JP2004256874A - Martensitic free-cutting stainless steel - Google Patents

Martensitic free-cutting stainless steel Download PDF

Info

Publication number
JP2004256874A
JP2004256874A JP2003049906A JP2003049906A JP2004256874A JP 2004256874 A JP2004256874 A JP 2004256874A JP 2003049906 A JP2003049906 A JP 2003049906A JP 2003049906 A JP2003049906 A JP 2003049906A JP 2004256874 A JP2004256874 A JP 2004256874A
Authority
JP
Japan
Prior art keywords
free
stainless steel
less
cutting stainless
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003049906A
Other languages
Japanese (ja)
Other versions
JP4108506B2 (en
Inventor
Kazuo Nakama
一夫 中間
Tadanori Kida
忠伯 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2003049906A priority Critical patent/JP4108506B2/en
Publication of JP2004256874A publication Critical patent/JP2004256874A/en
Application granted granted Critical
Publication of JP4108506B2 publication Critical patent/JP4108506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a martensitic free-cutting stainless steel. <P>SOLUTION: The martensitic free-cutting stainless steel comprises, by mass%, 0.1-0.3% C, 0.2-1.0% Si, 0.3-1.5% Mn, more than 0.01% but less than 0.05% S, 10-14% Cr, 0.03-0.15% Bi, Cr so as to satisfy Cr equivalent = [%Cr] + 1.4×[%Mo] + 1.5×[%Si] - [%Ni] - 0.3×[%Mn] - 22×[%C] - 14×[%N] - [%Cu] ≤ 10, and the balance Fe with unavoidable impurities. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、マルテンサイト系快削ステンレス鋼に関するものである。
【0002】
【従来の技術】
従来、OA機器や精密機器のシャフト、スリーブ、ハウジング等には、SUS416、SUS430F、SUS303に代表されるSを添加した快削ステンレス鋼が多用されてきた。近年では、機器の小型化、高精密化に対応すべく、被削性の要求レベルが厳しくなっている。これに応じてより一層の被削性に優れた快削ステンレス鋼のニーズも強く、Pb,Se,Te等のいわゆる快削元素を複合添加して被削性改善を図った快削鋼が使用されてきた。一方、環境負荷物質として知られるPb以外に,Se,Teも人体に有害であることが知られており、昨今の環境保護意識の高まりから、これら元素使用量の削減が叫ばれている。鉄鋼材料においても例外ではなく、自動車メーカーをはじめ、家電製品、精密機器メーカーからの鉄鋼材料中の有害物質削減要求は強い。このような背景から、Pb,Se,Teの有害物質を実質的に含有しない快削ステンレス鋼が求められていた。
【0003】
このような背景の中で、Pb,Se,Teを含有しない快削鋼が種々発明されている。例えば、特開2001−262280号公報(特許文献1)に開示されているように、Ti、Zr炭硫化物を利用した快削ステンレス鋼や、特開2002−212680号公報(特許文献2)に開示されているような、Snを添加した快削ステンレス鋼や、特開昭62−80254号公報(特許文献3)に開示されているような、Inを添加した快削ステンレス鋼、および特開平6−212361号公報(特許文献4)に開示されているような、Biを添加した快削ステンレス鋼が発明されている。
【0004】
【引用文献】
(1)特許文献1(特開2001−262280号公報)
(2)特許文献2(特開2002−212680号公報)
(3)特許文献3(特開昭62−80254号公報)
(4)特許文献4(特開平6−212361号公報)
【0005】
【発明が解決しようとする課題】
上述した快削ステンレス鋼は、いずれも環境負荷物質とされるPb,Se,Teを使用せずに快削性を有することを目的としている。しかしながら、本発明者による調査では、特許文献1に記されたTi、Zr炭硫化物を含有する快削鋼は、所期の快削性が得られず、特許文献2に記されたSn添加鋼においても、被削性改善効果が認められなかった。また特許文献3のIn快削鋼はInの融点が160℃以下と低いために液体金属脆化を引き起こす危険性が高く実用に供しにくい欠点がある。一方、特許文献4に開示されたBi添加鋼は、BiがPbと似た性質を持つ金属であることから非常に有望であるが、Pbよりも低融点で、単純に添加しただけではPb添加鋼よりも熱間加工性が劣り、鍛造、圧延時に疵が多発する恐れがある。このように、いずれの特許文献も快削性、耐食性および製造性を両立させた快削ステンレス鋼としては十分なものでないという問題がある。
【0006】
【課題を解決するための手段】
上述したような問題を解消するべく、発明者らは鋭意開発を進めた結果、快削元素としてBiの採用が最も適していることを見出した。Biは低融点金属であり、切削加工中に生じる熱で溶融し、金属マトリクスを脆化させることで被削性を改善する。ただし、Biは熱間加工性を著しく悪化させる欠点が知られている。発明者らの調査により、Biによる熱間加工割れは、特にδ−フェライト相とオーステナイト相との結晶粒界へのBiの偏析による悪影響が大きいことが分かった。この問題を解決するには、δ−フェライトの生成を抑制するために、Cr当量を10以下に規制し、かつBiの粒界偏析を分散して晶出させるために、適量のSを添加してMnSを生成させてBiの晶出サイトを分散させる方法が有効であることが分かった。このようにして、本発明は、快削性、耐食性および製造性を両立させたマルテンサイト系快削ステンレス鋼を提供するものである。
【0007】
その発明の要旨とするところは、
(1)質量%で、C:0.1〜0.3%、Si:0.2〜1.0%、Mn:0.3〜1.5%、S:0.01超〜0.05%未満、Cr:10〜14%、Bi:0.03〜0.15%、かつ、Cr当量=[%Cr]+1.4×[%Mo]+1.5×[%Si]−[%Ni]−0.3×[%Mn]−22×[%C]−14×[%N]−[%Cu]≦10(ただし、請求項に規定されていない元素は「0」として計算)、残部がFeおよび不可避的不純物からなることを特徴とするマルテンサイト系快削ステンレス鋼。
【0008】
(2)前記(1)に加えて、質量%で、B:0.001〜0.01%、Ca:0.001〜0.01%、Mg:0.001〜0.01%、REM:0.001〜0.01%の1種または2種以上を含有することを特徴とするマルテンサイト系快削ステンレス鋼。
(3)前記(1)または(2)に加えて、質量%で、Ni:1.0%以下、Mo:1.0%以下、Cu:1.0%以下のうちの1種または2種以上を含有することを特徴とするマルテンサイト系快削ステンレス鋼。
【0009】
(4)前記(1)〜(3)に加えて、質量%で、Al:0.001〜0.1%、Ti:0.01〜0.5%、Nb:0.01〜0.5%、V:0.01〜0.5%、W:0.01〜0.5%のうちの1種または2種以上を含有することを特徴とするマルテンサイト系快削ステンレス鋼。
(5)前記(1)〜(4)に加えて、質量%で、O:0.03%以下、N:0.2%以下のうちの1種または2種を含有することを特徴とするマルテンサイト系快削ステンレス鋼にある。
【0010】
【発明の実施の形態】
以下、本発明に係る成分組成の限定理由について説明する。
C:0.1〜0.3%
Cは、強度を上げるに必要な元素である。しかし、0.3%を超えると耐食性と靱性を劣化させるので、その上限を0.3%とした。
Si:0.2〜1.0%
Siは、脱酸元素として有用な元素であるが、しかし、多いと焼なまし硬さが上昇するので、その範囲を0.2〜1.0%とした。
【0011】
Mn:0.3〜1.5%
Mnは、Siと同様に脱酸元素であり、Sと化合して硫化物を生成する。しかし、0.3%未満ではSの固定が不十分で熱間加工性が悪化し、また、多過ぎてもその効果は飽和に達し、その範囲を0.3〜1.5%とした。
S:0.01%超〜0.05%未満
Sは、Mnと化合してMnSを生成する。MnSは、被削性を向上させるのみならず、Biの晶出サイトとしても有効に働き、適量存在するときは熱間加工性を改善する。しかし、0.01%以下ではその効果が得られず、多いと逆に熱間加工性と耐食性を悪化させるので、その範囲を0.01%超〜0.05%未満とした。
【0012】
Cr:10〜14%
Crは、耐食性を向上させる基本元素である。しかし、10%未満では効果が少なく、多いと被削性を悪化させ、かつ脆化しやすくなるので、その範囲を10〜14%とした。
Bi:0.03〜0.15%
Biは、溶融脆化作用により、被削性を改善する。その効果はPbの1.5〜5倍を有し、しかも、Pbと異なりその人体への有害作用はないと報告されている。しかし、0.03%未満ではその効果が不十分で、多過ぎると快削性が飽和すると共に、熱間加工性の悪化が著しいことから、その範囲を0.03〜0.15%とした。
【0013】
B:0.001〜0.01%
Bは、高温域でオーステナイト粒界強度を高め熱間加工性を向上させる元素である。しかし、多いと逆に熱間加工性が悪化することから、その範囲を0.001〜0.01%とした。
Ca:0.001〜0.01%
Caは、硫化物の分布を調整し、熱間加工性を改善する。しかし、0.001%未満ではその効果は少なく、0.01%を超えると効果が飽和する。従って、その範囲を0.001〜0.01%とした。
【0014】
Mg:0.001〜0.01%
Mgは、Caと同様に、熱間加工性を改善する。しかし、0.001%未満ではその効果は少なく、0.01%を超えると効果が飽和する。従って、その範囲を0.001〜0.01%とした。
REM:0.001〜0.01%
REMは、Caと同様に、熱間加工性を改善する。しかし、0.001%未満ではその効果は少なく、0.01%を超えると効果が飽和する。従って、その範囲を0.001〜0.01%とした。
【0015】
Ni:1.0%以下
Niは、耐食性を向上させる元素であり、熱入性を改善する。しかし、多いと焼なまし硬さを増大させ被削性を悪化させる。従って、その上限を1.0%とした。
Mo:1.0%以下
Moは、耐食性を向上させる元素である。しかし、多いと脆化しやすく、しかも高価であるので、その上限を1.0%とした。
【0016】
Cu:1.0%以下
Cuは、耐食性を向上させる元素である。しかし、多いと熱間加工性を悪化させる。従って、その上限を1.0%とした。
Al:0.001〜0.1%
Alは、強力な脱酸元素として有用である。しかし、0.001%未満ではその効果は少なく、多いと二次酸化の危険がある。従って、その範囲を0.001〜0.1%とした。
【0017】
Ti:0.01〜0.5%
Tiは、炭窒化物生成により耐食性を向上させる。しかし、多いとその効果が飽和することから、その範囲を0.01〜0.5%とした。
Nb:0.01〜0.5%
Nbは、Tiと同様に、炭窒化物生成により耐食性を向上させる。しかし、多いとその効果が飽和することから、その範囲を0.01〜0.5%とした。
【0018】
V:0.01〜0.5%
Vは、Tiと同様に、炭窒化物生成により耐食性を向上させる。しかし、多いとその効果が飽和することから、その範囲を0.01〜0.5%とした。
W:0.01〜0.5%
Wは、Tiと同様に、炭窒化物生成により耐食性を向上させる。しかし、多いとその効果が飽和することから、その範囲を0.01〜0.5%とした。
【0019】
O:0.03%以下
Oは、不純物であり、多いと酸化物を生成し被削性が悪化するので、その上限を0.03%とした。
N:0.2%以下
Nは、強度上昇と耐食性改善に役立つ元素である。しかし、多いと被削性を悪化させるので、その上限を0.2%とした。
【0020】
Cr当量=[%Cr]+1.4×[%Mo]+1.5×[%Si]−[%Ni]−0.3×[%Mn]−22×[%C]−14×[%N]−[%Cu]≦10
次に、本発明の特徴とするCr当量について説明する。このCr当量は熱間加工温度域でのδ−フェライト量を決める因子であり、10を超えるとオーステナイト相中に強度が低いδ−フェライトが生成しやすい。このδ−フェライトとオーステナイトの結晶粒界にBiが偏析すると、粒界強度が著しく低下して熱間加工割れを助長する。従って、その上限を10とした。
【0021】
【実施例】
以下、本発明について実施例をもって具体的に説明する。
真空誘導炉で100kg鋼塊を溶製し、表1に示す化学成分を有する鋼をφ20mm寸法の棒鋼に鍛伸した後、焼なまし:870℃徐冷、焼入焼戻し:980℃油冷→180℃空冷なる各熱処理を施して各種試験に供した。その結果を表2に示す。表2における、(1)被削性(ドリル穿孔性)については、焼なまし材を使用し、ドリル:SKH51(φ5mm)、推力414N、周速:18.7m/minで、深さ10mm穿孔するのに要する時間で評価した。
【0022】
(2)耐食性については、焼入焼戻材を使用し、塩水噴霧試験(5%NaCl溶液、35℃−16h噴霧)を行い、表面の発銹状態を観察した。
(3)機械的性質については、焼入焼戻材を使用し、常温(20℃)で硬さ(HRC)、シャルピー衝撃試験(2mmUノッチ試験片)した。
(4)熱間加工性については、φ8mmの試験片を用い1100℃でグリーブル試験機による高速引張を行い、破断したときの絞り値を測定した。引張速度は5cm/sとした。
【0023】
【表1】

Figure 2004256874
【0024】
【表2】
Figure 2004256874
【0025】
表2に示すように、No.1〜9は本発明例であり、No.10〜20は比較例である。比較例No.10はCr当量が本発明の条件より高いため、δ−フェライトが生じ熱間加工性が劣る。比較例No.11はSが低いために、Biが十分に分散されずに粒界に偏析し熱間加工性が劣る。比較例No.12はCr当量が本発明の条件より高いため、No.10と同様にδ−フェライトで熱間加工性が劣る。比較例No.13はNo.12と同様に、Cr当量が本発明の条件より高いため、δ−フェライトで熱間加工性が劣る。比較例No.14はSが高く、かつSe、TeおよびPbを添加しているために、Mn(S,Se,Te)で耐食性、熱間加工性および靱性が劣る。
【0026】
比較例No.15は高Sだが過大にTi,Zrを添加しているために、逆に被削性が悪く靱性に劣る。比較例No.16はSnを添加しているものの被削性改善効果は認められない。比較例No.17はInを添加しているため、熱間加工性が劣る。比較例No.18はMnは低いために、低Mn化でSによる粒界脆化で熱間加工性が劣る。比較例No19は従来鋼のSUS416であり、耐食性、靱性および熱間加工性が劣る。比較例No.20は従来鋼のSUS410F2であり、Pb鋼で人体に有害である。
【0027】
【発明の効果】
以上述べたように、本発明による環境負荷物質であるPb,Se,Teを代替した快削ステンレスは、耐食性、靱性および製造過程での熱間加工性の両立したマルテンサイト系快削ステンレス鋼を提供することが可能となった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a martensitic free-cutting stainless steel.
[0002]
[Prior art]
Conventionally, free-cutting stainless steel added with S typified by SUS416, SUS430F, and SUS303 has been frequently used for shafts, sleeves, housings, and the like of OA equipment and precision equipment. In recent years, the required level of machinability has become strict in order to respond to miniaturization and high precision of equipment. Accordingly, there is a strong need for free-cutting stainless steels with even better machinability, and free-cutting steels with improved machinability by adding so-called free-cutting elements such as Pb, Se, and Te in combination are used. It has been. On the other hand, in addition to Pb, which is known as an environmentally hazardous substance, Se and Te are also known to be harmful to the human body, and a reduction in the use of these elements has been called out in recent years as awareness of environmental protection has increased. Steel materials are no exception, and there are strong demands from automobile manufacturers, home appliances and precision equipment manufacturers to reduce harmful substances in steel materials. From such a background, there has been a demand for a free-cutting stainless steel substantially free of Pb, Se, and Te harmful substances.
[0003]
Against this background, various free-cutting steels containing no Pb, Se, or Te have been invented. For example, as disclosed in Japanese Patent Application Laid-Open No. 2001-262280 (Patent Document 1), free-cutting stainless steel using Ti and Zr carbosulfide, and Japanese Patent Application Laid-Open No. 2002-212680 (Patent Document 2). As disclosed, a free-cutting stainless steel to which Sn is added, a free-cutting stainless steel to which In is added as disclosed in JP-A-62-80254 (Patent Document 3), and A free-cutting stainless steel to which Bi is added has been invented as disclosed in Japanese Patent Application Laid-Open No. 6-212361 (Patent Document 4).
[0004]
[References]
(1) Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-262280)
(2) Patent Document 2 (Japanese Patent Application Laid-Open No. 2002-212680)
(3) Patent Document 3 (Japanese Patent Application Laid-Open No. 62-80254)
(4) Patent Document 4 (Japanese Patent Laid-Open No. 6-212361)
[0005]
[Problems to be solved by the invention]
The above-described free-cutting stainless steel is intended to have free-cutting properties without using Pb, Se, and Te, which are environmentally hazardous substances. However, according to the investigation by the present inventors, the free-cutting steel containing Ti and Zr carbosulfide described in Patent Document 1 cannot obtain the desired free-cutting property, and the Sn-added steel described in Patent Document 2 cannot be obtained. Even in steel, no machinability improvement effect was observed. In addition, the In free-cutting steel disclosed in Patent Document 3 has a disadvantage that the melting point of In is as low as 160 ° C. or less, and therefore, there is a high risk of causing liquid metal embrittlement, which makes it difficult to put into practical use. On the other hand, the Bi-added steel disclosed in Patent Literature 4 is very promising because Bi is a metal having properties similar to Pb, but has a lower melting point than Pb. Hot workability is inferior to steel, and there is a possibility that flaws will occur frequently during forging and rolling. As described above, there is a problem that none of the patent documents is sufficient as a free-cutting stainless steel having both free-cutting properties, corrosion resistance and manufacturability.
[0006]
[Means for Solving the Problems]
As a result of intense development to solve the above-described problems, the inventors have found that the use of Bi as the free-cutting element is most suitable. Bi is a low melting point metal, which is melted by the heat generated during the cutting process and makes the metal matrix brittle to improve the machinability. However, Bi is known to have a drawback of significantly deteriorating hot workability. According to the investigations of the inventors, it has been found that hot work cracking due to Bi has a large adverse effect particularly due to the segregation of Bi at the grain boundaries between the δ-ferrite phase and the austenite phase. In order to solve this problem, in order to suppress the formation of δ-ferrite, the Cr equivalent is regulated to 10 or less, and an appropriate amount of S is added to disperse and crystallize Bi grain boundary segregation. It was found that a method of generating MnS and dispersing Bi crystallization sites was effective. As described above, the present invention provides a martensitic free-cutting stainless steel having both free-cutting properties, corrosion resistance, and manufacturability.
[0007]
The gist of the invention is that
(1) In mass%, C: 0.1 to 0.3%, Si: 0.2 to 1.0%, Mn: 0.3 to 1.5%, S: more than 0.01 to 0.05 %, Cr: 10 to 14%, Bi: 0.03 to 0.15%, and Cr equivalent = [% Cr] + 1.4 × [% Mo] + 1.5 × [% Si] − [% Ni ]-0.3 x [% Mn]-22 x [% C]-14 x [% N]-[% Cu] ≤ 10 (however, elements not defined in the claims are calculated as "0"), A martensitic free-cutting stainless steel characterized in that the balance consists of Fe and inevitable impurities.
[0008]
(2) In addition to the above (1), in mass%, B: 0.001 to 0.01%, Ca: 0.001 to 0.01%, Mg: 0.001 to 0.01%, REM: A martensitic free-cutting stainless steel containing one or two or more of 0.001 to 0.01%.
(3) In addition to the above (1) or (2), one or two of Ni: 1.0% or less, Mo: 1.0% or less, and Cu: 1.0% or less by mass%. A martensitic free-cutting stainless steel comprising the above.
[0009]
(4) In addition to the above (1) to (3), in mass%, Al: 0.001 to 0.1%, Ti: 0.01 to 0.5%, Nb: 0.01 to 0.5 %, V: 0.01 to 0.5%, and W: 0.01 to 0.5%. A martensitic free-cutting stainless steel containing at least one of them.
(5) In addition to the above (1) to (4), one or more of O: 0.03% or less and N: 0.2% or less by mass% are contained. In martensitic free-cutting stainless steel.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the reasons for limiting the component composition according to the present invention will be described.
C: 0.1-0.3%
C is an element necessary for increasing the strength. However, if it exceeds 0.3%, the corrosion resistance and toughness deteriorate, so the upper limit was made 0.3%.
Si: 0.2 to 1.0%
Si is a useful element as a deoxidizing element. However, if the content is large, the annealing hardness increases. Therefore, the range is set to 0.2 to 1.0%.
[0011]
Mn: 0.3-1.5%
Mn is a deoxidizing element like Si, and combines with S to generate a sulfide. However, if it is less than 0.3%, the fixation of S is insufficient and hot workability deteriorates, and if it is too much, the effect reaches saturation, and the range is set to 0.3 to 1.5%.
S: more than 0.01% to less than 0.05% S combines with Mn to produce MnS. MnS not only improves the machinability, but also works effectively as a crystallization site for Bi, and improves the hot workability when present in an appropriate amount. However, if the content is 0.01% or less, the effect cannot be obtained, and if it is too large, the hot workability and the corrosion resistance deteriorate. On the contrary, the range is set to more than 0.01% to less than 0.05%.
[0012]
Cr: 10 to 14%
Cr is a basic element that improves corrosion resistance. However, if it is less than 10%, the effect is small, and if it is too large, the machinability is deteriorated and the material is easily embrittled.
Bi: 0.03 to 0.15%
Bi improves the machinability by the action of melt embrittlement. Its effect is 1.5 to 5 times that of Pb, and it is reported that unlike Pb, it has no adverse effect on the human body. However, if the content is less than 0.03%, the effect is insufficient. If the content is too large, the free-cutting property is saturated and the hot workability is significantly deteriorated. Therefore, the range is set to 0.03 to 0.15%. .
[0013]
B: 0.001 to 0.01%
B is an element that increases austenite grain boundary strength in a high temperature range and improves hot workability. However, when the content is too large, the hot workability deteriorates conversely, so the range was made 0.001 to 0.01%.
Ca: 0.001 to 0.01%
Ca adjusts the distribution of sulfides and improves hot workability. However, if the content is less than 0.001%, the effect is small, and if it exceeds 0.01%, the effect is saturated. Therefore, the range was made 0.001 to 0.01%.
[0014]
Mg: 0.001 to 0.01%
Mg improves hot workability like Ca. However, if the content is less than 0.001%, the effect is small, and if it exceeds 0.01%, the effect is saturated. Therefore, the range was made 0.001 to 0.01%.
REM: 0.001-0.01%
REM, like Ca, improves hot workability. However, if the content is less than 0.001%, the effect is small, and if it exceeds 0.01%, the effect is saturated. Therefore, the range was made 0.001 to 0.01%.
[0015]
Ni: 1.0% or less Ni is an element that improves corrosion resistance and improves heat input. However, if the amount is too large, the annealing hardness increases and the machinability deteriorates. Therefore, the upper limit is set to 1.0%.
Mo: 1.0% or less Mo is an element that improves corrosion resistance. However, when the content is too large, the material is easily embrittled and expensive, so the upper limit is set to 1.0%.
[0016]
Cu: 1.0% or less Cu is an element that improves corrosion resistance. However, if the amount is too large, the hot workability deteriorates. Therefore, the upper limit is set to 1.0%.
Al: 0.001 to 0.1%
Al is useful as a strong deoxidizing element. However, if the content is less than 0.001%, the effect is small, and if it is too large, there is a risk of secondary oxidation. Therefore, the range is set to 0.001 to 0.1%.
[0017]
Ti: 0.01-0.5%
Ti improves corrosion resistance by forming carbonitrides. However, if the content is too large, the effect is saturated. Therefore, the range is set to 0.01 to 0.5%.
Nb: 0.01 to 0.5%
Like Nb, Nb improves corrosion resistance by forming carbonitrides. However, if the content is too large, the effect is saturated. Therefore, the range is set to 0.01 to 0.5%.
[0018]
V: 0.01-0.5%
V, like Ti, improves corrosion resistance by forming carbonitrides. However, if the content is too large, the effect is saturated. Therefore, the range is set to 0.01 to 0.5%.
W: 0.01-0.5%
W improves corrosion resistance by forming carbonitrides, like Ti. However, if the content is too large, the effect is saturated. Therefore, the range is set to 0.01 to 0.5%.
[0019]
O: 0.03% or less O is an impurity, and if it is too much, it forms an oxide and deteriorates machinability. Therefore, the upper limit is set to 0.03%.
N: 0.2% or less N is an element useful for increasing the strength and improving the corrosion resistance. However, if the content is too large, the machinability deteriorates, so the upper limit was made 0.2%.
[0020]
Cr equivalent = [% Cr] + 1.4 × [% Mo] + 1.5 × [% Si] − [% Ni] −0.3 × [% Mn] −22 × [% C] −14 × [% N ]-[% Cu] ≦ 10
Next, the Cr equivalent which is a feature of the present invention will be described. This Cr equivalent is a factor that determines the amount of δ-ferrite in the hot working temperature range. If it exceeds 10, δ-ferrite having low strength is likely to be formed in the austenite phase. When Bi segregates at the crystal grain boundary between δ-ferrite and austenite, the grain boundary strength is remarkably reduced to promote hot working cracking. Therefore, the upper limit was set to 10.
[0021]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples.
A 100 kg steel ingot is melted in a vacuum induction furnace, and steel having the chemical components shown in Table 1 is forged into a steel bar having a diameter of 20 mm. Each heat treatment of air cooling at 180 ° C. was performed and subjected to various tests. Table 2 shows the results. In Table 2, regarding (1) machinability (drill piercing property), using an annealed material, drill: SKH51 (φ5 mm), thrust 414 N, peripheral speed: 18.7 m / min, drilling 10 mm deep. The evaluation was based on the time required to do so.
[0022]
(2) Regarding the corrosion resistance, a salt water spray test (5% NaCl solution, sprayed at 35 ° C. for 16 hours) was performed using a quenched and tempered material, and a rusting state on the surface was observed.
(3) Regarding mechanical properties, using a quenched and tempered material, hardness (HRC) and Charpy impact test (2 mm U notch test piece) were performed at normal temperature (20 ° C.).
(4) Regarding hot workability, a high-speed tensile test was carried out at 1100 ° C. using a test piece having a diameter of 8 mm at a temperature of 1100 ° C., and an aperture value at the time of breaking was measured. The tensile speed was 5 cm / s.
[0023]
[Table 1]
Figure 2004256874
[0024]
[Table 2]
Figure 2004256874
[0025]
As shown in Table 2, Nos. 1 to 9 are examples of the present invention. 10 to 20 are comparative examples. Comparative Example No. In No. 10, since the Cr equivalent is higher than the condition of the present invention, δ-ferrite is generated and hot workability is inferior. Comparative Example No. Sample No. 11 has a low S, so that Bi is not sufficiently dispersed and segregates at grain boundaries, resulting in poor hot workability. Comparative Example No. No. 12 has a higher Cr equivalent than the condition of the present invention, and As with 10, hot workability is inferior for δ-ferrite. Comparative Example No. No. 13 is No. Similarly to 12, since the Cr equivalent is higher than the condition of the present invention, δ-ferrite is inferior in hot workability. Comparative Example No. In No. 14, Mn (S, Se, Te) is inferior in corrosion resistance, hot workability and toughness because S is high and Se, Te and Pb are added.
[0026]
Comparative Example No. No. 15 has high S, but has excessively added Ti and Zr, and conversely has poor machinability and poor toughness. Comparative Example No. In No. 16, although Sn was added, no effect of improving machinability was observed. Comparative Example No. No. 17 is inferior in hot workability since In is added. Comparative Example No. Sample No. 18 has low Mn, and therefore has a low Mn content and is inferior in hot workability due to grain boundary embrittlement due to S. Comparative Example No. 19 is SUS416 of conventional steel, and is inferior in corrosion resistance, toughness and hot workability. Comparative Example No. Reference numeral 20 denotes SUS410F2, a conventional steel, which is Pb steel and is harmful to the human body.
[0027]
【The invention's effect】
As described above, the free-cutting stainless steel that substitutes Pb, Se, and Te, which are environmentally harmful substances, according to the present invention is a martensitic free-cutting stainless steel that is compatible with corrosion resistance, toughness, and hot workability in the manufacturing process. It became possible to provide.

Claims (5)

質量%で、
C:0.1〜0.3%、
Si:0.2〜1.0%、
Mn:0.3〜1.5%、
S:0.01超〜0.05%未満、
Cr:10〜14%、
Bi:0.03〜0.15%、
かつ、Cr当量=[%Cr]+1.4×[%Mo]+1.5×[%Si]−[%Ni]−0.3×[%Mn]−22×[%C]−14×[%N]−[%Cu]≦10(ただし、請求項に規定されていない元素は「0」として計算)、残部がFeおよび不可避的不純物からなることを特徴とするマルテンサイト系快削ステンレス鋼。
In mass%,
C: 0.1-0.3%,
Si: 0.2-1.0%,
Mn: 0.3-1.5%,
S: more than 0.01 to less than 0.05%,
Cr: 10 to 14%,
Bi: 0.03 to 0.15%,
And Cr equivalent = [% Cr] + 1.4 × [% Mo] + 1.5 × [% Si] − [% Ni] −0.3 × [% Mn] −22 × [% C] −14 × [ % N]-[% Cu] ≦ 10 (however, elements not defined in the claims are calculated as “0”), and the balance consists of Fe and unavoidable impurities. .
請求項1に加えて、質量%で、
B:0.001〜0.01%、
Ca:0.001〜0.01%、
Mg:0.001〜0.01%、
REM:0.001〜0.01%
の1種または2種以上を含有することを特徴とするマルテンサイト系快削ステンレス鋼。
In addition to claim 1, in mass%,
B: 0.001 to 0.01%,
Ca: 0.001 to 0.01%,
Mg: 0.001 to 0.01%,
REM: 0.001-0.01%
A martensitic free-cutting stainless steel comprising one or more of the following.
請求項1または2に加えて、質量%で、
Ni:1.0%以下、
Mo:1.0%以下、
Cu:1.0%以下
のうちの1種または2種以上を含有することを特徴とするマルテンサイト系快削ステンレス鋼。
In addition to claim 1 or 2, in mass%,
Ni: 1.0% or less,
Mo: 1.0% or less,
Cu: a martensitic free-cutting stainless steel containing one or more of 1.0% or less.
請求項1〜3に加えて、質量%で、
Al:0.001〜0.1%、
Ti:0.01〜0.5%、
Nb:0.01〜0.5%、
V:0.01〜0.5%、
W:0.01〜0.5%、
のうちの1種または2種以上を含有することを特徴とするマルテンサイト系快削ステンレス鋼。
In addition to Claims 1-3,
Al: 0.001 to 0.1%,
Ti: 0.01 to 0.5%,
Nb: 0.01-0.5%,
V: 0.01 to 0.5%,
W: 0.01 to 0.5%,
A martensitic free-cutting stainless steel comprising one or more of the following.
請求項1〜4に加えて、質量%で、
O:0.03%以下、
N:0.2%以下
のうちの1種または2種を含有することを特徴とするマルテンサイト系快削ステンレス鋼。
In addition to Claims 1 to 4,
O: 0.03% or less,
N: A martensitic free-cutting stainless steel containing one or two of 0.2% or less.
JP2003049906A 2003-02-26 2003-02-26 Martensitic free-cutting stainless steel Expired - Fee Related JP4108506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049906A JP4108506B2 (en) 2003-02-26 2003-02-26 Martensitic free-cutting stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049906A JP4108506B2 (en) 2003-02-26 2003-02-26 Martensitic free-cutting stainless steel

Publications (2)

Publication Number Publication Date
JP2004256874A true JP2004256874A (en) 2004-09-16
JP4108506B2 JP4108506B2 (en) 2008-06-25

Family

ID=33115492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049906A Expired - Fee Related JP4108506B2 (en) 2003-02-26 2003-02-26 Martensitic free-cutting stainless steel

Country Status (1)

Country Link
JP (1) JP4108506B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104711482A (en) * 2015-03-26 2015-06-17 宝钢不锈钢有限公司 Nitrogen-controlled martensitic stainless steel and manufacturing method thereof
CN111989418A (en) * 2018-06-13 2020-11-24 日铁不锈钢株式会社 Martensitic S free-cutting stainless steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104711482A (en) * 2015-03-26 2015-06-17 宝钢不锈钢有限公司 Nitrogen-controlled martensitic stainless steel and manufacturing method thereof
CN111989418A (en) * 2018-06-13 2020-11-24 日铁不锈钢株式会社 Martensitic S free-cutting stainless steel
CN111989418B (en) * 2018-06-13 2022-02-22 日铁不锈钢株式会社 Martensitic S free-cutting stainless steel

Also Published As

Publication number Publication date
JP4108506B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
JP2003129190A (en) Martensitic stainless steel and manufacturing method therefor
KR20020014803A (en) Non-refined steel being reduced in anisotropy of material and excellent in strength, toughness and machinability
JP6729686B2 (en) Non-heat treated steel for induction hardening
JP5142601B2 (en) High hardness, non-magnetic free-cutting stainless steel
JP2003147478A (en) Non-heattreated steel
JP5801529B2 (en) Non-heat treated steel for hot forging with high bending fatigue strength and small deformation due to repeated stress, and method for producing the same
JP5304507B2 (en) Non-tempered steel for induction hardening
JP2000034538A (en) Steel for machine structure excellent in machinability
JP6555345B2 (en) Steel for hot forging
JP2009228051A (en) Method for producing non-heattreated steel material
JP4752800B2 (en) Non-tempered steel
JP5443277B2 (en) High-strength steel with excellent machinability and method for producing the same
JP6844943B2 (en) Non-microalloyed steel for induction hardening
JP3791664B2 (en) Austenitic Ca-added free-cutting stainless steel
JP4108506B2 (en) Martensitic free-cutting stainless steel
JPH08260039A (en) Production of carburized and case hardened steel
JP2000282182A (en) High fatigue life and high corrosion resistance martensitic stainless steel excellent in cold workability
JP4232242B2 (en) High strength high toughness non-tempered steel
JPH10245656A (en) Martensitic stainless steel excellent in cold forgeability
JP2005105390A (en) Steel for high temperature carburizing
JP2020169354A (en) Steel for direct cutting
JPH09195000A (en) Non-heat treated steel
JP2001011571A (en) Steel for machine structure excellent in machinability, cold forgeability and hardenability
JP7295417B2 (en) Carburized gear steel, carburized gear, and method for manufacturing carburized gear
JP5679439B2 (en) Induction hardening steel excellent in torsional strength and toughness after induction hardening, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080402

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees