horizontal force or the like in case of an earthquake by the piles, the vertical cross-section of a foundation bottom face of the structure is constructed in a boat shape with both inclined faces which receive the resistance of the ground when horizontally deformed. When the structure foundation is horizontally deformed by the earthquake or the like, horizontal frictional resistance and vertically upward force are generated to the front side in a deforming direction by the resistance of the ground to reduce the burden of the piles, and the resistance of the ground is reduced on the rear side. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、構造物の常時の鉛直力を杭で支持し、地震時の水平力等にも杭で抵抗する杭基礎構造及び直接基礎に杭が併用されたパイルド・ラフト基礎の技術分野に属する。
【0002】
【従来の技術】
杭基礎構造の場合は、常時の鉛直力を杭のみで支持するように設計している。そして、地震時にも杭のみで抵抗するため、地震時の水平力や増分鉛直力にも杭で抵抗する。そのため地震時の水平力や鉛直力に見合うように杭の設計を行う必要があり、不経済な設計となっている。
【0003】
即ち、従来一般の杭基礎構造は、図7に例示したように、各杭1…は支持層2まで先端を到達させた支持杭とし、且つ先端部の軸径を拡大した拡径杭とされている。構造物3の基礎底面4は略水平な形状(水平面)で地盤と接する構成で構築されている。したがって、支持杭1…が構造物3の自重による常時の鉛直力Wを全て負担し、基礎底面4は地盤と接してはいるが、鉛直力は負担しないものとして設計されている。
【0004】
要するに、図7と図8に示すように、地震時に水平力Hおよび構造物3の転倒モーメントMが作用した場合、構造物3の転倒モーメントMによる変動軸力により、変形方向前側(図中の右側)の杭1には(+V1)、(+V2)、(+V3)のように鉛直力が更に増加して作用する(いわゆる増分鉛直力)。逆に、変形方向後方側(図中の左側)の杭1には(−V1)、(−V2)のように引き抜き力が作用する。よって、いずれの杭も前記の各作用力(水平力Hと変動軸力)に対して抵抗力を確保するように断面設計を行う必要がある。そのため、変動軸力が大きい構造物3の端部寄り位置の杭については、先端の断面積が地震時の鉛直力(常時の鉛直力±変動軸力)で決定され、軸部直径も水平力H及び曲げモーメントよりも優越する鉛直力で決定されることになる。また、構造物3の中央寄り位置の杭については、軸部の断面積が鉛直力よりも優越する水平力H及び曲げモーメントの大きさで決定されることになり、杭先端径は鉛直力Vの大きさで決定されるものが多く、不経済な設計となることが知られている。
【0005】
杭基礎の従来技術として、特許文献1には、構造物のフーチングを杭で支持する構造において、フーチングの両端部を支持するグランドアンカーを設置して緊張した耐震杭基礎構造が開示されている。
特許文献2には、杭頭をピン構造とし、杭先端もピン構造とし、更に基礎地盤に斜めアンカーケーブルを配置した耐震基礎構造が開示されている。
特許文献3には、基礎躯体と杭頭との結合部に弾塑性材料を介在させ、杭の破損を防止した杭基礎構造が開示されている。
特許文献4には、フーチングと杭の結合部に振動吸収手段を設置した杭基礎構造が開示されている。
【0006】
次に、特許文献5、6には、構造物の底面と地盤との間に、水平力に抵抗する摩擦力を発生させる基礎構造が開示されている。
【0007】
【特許文献1】
特開平10−82057号公報
【特許文献2】
特開平10−237881号公報
【特許文献3】
特開2000−178981号公報
【特許文献4】
特開2001−303590号公報
【特許文献5】
特開平4−85408号公報
【特許文献6】
特開平7−119164号公報
【0008】
【発明が解決しようとする課題】
上記の特許文献1〜4に開示された杭基礎構造は、いずれも杭の支持力を如何にして効果的に発揮させるかに腐心した発明と認められ、せっかく存在する地盤の働きについての工夫や研究は認められない。
一方、特許文献5、6に開示された基礎構造は、構造物に働く水平力に対する抵抗を、地盤の摩擦力に求めている点を評価できるが、杭基礎ではない。
【0009】
本発明の目的は、常時の鉛直力は杭のみで支持するが、地震時の一部の鉛直力および水平力は地盤の抵抗で負担させ、もって杭の負担を軽減し、杭の経済設計を可能にした高耐震杭基礎構造を提供することである。
【0010】
本発明の次の目的は、構造物の基礎底面の鉛直断面形状を、地震等による水平変形時に地盤の抵抗を期待できる舟形として地盤の抵抗に水平力と鉛直力を発生させ杭の負担を軽減する構成とした高耐震杭基礎構造を提供することである。
本発明の更なる目的は、直接基礎に分類される、杭を併用したパイルド・ラフト基礎についても同様に、基礎版底面の鉛直断面形状を、地震等による水平変形時に地盤の抵抗を期待できる舟形として、地盤の抵抗に水平力と鉛直力を発生させ耐震性を高めた高耐震パイルド・ラフト基礎構造を提供することである。
【0011】
【課題を解決するための手段】
上述した課題を解決するための手段として、請求項1に記載した発明に係る高耐震杭基礎構造は、
構造物の常時の鉛直力を杭で支持し、地震時の水平力等にも杭で抵抗する杭基礎構造において、
構造物の基礎底面の鉛直断面形状を、水平変形時に地盤の抵抗を受ける両傾斜面の舟形に構築され、地震等による構造物基礎の水平変形時には地盤の抵抗により変形方向の前方側に水平方向の摩擦抵抗力及び鉛直方向上向きの力を発生させて杭の負担を軽減させ、後方側は地盤の抵抗を減少させる構成としたことを特徴とする。
【0012】
請求項2に記載した発明は、請求項1に記載した高耐震杭基礎構造において、
杭は鉛直方向に構築され、構造物の基礎底面の鉛直断面形状は水平方向の左右に等しく傾斜する舟形に構築され、地震等による構造物基礎の水平変形時には、変形方向の前方側では地盤の抵抗を増大させて水平方向の摩擦抵抗力及び鉛直方向上向きの力を発生させて杭の負担を軽減して変動軸力を小さくし、後方側は地盤の抵抗を減少させる構成としたことを特徴とする。
【0013】
請求項3に記載した発明は、請求項1又は2に記載した高耐震杭基礎構造において、
構造物の基礎底面の鉛直断面形状は、地震等による構造物基礎の水平変形時には地盤の抵抗を受ける両傾斜面に沿って階段状に変化する舟形に形成したことを特徴とする。
【0014】
請求項4に記載した発明に係る高耐震パイルド・ラフト基礎構造は、直接基礎に杭が併用されているパイルド・ラフト基礎において、
基礎版の底面の鉛直断面形状が、水平変形時に地盤の抵抗を受ける両傾斜面の舟形に構築され、地震等による基礎版の水平変形時には地盤の抵抗により変形方向の前方側に水平方向の摩擦抵抗力及び鉛直方向上向きの力を発生させ、後方側は地盤の抵抗を減少させる構成としたことを特徴とする。
【0015】
【発明の実施形態および実施例】
次に、請求項1〜3に記載した発明に係る高耐震杭基礎構造の実施形態を図面に基いて説明する。
先ず図1に示した杭基礎構造は、構造物3の常時の鉛直力Wを、支持層2へ届く支持杭1…で支持させ、地震時の水平力H及び転倒モーメントM等にも支持杭1…で抵抗する杭基礎構造であって、同構造物3の基礎底面5の鉛直断面形状が、水平変形時に地盤6の抵抗を受ける両傾斜面の舟形に構築されていることを特徴とする。なお、敢えて図示することは省略したが、図1中に指示したように構造物3の中央を通るI−I線に沿って切断した鉛直断面形状も同様な舟形に構築することが好ましい。従って、構造物3の基礎底面5は角錐形状とされる。もっとも、構造物3が図1の紙面と垂直方向に十分長い形態の場合は、同方向の耐震性は大きいから、敢えて舟形に形成する必要はない。
【0016】
地震時の水平変形状態を図2に誇張して示した。構造物基礎の水平変形時には、地盤6の抵抗が構造物3の基礎底面5に作用する。即ち、構造物基礎の変形方向前方側(図2の右側)の底面5(傾斜面)には、図3にベクトル図を示したように、地盤6によって、基礎底面5の傾斜角θに起因する水平方向の摩擦抵抗力Rの水平成分(−ΔH)及び鉛直方向上向きの成分(−ΔV)がそれぞれ発生する。変形方向の後方側(図2の左側)では、構造物3の基礎底面5は地盤6から離れて抵抗を生じない。
【0017】
要するに、地震等による構造物3の水平変形時には、変形方向前方側(基礎底面5の右約半分)において、水平力Hに抵抗する杭頭の抵抗力(−H’)のほかに、地盤6の抵抗力Rの水平成分(−ΔH)が抵抗力として働くので、地震の水平力を軽減できる。
同時に、地盤6の抵抗力Rの上向き鉛直成分(−ΔV)も発生して、杭1に作用する鉛直力Vを軽減する。
【0018】
結局、変形方向前方側(基礎底面5の右約半分)に働く地盤6の抵抗力Rの水平成分(−ΔH)との相殺の形で杭の水平力負担が軽減され、杭の軸部断面の設計を経済的に行える。同時に、地盤6の抵抗力Rの上向き鉛直成分(−ΔV)との相殺として杭の鉛直力負担が軽減され、変動軸力の低減化と、軸先端径を縮小化する経済設計が達成される。ひいては杭径が小さくなる分だけ、その構築作業の省力化が図れるのである。特に構造物3の中央寄り位置の杭に効果が大きい。
【0019】
上記した地盤6の抵抗力Rを一層積極的に活用する手段として、基礎底面5の直下の地盤の強度、剛性、面圧などを地盤改良などによって高めること、或いは地盤の硬軟の性状に差異があるときは、構造物3の基礎底面5の鉛直断面形状を、図1に示した左右対称な両傾斜面の舟形に限らず、左右の傾斜角度を異ならせたり、或いは左右の傾斜面の長さを異ならせる等々の非対称形状の舟形に構築して同様に実施することができる。
【0020】
次に、図4〜図6は、上記構造物3の基礎底面5の鉛直断面形状が、変形方向の前方側では地盤の抵抗を増大させ、後方側では地盤の抵抗を減少させる舟形の異なるバリエーションを示す。
先ず図4は、隣り合う杭1と1の間を直線(直平面)で繋ぎつつ舟形を形成した例を示す。図5は、隣り合う杭1と1の間を山形線(山形曲面)で繋ぎつつ舟形を形成した例を示す。図6は、階段形状で舟形を形成した例を示す(請求項3に記載した発明)。階段の高さや幅寸は図示例のかぎりではない。
【0021】
なお、図示することは省略したが、フーティング基礎やべた基礎に代表されるいわゆる直接基礎の中で、杭(摩擦杭)を併用するパイルド・ラフト基礎に関しても、本発明の上記技術的思想を適用することができ、同様な作用効果を得ることが出来る。
即ち、直接基礎の基礎版底面の鉛直断面形状を、同基礎版の水平変形時に地盤の抵抗を受ける両傾斜面の舟形に構築すると、地震等による基礎版の水平変形時には地盤の抵抗により変形方向の前方側に水平方向の摩擦抵抗力及び鉛直方向上向きの力を発生して、それぞれ杭の負担を軽減できる。勿論、後方側では地盤の抵抗を減少させることが出来るのである(請求項4に記載した発明)。
【0022】
【発明が奏する効果】
請求項1〜3に記載した発明に係る高耐震杭基礎構造は、常時の鉛直力は杭のみで支持するが、地震時の一部の鉛直力および水平力は地盤の抵抗で負担するから、その分だけ杭の負担を軽減し、杭の経済設計を可能にした。
【0023】
本発明によれば、構造物の基礎底面の鉛直断面形状を、地震等による水平変形時に地盤の抵抗を期待できる舟形として地盤の抵抗に水平力と鉛直力を発生させて杭の負担を軽減するから、既往技術により容易に実施できる。
請求項4に記載した発明に係るパイルド・ラフト基礎構造の場合は、機能的には直接基礎であるとしても、その基礎版底面の鉛直断面形状を、地震等による水平変形時に地盤の抵抗を期待できる舟形として、地盤の抵抗に水平力と鉛直力を発生させるので、耐震性を高めることができる。
【0024】
以上要するに、本発明によれば、構造物の地震時の安定性が図れ、地震時の水平力や転倒モーメントに基礎が抵抗して、杭へ作用する変動軸力や水平力を軽減できる。よって、杭の軸部径を縮小化でき、杭の合理化が図れる。変形方向前方側の基礎下地盤の鉛直抵抗力(面圧)が増加することにより、付随的に、杭の前方側地盤の極限地盤抵抗が増大し、杭の極限水平抵抗も増加する利点もある。
【図面の簡単な説明】
【図1】本発明に係る高耐震杭基礎構造の実施形態を示した垂直断面図である。
【図2】前記高耐震杭基礎構造の作用効果説明図である。
【図3】前記高耐震杭基礎構造の作用効果説明図である。
【図4】本発明に係る高耐震杭基礎構造の異なる実施形態を示した垂直断面図である。
【図5】本発明に係る高耐震杭基礎構造の異なる実施形態を示した垂直断面図である。
【図6】本発明に係る高耐震杭基礎構造の異なる実施形態を示した垂直断面図である。
【図7】従来の杭基礎構造の一例を示した垂直断面図である。
【図8】前記杭基礎構造の作用効果説明図である。
【図9】前記杭基礎構造の作用効果説明図である。
【符号の説明】
1 杭
3 構造物
5 基礎底面
R 地盤の抵抗力
6 地盤
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention belongs to the technical field of a pile foundation structure in which a normal vertical force of a structure is supported by a pile and the pile also resists a horizontal force or the like during an earthquake, and a pile is used in combination with a direct foundation. .
[0002]
[Prior art]
In the case of a pile foundation structure, it is designed so that the normal vertical force is supported only by the pile. In addition, since the pile only resists during an earthquake, the pile also resists horizontal force and incremental vertical force during an earthquake. Therefore, it is necessary to design the pile to match the horizontal force and vertical force during the earthquake, which is uneconomical design.
[0003]
That is, in the conventional general pile foundation structure, as illustrated in FIG. 7, each of the piles 1 is a support pile whose tip reaches the support layer 2 and is an enlarged pile in which the axial diameter of the tip is enlarged. ing. The base bottom surface 4 of the structure 3 has a substantially horizontal shape (horizontal plane) and is configured to be in contact with the ground. Therefore, the support piles 1... Are designed to bear all the normal vertical force W due to the weight of the structure 3, and the foundation bottom surface 4 is in contact with the ground but does not bear the vertical force.
[0004]
In short, as shown in FIGS. 7 and 8, when the horizontal force H and the overturning moment M of the structure 3 act during an earthquake, the fluctuating axial force caused by the overturning moment M of the structure 3 causes the front side in the deformation direction (in FIG. The vertical force acts on the pile 1 on the right side as shown by (+ V1), (+ V2), and (+ V3) (so-called incremental vertical force). Conversely, a pulling force acts on the pile 1 on the rear side (the left side in the drawing) in the deformation direction as shown in (−V1) and (−V2). Therefore, it is necessary to design the cross section of each of the piles so as to secure a resistance to each of the acting forces (the horizontal force H and the fluctuating axial force). Therefore, for a pile near the end of the structure 3 having a large fluctuating axial force, the cross-sectional area at the tip is determined by the vertical force at the time of the earthquake (normal vertical force ± variable axial force), and the shaft diameter is also horizontal force. It is determined by H and the vertical force which is superior to the bending moment. In addition, for the pile near the center of the structure 3, the cross-sectional area of the shaft is determined by the magnitude of the horizontal force H and the bending moment that are superior to the vertical force. It is known that the design is often uneconomical due to the size of the design.
[0005]
As a conventional technique of a pile foundation, Patent Literature 1 discloses an earthquake-resistant pile foundation structure in which a ground anchor that supports both ends of a footing is installed and tensioned in a structure that supports a footing of a structure with a pile.
Patent Literature 2 discloses an earthquake-resistant foundation structure in which a pile head has a pin structure, a tip of a pile has a pin structure, and further, an oblique anchor cable is arranged on the foundation ground.
Patent Literature 3 discloses a pile foundation structure in which an elastic-plastic material is interposed at a joint between a foundation frame and a pile head to prevent breakage of the pile.
Patent Document 4 discloses a pile foundation structure in which vibration absorbing means is installed at a joint between a footing and a pile.
[0006]
Next, Patent Literatures 5 and 6 disclose a basic structure that generates a frictional force that resists a horizontal force between a bottom surface of a structure and the ground.
[0007]
[Patent Document 1]
JP 10-82057 A [Patent Document 2]
Japanese Patent Application Laid-open No. Hei 10-237881 [Patent Document 3]
Japanese Patent Application Laid-Open No. 2000-178981 [Patent Document 4]
JP 2001-303590 A [Patent Document 5]
JP-A-4-85408 [Patent Document 6]
JP-A-7-119164
[Problems to be solved by the invention]
The pile foundation structures disclosed in the above-mentioned Patent Documents 1 to 4 are all considered to be a devastating invention on how to effectively exert the supporting force of the pile, No studies are allowed.
On the other hand, the foundation structures disclosed in Patent Literatures 5 and 6 can evaluate that the resistance to the horizontal force acting on the structure is obtained from the frictional force of the ground, but is not a pile foundation.
[0009]
The purpose of the present invention is to support the vertical force at all times only with piles, but to bear part of the vertical force and horizontal force during the earthquake with the resistance of the ground, thereby reducing the load on the piles and reducing the economical design of the piles. It is an object of the present invention to provide a highly seismic pile foundation structure that has been made possible.
[0010]
The next object of the present invention is to reduce the burden on piles by generating a horizontal force and a vertical force in the resistance of the ground, as a boat shape that can expect the resistance of the ground when horizontal deformation due to earthquake etc. It is an object of the present invention to provide a highly seismic pile foundation structure having such a configuration.
A further object of the present invention is to form a vertical cross section of the bottom of the foundation slab, which can be expected to have resistance to the ground during horizontal deformation due to an earthquake, etc. An object of the present invention is to provide a high-seismic piled-raft foundation structure with improved seismic resistance by generating horizontal and vertical forces in the ground resistance.
[0011]
[Means for Solving the Problems]
As means for solving the above-mentioned problems, a high-seismic pile foundation structure according to the invention described in claim 1 is:
In a pile foundation structure in which the normal vertical force of the structure is supported by piles and the piles also resist horizontal forces during earthquakes, etc.
The vertical cross-sectional shape of the foundation of the structure is constructed in a boat shape with both slopes receiving the resistance of the ground during horizontal deformation, and the horizontal direction of the deformation direction due to the resistance of the ground during horizontal deformation of the structure foundation due to earthquakes etc. And a vertical upward force to reduce the load on the pile and reduce the resistance of the ground on the rear side.
[0012]
The invention described in claim 2 is the high-seismic pile foundation structure described in claim 1,
Piles are constructed vertically, and the vertical cross-sectional shape of the base of the foundation of the structure is constructed in a boat shape that is equally inclined to the left and right in the horizontal direction. Increased resistance to generate horizontal frictional resistance and vertical upward force to reduce the load on piles to reduce the fluctuating axial force, and to reduce the ground resistance on the rear side. And
[0013]
The invention described in claim 3 is the highly earthquake-resistant pile foundation structure described in claim 1 or 2,
The vertical cross-sectional shape of the bottom surface of the foundation of the structure is characterized in that it is formed in a boat shape that changes stepwise along both inclined surfaces that receive resistance of the ground when the structure foundation is horizontally deformed due to an earthquake or the like.
[0014]
The high-seismic piled raft foundation structure according to the invention described in claim 4 is a piled raft foundation in which a pile is used in combination with a direct foundation,
The vertical cross section of the bottom surface of the base slab is constructed in a boat shape with both slopes receiving the resistance of the ground during horizontal deformation, and when the base slab is horizontally deformed due to an earthquake or the like, the horizontal friction due to the ground resistance due to the resistance of the ground It is characterized in that a resistance force and a vertically upward force are generated, and the rear side is configured to reduce the resistance of the ground.
[0015]
Embodiments and Examples of the Invention
Next, an embodiment of a highly seismic pile foundation structure according to the first to third aspects of the present invention will be described with reference to the drawings.
First, in the pile foundation structure shown in FIG. 1, the normal vertical force W of the structure 3 is supported by the support piles 1 reaching the support layer 2, and the horizontal pile H and the overturning moment M at the time of the earthquake are also supported. 1. The pile foundation structure resisting at 1 ..., characterized in that the vertical cross-sectional shape of the foundation bottom surface 5 of the structure 3 is constructed in a boat shape with both inclined surfaces receiving the resistance of the ground 6 at the time of horizontal deformation. . Although not shown in the drawings, it is preferable that the vertical cross-section taken along the line II passing through the center of the structure 3 be constructed in a similar boat shape as shown in FIG. Therefore, the base bottom surface 5 of the structure 3 has a pyramid shape. However, if the structure 3 is sufficiently long in the direction perpendicular to the plane of the paper of FIG. 1, it is not necessary to dare to form a boat because the earthquake resistance in the same direction is large.
[0016]
The state of horizontal deformation during the earthquake is exaggerated in FIG. When the structure foundation is horizontally deformed, the resistance of the ground 6 acts on the foundation bottom surface 5 of the structure 3. That is, as shown in the vector diagram in FIG. 3, the ground 6 causes the bottom surface 5 (the inclined surface) on the front side (the right side in FIG. 2) in the deformation direction of the structural foundation due to the inclination angle θ of the foundation bottom surface 5. A horizontal component (−ΔH) and a vertical upward component (−ΔV) of the horizontal frictional resistance R are generated. On the rear side in the deformation direction (the left side in FIG. 2), the base bottom surface 5 of the structure 3 is separated from the ground 6 and does not cause any resistance.
[0017]
In short, when the structure 3 is horizontally deformed due to an earthquake or the like, in addition to the resistance (−H ′) of the pile head that resists the horizontal force H, the ground 6 Since the horizontal component (−ΔH) of the resistance R functions as a resistance, the horizontal force of the earthquake can be reduced.
At the same time, an upward vertical component (−ΔV) of the resistance R of the ground 6 is also generated, and the vertical force V acting on the pile 1 is reduced.
[0018]
As a result, the horizontal force burden of the pile is reduced in the form of offsetting with the horizontal component (-ΔH) of the resistance R of the ground 6 acting on the front side in the deformation direction (about the right half of the foundation bottom surface 5), and the shaft section of the pile is reduced. Can be designed economically. At the same time, the vertical force burden on the pile is reduced by offsetting the resistance force R of the ground 6 with the upward vertical component (−ΔV), thereby achieving a reduction in the fluctuating axial force and an economical design in which the shaft tip diameter is reduced. . As a result, the smaller the pile diameter, the more labor can be saved in the construction work. In particular, the effect is great for a pile near the center of the structure 3.
[0019]
As means for utilizing the resistance R of the ground 6 more positively, the strength, rigidity, surface pressure, etc. of the ground immediately below the foundation bottom surface 5 are increased by ground improvement or the like. In some cases, the vertical cross-sectional shape of the base bottom surface 5 of the structure 3 is not limited to the bilaterally symmetrical boat-like shape shown in FIG. It can be similarly implemented by constructing it into an asymmetrical boat shape with different sizes.
[0020]
Next, FIGS. 4 to 6 show different variations of the boat shape in which the vertical cross-sectional shape of the base bottom surface 5 of the structure 3 increases the ground resistance on the front side in the deformation direction and decreases the ground resistance on the rear side. Is shown.
First, FIG. 4 shows an example in which a boat shape is formed while connecting adjacent piles 1 with a straight line (a straight plane). FIG. 5 shows an example in which a boat shape is formed while connecting adjacent piles 1 with a chevron line (a chevron surface). FIG. 6 shows an example in which a boat shape is formed in a step shape (the invention described in claim 3). The height and width of the stairs are not limited to those in the illustrated example.
[0021]
Although illustration is omitted, in the so-called direct foundation typified by a footing foundation and a solid foundation, the above-described technical idea of the present invention is also applied to a piled raft foundation using a pile (friction pile) in combination. It can be applied, and a similar effect can be obtained.
That is, if the vertical cross-sectional shape of the bottom of the foundation plate of the direct foundation is constructed in a boat shape with both slopes receiving the resistance of the ground when the foundation plate is horizontally deformed, the deformation direction due to the resistance of the ground during the horizontal deformation of the foundation plate due to an earthquake etc. A horizontal frictional resistance and a vertical upward force are generated on the front side of the stake, thereby reducing the burden on the pile. Of course, the resistance of the ground can be reduced on the rear side (the invention described in claim 4).
[0022]
[Effects of the Invention]
The high earthquake-resistant pile foundation structure according to the invention described in claims 1 to 3, the normal vertical force is supported only by the pile, but part of the vertical force and horizontal force during an earthquake is borne by the resistance of the ground, The burden on piles was reduced by that much, and economic design of piles became possible.
[0023]
ADVANTAGE OF THE INVENTION According to this invention, the vertical cross-sectional shape of the foundation bottom of a structure is set as a boat shape which can expect the resistance of the ground at the time of horizontal deformation by an earthquake etc., and generates the horizontal force and the vertical force in the resistance of the ground, and reduces the load on the pile. Therefore, it can be easily implemented by the existing technology.
In the case of the piled raft foundation structure according to the invention described in claim 4, even if it is functionally a direct foundation, the vertical cross-sectional shape of the bottom of the foundation plate is expected to have resistance to the ground during horizontal deformation due to an earthquake or the like. As a possible boat shape, it generates horizontal force and vertical force on the resistance of the ground, so it is possible to improve the earthquake resistance.
[0024]
In summary, according to the present invention, the stability of the structure during an earthquake can be achieved, the foundation can resist the horizontal force and the overturning moment during the earthquake, and the fluctuating axial force and the horizontal force acting on the pile can be reduced. Therefore, the shaft diameter of the pile can be reduced, and the pile can be rationalized. Increasing the vertical resistance (surface pressure) of the foundation ground on the front side in the deformation direction increases the ultimate ground resistance of the ground on the front side of the pile, and also has the advantage of increasing the ultimate horizontal resistance of the pile. .
[Brief description of the drawings]
FIG. 1 is a vertical sectional view showing an embodiment of a highly earthquake-resistant pile foundation structure according to the present invention.
FIG. 2 is an explanatory view of an operation and effect of the high-seismic pile foundation structure.
FIG. 3 is a diagram illustrating the operation and effect of the high-seismic pile foundation structure.
FIG. 4 is a vertical cross-sectional view showing a different embodiment of the highly earthquake-resistant pile foundation structure according to the present invention.
FIG. 5 is a vertical sectional view showing a different embodiment of the high earthquake-resistant pile foundation structure according to the present invention.
FIG. 6 is a vertical cross-sectional view showing a different embodiment of the high earthquake-resistant pile foundation structure according to the present invention.
FIG. 7 is a vertical sectional view showing an example of a conventional pile foundation structure.
FIG. 8 is an explanatory diagram of the operation and effect of the pile foundation structure.
FIG. 9 is a view for explaining the operation and effect of the pile foundation structure.
[Explanation of symbols]
Reference Signs List 1 pile 3 structure 5 base bottom R ground resistance 6 ground

Claims (4)

構造物の常時の鉛直力を杭で支持し、地震時の水平力等にも杭で抵抗する杭基礎構造において、
構造物の基礎底面の鉛直断面形状を、水平変形時に地盤の抵抗を受ける両傾斜面の舟形に構築され、地震等による構造物基礎の水平変形時には地盤の抵抗により変形方向の前方側に水平方向の摩擦抵抗力及び鉛直方向上向きの力を発生させて杭の負担を軽減させ、後方側は地盤の抵抗を減少させる構成としたことを特徴とする、高耐震杭基礎構造。
In a pile foundation structure in which the normal vertical force of the structure is supported by piles and the piles also resist horizontal forces during earthquakes, etc.
The vertical cross-sectional shape of the foundation of the structure is constructed in a boat shape with both slopes receiving the resistance of the ground during horizontal deformation, and the horizontal direction of the deformation direction due to the resistance of the ground during horizontal deformation of the structure foundation due to earthquakes etc. A high seismic pile base structure, characterized in that it generates a frictional resistance force and a vertical upward force to reduce the load on the pile and reduces the resistance of the ground on the rear side.
杭は鉛直方向に構築され、構造物の基礎底面の鉛直断面形状は水平方向の左右に等しく傾斜する舟形に構築され、地震等による構造物基礎の水平変形時には、変形方向の前方側では地盤の抵抗を増大させて水平方向の摩擦抵抗力及び鉛直方向上向きの力を発生させて杭の負担を軽減し変動軸力を小さくし、後方側は地盤の抵抗を減少させる構成としたことを特徴とする、請求項1に記載した高耐震杭基礎構造。The piles are constructed vertically, and the vertical cross-sectional shape of the bottom of the foundation of the structure is constructed in a boat shape that is inclined equally to the left and right in the horizontal direction. It is characterized by increasing the resistance to generate horizontal frictional resistance and vertical upward force to reduce the load on the pile and reduce the variable axial force, and to reduce the ground resistance on the rear side. The highly earthquake-resistant pile foundation structure according to claim 1, wherein 構造物の基礎底面の鉛直断面形状は、地震等による構造物基礎の水平変形時には地盤の抵抗を受ける両傾斜面に沿って階段状に変化する舟形に形成したことを特徴とする、請求項1又は2に記載した高耐震杭基礎構造。The vertical cross-sectional shape of the bottom surface of the foundation of the structure is formed in a boat shape that changes stepwise along both inclined surfaces that receive resistance of the ground when the structure foundation is horizontally deformed due to an earthquake or the like. Or the high-strength pile foundation described in 2. 直接基礎に杭が併用されているパイルド・ラフト基礎において、
基礎版の底面の鉛直断面形状が、水平変形時に地盤の抵抗を受ける両傾斜面の舟形に構築され、地震等による基礎版の水平変形時には地盤の抵抗により変形方向の前方側に水平方向の摩擦抵抗力及び鉛直方向上向きの力を発生させ、後方側は地盤の抵抗を減少させる構成としたことを特徴とする、高耐震パイルド・ラフト基礎構造。
In piled raft foundations where piles are also used directly on foundations,
The vertical cross section of the bottom surface of the base slab is constructed in a boat shape with both slopes receiving the resistance of the ground during horizontal deformation, and when the base slab is horizontally deformed due to an earthquake or the like, the horizontal friction due to the ground resistance due to the resistance of the ground Highly earthquake-resistant piled raft foundation structure characterized by generating resistance and vertical upward force, and reducing the ground resistance on the rear side.
JP2003049786A 2003-02-26 2003-02-26 High earthquake-resistant pile foundation structure Expired - Fee Related JP3650892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049786A JP3650892B2 (en) 2003-02-26 2003-02-26 High earthquake-resistant pile foundation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049786A JP3650892B2 (en) 2003-02-26 2003-02-26 High earthquake-resistant pile foundation structure

Publications (2)

Publication Number Publication Date
JP2004257135A true JP2004257135A (en) 2004-09-16
JP3650892B2 JP3650892B2 (en) 2005-05-25

Family

ID=33115409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049786A Expired - Fee Related JP3650892B2 (en) 2003-02-26 2003-02-26 High earthquake-resistant pile foundation structure

Country Status (1)

Country Link
JP (1) JP3650892B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307462A (en) * 2005-04-27 2006-11-09 Takenaka Komuten Co Ltd Pile foundation structure
JP2017072021A (en) * 2015-10-07 2017-04-13 有限会社久美川鉄工所 Vibration relaxation or collapse prevention measures of building

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307462A (en) * 2005-04-27 2006-11-09 Takenaka Komuten Co Ltd Pile foundation structure
JP4722540B2 (en) * 2005-04-27 2011-07-13 株式会社竹中工務店 Pile foundation structure
JP2017072021A (en) * 2015-10-07 2017-04-13 有限会社久美川鉄工所 Vibration relaxation or collapse prevention measures of building

Also Published As

Publication number Publication date
JP3650892B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
CA2741013C (en) Construction frame shear lug
JP2004257135A (en) Highly aseismatic pile foundation structure
JP3741975B2 (en) Joint structure of support pile and footing
JP2007039937A (en) Foundation structure of building
JP2005139670A (en) Arch bridge
JP6275314B1 (en) Seismic reinforcement structure for bridges
JP2009102855A (en) Protective fence
JP2003232046A (en) Steel pipe damper and locking foundation structure using the same
JP3636923B2 (en) Foundation structure
JP3803949B2 (en) Seismic isolation method and seismic isolation structure for buildings with large aspect ratio
JP2003090145A (en) Support method and support structure to cope with pull- out force in base isolation structure
JPH11210079A (en) Earthquake-resistant reinforcing structure for leg portion of steel column of building and earthquake-resistant reinforcing method for leg portion of steel column of building
JP2001115683A (en) Base isolation structure
JP2018193672A (en) Additional foundation structure
JP3124945B2 (en) Load-bearing wall structure
KR200449592Y1 (en) Bracket for earth anchor
JP3367894B2 (en) Pier
JP3735813B2 (en) Seismic pile group structure
JP2021021225A (en) Support structure of earth-retaining wall and support method of earth-retaining wall
JP2001020301A (en) Pile foundation structure
JP4621389B2 (en) Building basic structure
JP3023709B2 (en) Frame structure
JP2002021041A (en) Movable retaining wall and movable revetment method
JP7457670B2 (en) Pile foundation structure, building
JP2000314133A (en) Horizontal load-bearing pile and method for arranging the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees