JP2004256481A - Method for separating polyphenols - Google Patents

Method for separating polyphenols Download PDF

Info

Publication number
JP2004256481A
JP2004256481A JP2003051143A JP2003051143A JP2004256481A JP 2004256481 A JP2004256481 A JP 2004256481A JP 2003051143 A JP2003051143 A JP 2003051143A JP 2003051143 A JP2003051143 A JP 2003051143A JP 2004256481 A JP2004256481 A JP 2004256481A
Authority
JP
Japan
Prior art keywords
polyphenol
polyphenols
phase
chromatography
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003051143A
Other languages
Japanese (ja)
Inventor
Akio Yanagida
顕郎 柳田
Yoichi Shibusawa
庸一 澁澤
Heizaburo Shindo
平三郎 神藤
Motoyuki Tagashira
素行 田頭
Tomomasa Kanda
智正 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Breweries Ltd
Original Assignee
Asahi Breweries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Breweries Ltd filed Critical Asahi Breweries Ltd
Priority to JP2003051143A priority Critical patent/JP2004256481A/en
Publication of JP2004256481A publication Critical patent/JP2004256481A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To find analysis conditions of high-speed counter-current chromatography (HSCC) capable of efficiently separating and determining polymerization type polyphenols every degree of polymerization from a sample containing various polyphenol components. <P>SOLUTION: The method for separating polyphenols comprises using HSCC which is true liquid partition chromatography in which an upper layer or a lower layer of a two-phase solvent system obtained by mixing ethers, acetonitrile or alcohols with water or acidic aqueous solution is used as a stationary phase and the lower layer or the upper layer is used as a mobile phase. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、ポリフェノールの分離方法およびその産業的利用に関する。
【0002】
【従来の技術】
ポリフェノールとは、植物に由来する物質(フィトケミカル:phytochemical)の1種であり、1分子中にフェノール性水酸基を2つ以上有する化合物の総称である。ポリフェノールには、大別して分子量が1,000以下の単量体(モノマー)ポリフェノールと、単量体ポリフェノールが2つ以上結合した重合型(ポリマー)ポリフェノールが存在する。重合型ポリフェノールは一般にタンニンとも称される。代表的な単量体ポリフェノールとしては、フラボノイド類(フラボノイド類には、フラボン、フラボノール、フラバノン、フラバノロール、イソフラボン、アントシアニン、フラバノール、カルコン、オーロンを基本骨格とする化合物が含まれる)、クロロゲン酸、没食子酸、エラグ酸などがある。一方、重合型(ポリマー)ポリフェノールは単量体ポリフェノールが2個以上結合した化合物であり、炭素−炭素結合により重合した縮合型ポリフェノールと、エステル結合により重合した加水分解型ポリフェノールとに大別され、夫々代表的なポリフェノールとして縮合型ポリフェノールとしてはプロアントシアニジン類、加水分解型ポリフェノールとしてはガロタンニン、エラグタンニンが挙げられる。
【0003】
近年、フィトケミカルにヒトの健康に寄与する性質、所謂「機能性」が存在することが明らかとなり、注目を集めている。フィトケミカルの中でも、特にポリフェノールについては、抗酸化・活性酸素消去作用、抗菌作用、抗炎症作用、抗アレルギー作用、抗う蝕作用などが報告されている。また緑茶、ワインなど身近な食材の中に含有されることから一般に認知度が高く、ポリフェノールを精製した素材、あるいはポリフェノールを含有する食品も数多く上市されてきている。
【0004】
ポリフェノールに関する研究は、これまで、分離精製、定量化が容易な単量体ポリフェノールや、重合度がせいぜい2から3の、比較的低分子のポリフェノールについてしか行われてこなかった。一方重合度の大きなポリフェノールについては、重合度別の分離法が確立していなかったため、その含量は低分子のポリフェノールと区別できず、フォーリンデニス法などの、比色法による総ポリフェノール量としての定量値でしか表現できなかった。
【0005】
近年、分子量1,000以上の重合型ポリフェノールに特異な機能が存在することが明らかとなってきており、重合型ポリフェノールを重合度別に簡便に分離・定量する方法の開発が求められている。
【0006】
例えば、効果効能を商品に表示できる特定保健用食品は、一般に消費者の購買意欲が高く、売上も高くなることが期待できるが、特定保健用食品では商品形態中の機能性成分の定量が求められるようになってきており、機能性を有する高重合ポリフェノールを分離・定量する技術が開発された場合、産業的におおいに利用されることが期待できる。
【0007】
CCC(向流クロマトグラフィ)を重合型ポリフェノールの分離に用いることは、すでに、プットマンらによる報告がある(非特許文献1参照)。しかし同文献で紹介された方法では分離度が悪く、また2日以上もの時間を要するなど操作が煩雑なものであり、効率的な重合型ポリフェノール類の分離条件は未だに開発されていなかった。また発明者らによる文献(非特許文献2参照)にはHSCCC(高速向流クロマトグラフィ)を用いた重合度別のカテキン類の分離法が示されているが、HSCCCに用いる二相溶媒系の適切な選択や装置条件の最適化が行われておらず、良好な分離結果を得るには至っていなかった。
【0008】
【非特許文献1】
Putman L et al. J. Chromatogr. 318, 85−93 (1985)
【非特許文献2】
Y. Shibusawa et al., J. Chromatogr. A., 915, 253−257 (2001)
【0009】
【発明が解決しようとする課題】
本発明者らは、鋭意検討の結果、様々なポリフェノール成分を含有する試料から、重合型ポリフェノールを重合度別に効率的に分離定量できる高速向流クロマトグラフィ(High−Speed Counter−Current Chromatography: HSCCC)の分析条件を見出した。さらにHSCCCとゲル浸透クロマトグラフィ(GPC)、逆相HPLC、順相HPLC、MS、NMRなどの手法とを必要に応じて組み合わせることによっても重合型ポリフェノールを簡便に分離定量できることを見い出し、本発明を完成した。
【0010】
【課題を解決するための手段】
本発明は、エーテル類、アセトニトリルまたはアルコール類、水または酸性水溶液を混和した二相溶媒系の上層または下層を固定相とし下層または上層を移動相に用いた真の液液分配クロマトグラフィである高速向流クロマトグラフィ(HSCCC)を用いることを特徴とするポリフェノールの分離方法である。
【0011】
【発明の実施の形態】
HSCCCとは、二相溶媒系の上層または下層の一方の液層を固定相としてコイル状チューブカラム内に遠心力で保持させ、下層または上層の他方の液層を移動相として送液して成分分離を行う純粋な液液分配クロマトグラフィである。分離後の試料成分をカラムから全て回収できるほか、順相/逆相、分析/分取の切り替えも容易であるという利点を持つ。例えば順相クロマトグラフィでは、重合度の進んだプロシアニジン類は固定相であるカラム樹脂から溶出されず、分析ができないという欠点があるが、HSCCCでは固定相を回収できるため、試料を全量回収できるなどの利点がある。
【0012】
本発明に用いるHSCCC装置は、およそ図1のように、固定相の保持をおこなうカラム部分にJ型コイル惑星状遠心装置を備え、これに送液ポンプおよび検出器を組み合わせた構造を有する。J型コイル惑星状遠心装置はコイル部分が回転(惑星の自転に相当)するだけでなく、コイル部分の保持装置も回転(惑星の公転に相当)することを特徴とするものであれば、特に問題なくどのようなものでも利用できる。カラム部分に巻きつけて流路およびカラムとなるチューブ部には塩化ビニール、ポリエチレン、テフロン(登録商標)、ステンレスなど一般にチューブ状に成型できる素材であれば特に問題なく用いることができるが、好適な例としては内径0.5〜3mmのテフロン(登録商標)チューブを挙げる事ができる。送液ポンプはロータリー型、ペリスタ型など、一般に液体の送液に用いることのできるものであれば問題なく用いることができる。まずカラム部分に二相溶媒のどちらか一方を送液し、チューブを満たして固定相とする。続いてコイル部分を惑星状に回転させ、遠心力で固定相を保持させる。この際の回転数は10〜10,000rpmを用いることができるが、好適な例としては1,000〜1,500rpmとすることが望ましい。続いて分析する試料を二相溶媒に溶解させたサンプルをカラム部分に導入し、その後に二相溶媒の固定相に用いなかった他の相を移動相として送液する。移動相の送液速度は特に制限はないが、0.1〜10ml/分の間とすることが望ましい。溶出する移動相を適当な分析装置で分析する。この分析装置は、UV検出器、ダイオードアレイ検出器、IR検出器、蛍光検出器などを用いることができる。
【0013】
本発明のHSCCCに用いる二相溶媒は、水とブタノールなどのアルコールを混合して得られるものや、水と酢酸メチル、酢酸エチルなどのエステル類を混合して得られるもの、水とt−ブチルメチルエーテルなどのエーテル類を混合して得られるものなどを用いることができる。また、上記の二相溶媒を相互に混和したり、さらに酢酸、アセトニトリル、無機金属塩水溶液などを混和して用いることもできる。好適な例としては、t−ブチルメチルエーテル、アセトニトリル、0.1%トリフルオロ酢酸水溶液を2:2:3の割合で混合して得られるものを挙げることができる。
【0014】
溶出した移動相はそのままあるいは溶出時間毎に分画し、逆相TLC、順相TLC、逆相HPLC、順相HPLC、GPC、アフィニティークロマトグラフィ、MS、LC−MS、TOF−MSなどの分析を行うことにより、さらに詳細な分離、分析を行うことができる。その際に必要があれば移動相を減圧乾固などの方法により取り除いてから分析を行ってもよい。
【0015】
また溶出した移動相をそのまま、あるいは溶出時間毎に分画し、必要があれば移動相を減圧乾固などの方法により取り除いて、ポリフェノール画分として利用することもできる。
【0016】
またかくして得られた分析データは、ポリフェノールの重合体ごとの含量を表すものであり、この情報を品質管理、品質保証に役立てることができる。この情報をポリフェノールを含有する食品、薬品、化粧品などの品質管理、品質保証に役立てることができる。
【0017】
【発明の効果】
本発明のポリフェノールの分離方法は、簡便かつ迅速にポリフェノール、特に重合型ポリフェノールを効率的に分離できるので、ポリフェノールの精製方法、ポリフェノール素材の品質管理方法などとして産業的に利用することができる。
【0018】
【実施例】
以下、実施例を示すが本発明はこれに限定されるものではない。
実施例1:以下に記載したHSCCC条件で、緑茶、ウーロン茶に由来するポリフェノール素材を分離分析した。その結果を別添の図2に示す。これらのクロマトグラムのピーク面積を求めることにより、各ポリフェノール素材中の含有成分の含量を測定することができた。
HSCCC条件:二相系,t−ブチルメチルエーテル:アセトニトリル:0.1%TFA水溶液=2:2:3;
固定相,下層;初期移動相,上層;
カラム,1.0 mmID × 30 m (容量23.5 mL);流速,1.0 ml/min;
回転,1,000 rpm;検出,日立L−7455 diode−array detector
図2に示されるように、茶に由来するポリフェノール素材をHSCCCにより効率よく分離したことにより、重合型ポリフェノール(クロマトグラム上、約80分に現れるピーク)は緑茶由来ポリフェノール素材には含まれないが、ウーロン茶由来ポリフェノール素材にはピーク面積比で約30%含まれることが明らかとなった。緑茶由来ポリフェノール素材は、ピーク面積比で95%以上がカテキンの単量体であることがわかる。また、ウーロン茶由来ポリフェノール素材にはカフェインもピーク面積比で約40%含まれることが明らかとなった。
【0019】
実施例2:実施例1と同様のHSCCC条件で、ホップポリフェノールを分離し、さらにその一部を逆相のHPLCで分離分析した。その結果を別添の図3に示す。逆相HPLCクロマトグラムのピーク面積を求めることにより、さらに詳細な含有成分の定量が実現した。
逆相HPLC条件:カラム,Mightysil RP−18 GP (4.6mmx150mm,5um,関東化学);移動相,
A: 0.1% TFA:CH3CN (90:10)、B: 0.1% TFA:CH3CN (50:50)を用いた直線グラディエント
0−20min: 100% A, 20−60min: 100% A−50% A;流速,1 ml/min;検出,DAD (280,320,350nm)
図3A図より、ホップ由来ポリフェノールには重合型ポリフェノールがピーク面積比で50%以上含まれることが判る。また、各フラクションを逆相HPLCでさらに分析した結果(図3B図)、さらに詳細な成分比が明らかとなった。例えば、Fr.5のHSCCCでのピーク面積比は約7%であり、Fr.5中の主要成分(ケンフェロール−3−o−ルチノース)の逆相HPLCでのピーク面積比が92%であったことから、ホップ由来ポリフェノール中のケンフェロール−3−o−ルチノースの含量はおよそ6.4%であることが判った。
【0020】
【発明の効果】
本発明のポリフェノールの分離方法は、特に重合型のポリフェノールを効率的に分離することにより、従来は不可能であったポリフェノールの製造、ポリフェノール素材の品質管理に優れた効果を表す。
【図面の簡単な説明】
【図1】J型コイル惑星状遠心装置を配置した高速向流クロマトグラフィ(HSCCC)装置の概略図。
【図2】A)緑茶由来ポリフェノール素材のHSCCCクロマトグラム
B)ウーロン茶ポリフェノール素材のHSCCCクロマトグラム
【図3】A)ホップポリフェノールのHSCCCクロマトグラムと分画パターン
B)HSCCC分取画分(分画1〜7)の逆相HPLCクロマトグラム
[0001]
[Industrial applications]
The present invention relates to a method for separating polyphenols and its industrial use.
[0002]
[Prior art]
Polyphenol is a kind of plant-derived substance (phytochemical), and is a general term for compounds having two or more phenolic hydroxyl groups in one molecule. Polyphenols are roughly classified into a monomer (monomer) polyphenol having a molecular weight of 1,000 or less and a polymerized (polymer) polyphenol in which two or more monomer polyphenols are bonded. Polymerized polyphenols are also commonly referred to as tannins. Representative monomeric polyphenols include flavonoids (flavonoids include compounds having a basic skeleton of flavone, flavonol, flavanone, flavanolol, isoflavone, anthocyanin, flavanol, chalcone, auron), chlorogenic acid, gallic Acid and ellagic acid. On the other hand, polymerized (polymer) polyphenols are compounds in which two or more monomeric polyphenols are bonded, and are roughly classified into condensed polyphenols polymerized by carbon-carbon bonds and hydrolyzed polyphenols polymerized by ester bonds, Representative polyphenols include condensed polyphenols, proanthocyanidins, and hydrolyzed polyphenols include gallotannin and ellagtannin.
[0003]
In recent years, it has become clear that phytochemicals have properties that contribute to human health, so-called “functionality”, and have attracted attention. Among phytochemicals, especially polyphenols are reported to have antioxidant / active oxygen scavenging action, antibacterial action, anti-inflammatory action, antiallergic action, anticariogenic action and the like. In addition, since it is contained in familiar foods such as green tea and wine, it is generally well known, and many materials containing purified polyphenols or foods containing polyphenols have been put on the market.
[0004]
Until now, studies on polyphenols have been carried out only on monomeric polyphenols which can be easily separated and purified and quantified, and relatively low molecular weight polyphenols having a polymerization degree of at most 2 to 3. On the other hand, for polyphenols with a large degree of polymerization, the separation method for each degree of polymerization was not established, so their contents could not be distinguished from low-molecular-weight polyphenols. It could only be expressed by value.
[0005]
In recent years, it has become clear that a specific function exists in a polymerizable polyphenol having a molecular weight of 1,000 or more, and development of a method for easily separating and quantifying the polymerizable polyphenol according to the degree of polymerization has been demanded.
[0006]
For example, foods for specified health use that can display their effects on products are generally expected to have a high consumer willingness to purchase and increase sales, but for foods for specified health use, it is necessary to quantify the functional components in the product form. If a technique for separating and quantifying a highly polymerized polyphenol having a function is developed, it can be expected to be widely used industrially.
[0007]
The use of CCC (countercurrent chromatography) for the separation of polymerized polyphenols has already been reported by Putman et al. (See Non-Patent Document 1). However, the method introduced in the literature has a poor degree of separation and requires complicated operations such as requiring two days or more, and efficient separation conditions for polymerizable polyphenols have not yet been developed. The literature by the inventors (see Non-Patent Document 2) discloses a method for separating catechins according to the degree of polymerization using HSCCC (high-speed countercurrent chromatography). Neither the selection nor the optimization of the apparatus conditions has been performed, and good separation results have not been obtained.
[0008]
[Non-patent document 1]
Putman L et al. J. Chromatogr. 318, 85-93 (1985)
[Non-patent document 2]
Y. Shibusawa et al. , J. et al. Chromatogr. A. , 915, 253-257 (2001).
[0009]
[Problems to be solved by the invention]
The present inventors have conducted intensive studies and found that high-speed counter-current chromatography (HSCCC) capable of efficiently separating and quantifying polymerized polyphenols from samples containing various polyphenol components according to the degree of polymerization. Analytical conditions were found. Further, the present inventors have found that polymerized polyphenols can be easily separated and quantified by combining HSCCC with techniques such as gel permeation chromatography (GPC), reverse phase HPLC, normal phase HPLC, MS, and NMR as required, and completed the present invention. did.
[0010]
[Means for Solving the Problems]
The present invention relates to a high-performance liquid-liquid partition chromatography, which is a true liquid-liquid partition chromatography in which the upper or lower layer of a two-phase solvent system containing ethers, acetonitrile or alcohols, water or an acidic aqueous solution is used as a stationary phase and the lower or upper layer is used as a mobile phase. This is a method for separating polyphenols, using flow chromatography (HSCCC).
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
HSCCC means that one liquid layer of the upper or lower layer of a two-phase solvent system is held as a stationary phase in a coiled tube column by centrifugal force, and the other liquid layer of the lower or upper layer is sent as a mobile phase and the components are transferred. Pure liquid-liquid partition chromatography with separation. It has the advantage that all the sample components after separation can be recovered from the column, and that switching between normal / reverse phase and analysis / preparation is easy. For example, normal phase chromatography has the disadvantage that procyanidins with a high degree of polymerization are not eluted from the column resin as the stationary phase and cannot be analyzed.However, since HSCCC can recover the stationary phase, the entire sample can be recovered. There are advantages.
[0012]
As shown in FIG. 1, the HSCCC device used in the present invention has a structure in which a J-shaped coiled planetary centrifugal device is provided in a column portion for holding a stationary phase, and a liquid feed pump and a detector are combined with this. The J-type coil planetary centrifugal centrifuge is particularly characterized in that not only the coil part rotates (equivalent to the rotation of the planet), but also the holding device of the coil part rotates (equivalent to the orbit of the planet). Anything can be used without any problems. Any material that can be generally formed into a tube, such as vinyl chloride, polyethylene, Teflon (registered trademark), or stainless steel, can be used for the tube portion that is wound around the column portion and becomes a flow path and a column without any problem. An example is a Teflon (registered trademark) tube having an inner diameter of 0.5 to 3 mm. The liquid sending pump can be used without any problem as long as it can be generally used for liquid sending, such as a rotary type and a peristaltic type. First, one of the two-phase solvents is sent to the column portion, and the tube is filled to form a stationary phase. Subsequently, the coil portion is rotated in a planetary manner, and the stationary phase is held by centrifugal force. The rotation speed at this time can be 10 to 10,000 rpm, but a preferable example is 1,000 to 1,500 rpm. Subsequently, a sample in which a sample to be analyzed is dissolved in a two-phase solvent is introduced into the column portion, and then another phase not used as a stationary phase of the two-phase solvent is sent as a mobile phase. The liquid sending speed of the mobile phase is not particularly limited, but is desirably 0.1 to 10 ml / min. The eluted mobile phase is analyzed on a suitable analyzer. This analyzer can use a UV detector, a diode array detector, an IR detector, a fluorescence detector, and the like.
[0013]
The two-phase solvent used for the HSCCC of the present invention is obtained by mixing water and an alcohol such as butanol, or obtained by mixing water and an ester such as methyl acetate or ethyl acetate, or obtained by mixing water and t-butyl. Those obtained by mixing ethers such as methyl ether can be used. The above two-phase solvents may be mixed with each other, or acetic acid, acetonitrile, an aqueous solution of an inorganic metal salt or the like may be mixed and used. Preferred examples include those obtained by mixing t-butyl methyl ether, acetonitrile, and a 0.1% aqueous trifluoroacetic acid solution at a ratio of 2: 2: 3.
[0014]
The eluted mobile phase is fractionated as it is or every elution time, and analyzed by reversed phase TLC, normal phase TLC, reverse phase HPLC, normal phase HPLC, GPC, affinity chromatography, MS, LC-MS, TOF-MS, etc. Thereby, more detailed separation and analysis can be performed. At that time, if necessary, the analysis may be performed after removing the mobile phase by a method such as drying under reduced pressure.
[0015]
The eluted mobile phase can be fractionated as it is or at each elution time, and if necessary, the mobile phase can be removed by a method such as drying under reduced pressure, and used as a polyphenol fraction.
[0016]
The analytical data thus obtained represents the content of polyphenol for each polymer, and this information can be used for quality control and quality assurance. This information can be used for quality control and quality assurance of polyphenol-containing foods, drugs, cosmetics, and the like.
[0017]
【The invention's effect】
INDUSTRIAL APPLICABILITY The method for separating polyphenols of the present invention can efficiently and easily separate polyphenols, in particular, polymerized polyphenols, and can be industrially used as a method for purifying polyphenols, a method for controlling the quality of polyphenol materials, and the like.
[0018]
【Example】
Hereinafter, examples will be described, but the present invention is not limited thereto.
Example 1: Under the HSCCC conditions described below, polyphenol materials derived from green tea and oolong tea were separated and analyzed. The result is shown in FIG. 2 attached separately. By determining the peak areas of these chromatograms, the contents of the components contained in each polyphenol material could be measured.
HSCCC conditions: two-phase system, t-butyl methyl ether: acetonitrile: 0.1% TFA aqueous solution = 2: 2: 3;
Stationary phase, lower layer; initial mobile phase, upper layer;
Column, 1.0 mm ID × 30 m (volume 23.5 mL); flow rate, 1.0 ml / min;
Rotation, 1,000 rpm; detection, Hitachi L-7455 diode-array detector
As shown in FIG. 2, although the polyphenol material derived from tea was efficiently separated by HSCCC, the polymerized polyphenol (a peak appearing at about 80 minutes on the chromatogram) was not contained in the green tea-derived polyphenol material. It was found that the oolong tea-derived polyphenol material contained about 30% in peak area ratio. It can be seen that 95% or more of the peak area ratio of the green tea-derived polyphenol material is a catechin monomer. In addition, it was revealed that caffeine was contained in the oolong tea-derived polyphenol material at a peak area ratio of about 40%.
[0019]
Example 2: Under the same HSCCC conditions as in Example 1, hop polyphenol was separated, and a part thereof was separated and analyzed by reversed-phase HPLC. The results are shown in FIG. 3 attached separately. By determining the peak area of the reverse phase HPLC chromatogram, more detailed quantification of the contained components was realized.
Reversed phase HPLC conditions: column, Mightysil RP-18 GP (4.6 mm × 150 mm, 5 μm, Kanto Kagaku);
A: 0.1% TFA: CH3CN (90:10), B: Linear gradient using 0.1% TFA: CH3CN (50:50) 0-20 min: 100% A, 20-60 min: 100% A- 50% A; flow rate, 1 ml / min; detection, DAD (280, 320, 350 nm)
From FIG. 3A, it can be seen that the hop-derived polyphenol contains the polymerized polyphenol in a peak area ratio of 50% or more. Further, as a result of further analyzing each fraction by reverse phase HPLC (FIG. 3B), a more detailed component ratio became clear. For example, Fr. 5 has a peak area ratio of about 7% in HSCCC, and Fr. Since the peak area ratio of the major component (Kaempferol-3-o-rutinose) in reverse phase HPLC was 92%, the content of kaempferol-3-o-rutinose in the hop-derived polyphenol was approximately It turned out to be 6.4%.
[0020]
【The invention's effect】
The method for separating polyphenols of the present invention exhibits excellent effects in the production of polyphenols and the quality control of polyphenol materials, which were not possible conventionally, by efficiently separating polymerized polyphenols.
[Brief description of the drawings]
FIG. 1 is a schematic view of a high-speed countercurrent chromatography (HSCCC) apparatus in which a J-shaped coiled planetary centrifuge is arranged.
2) A) HSCCC chromatogram of green tea-derived polyphenol material B) HSCCC chromatogram of oolong tea polyphenol material [FIG. 3] A) HSCCC chromatogram and fractionation pattern of hop polyphenol B) HSCCC fraction (fraction 1) 7) Reversed-phase HPLC chromatogram

Claims (7)

エーテル類、アセトニトリルまたはアルコール類、水または酸性水溶液を混和した二相溶媒系の上層または下層を固定相とし下層または上層を移動相に用いた真の液液分配クロマトグラフィである高速向流クロマトグラフィを用いることを特徴とするポリフェノールの分離方法。Use high-speed countercurrent chromatography, a true liquid-liquid partition chromatography in which the upper or lower layer is a stationary phase and the lower or upper layer is a mobile phase, using a two-phase solvent system in which ethers, acetonitrile or alcohols, water or an acidic aqueous solution are mixed. A method for separating polyphenols, comprising: t−ブチルメチルエーテル、アセトニトリル、0.1%トリフルオロ酢酸水溶液を2:2:3で混和した二相溶媒系の上層または下層を固定相とし下層または上層を移動相に用いた真の液液分配クロマトグラフィである高速向流クロマトグラフィを用いることを特徴とするポリフェノールの分離方法。A true liquid-liquid in which the upper or lower layer of a two-phase solvent system in which t-butyl methyl ether, acetonitrile, and a 0.1% trifluoroacetic acid aqueous solution are mixed at a ratio of 2: 2: 3 is used as an upper layer or a lower layer as a stationary phase and the lower or upper layer as a mobile phase. A method for separating polyphenols, comprising using high-speed countercurrent chromatography as partition chromatography. 高速向流クロマトグラフィを逆相HPLC、順相HPLC、GPCのいずれかひとつ以上の方法と組み合わせることを特徴とするポリフェノールの分離方法。A method for separating polyphenols, comprising combining high-speed countercurrent chromatography with at least one of reverse-phase HPLC, normal-phase HPLC, and GPC. 請求項1〜3のいずれか1項において、ポリフェノールがホップ由来のポリフェノールである分離方法。The method according to any one of claims 1 to 3, wherein the polyphenol is a hop-derived polyphenol. 請求項1〜4のいずれか1項において、ポリフェノールが重合型ポリフェノールである分離方法。The method according to any one of claims 1 to 4, wherein the polyphenol is a polymerized polyphenol. 請求項1〜5のいずれか1項の分離方法を用いたポリフェノール素材の製造方法。A method for producing a polyphenol material using the separation method according to claim 1. 請求項6で得られたポリフェノール素材を含有する食品、薬品、または化粧品の品質管理方法。A quality control method for a food, medicine or cosmetic containing the polyphenol material obtained in claim 6.
JP2003051143A 2003-02-27 2003-02-27 Method for separating polyphenols Pending JP2004256481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003051143A JP2004256481A (en) 2003-02-27 2003-02-27 Method for separating polyphenols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003051143A JP2004256481A (en) 2003-02-27 2003-02-27 Method for separating polyphenols

Publications (1)

Publication Number Publication Date
JP2004256481A true JP2004256481A (en) 2004-09-16

Family

ID=33116362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003051143A Pending JP2004256481A (en) 2003-02-27 2003-02-27 Method for separating polyphenols

Country Status (1)

Country Link
JP (1) JP2004256481A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022314A1 (en) * 2004-08-25 2006-03-02 Asahi Breweries, Ltd. Cholesterol metabolism controller and foods, drinks, food additives and drugs containing the same
WO2006115123A1 (en) * 2005-04-19 2006-11-02 Asahi Breweries, Ltd. Virus-inactivating agent
JP2007085868A (en) * 2005-09-21 2007-04-05 Asahi Breweries Ltd Quantitative analysis method of polyphenol in food and drink, quantitative analyzer and planning method of food and drink
CN109053417A (en) * 2018-07-27 2018-12-21 山东省分析测试中心 A kind of preparation method of high-purity ginkgoic acid
CN109776474A (en) * 2019-03-27 2019-05-21 淮阴师范学院 A method of the separating and purifying flavone class compound from eupatorium lindleynun var. trifoliolatum
CN114280201A (en) * 2021-12-31 2022-04-05 山东省千佛山医院 Efficient separation method for polyphenol components in dandelion
JP2022546752A (en) * 2019-09-11 2022-11-07 上海同田生物技術有限公司 Method for Simultaneous Isolation of Cannabidivarin and Cannabigerol

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN6009052469, DEGENHARDT, A., et al., J. Agric. Food Chem., 48(2), pp.338−343 (2000) *
JPN6009052471, DEGENHARDT, A., et al., J. Agric. Food Chem., 48(12), pp.5812−5818 (2000) *
JPN6009052473, SHIBUSAWA, Y., et al., J. Chromatogr. A, 886, pp.65−73 (2000) *
JPN6009052476, McMURROUGH, I., et al., J. Inst. Brew., 90(1), pp.24−32 (1984) *
JPN6009052478, PAPAGIANNOPOULOS, M., et al., J. Chromatogr. A, 976, pp.345−348 (2002) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022314A1 (en) * 2004-08-25 2006-03-02 Asahi Breweries, Ltd. Cholesterol metabolism controller and foods, drinks, food additives and drugs containing the same
WO2006115123A1 (en) * 2005-04-19 2006-11-02 Asahi Breweries, Ltd. Virus-inactivating agent
JP2007085868A (en) * 2005-09-21 2007-04-05 Asahi Breweries Ltd Quantitative analysis method of polyphenol in food and drink, quantitative analyzer and planning method of food and drink
JP4746391B2 (en) * 2005-09-21 2011-08-10 アサヒビール株式会社 Method for designing functionality and / or taste of food and drink, and food and drink
CN109053417A (en) * 2018-07-27 2018-12-21 山东省分析测试中心 A kind of preparation method of high-purity ginkgoic acid
CN109053417B (en) * 2018-07-27 2021-03-05 山东省分析测试中心 Preparation method of high-purity ginkgolic acid
CN109776474A (en) * 2019-03-27 2019-05-21 淮阴师范学院 A method of the separating and purifying flavone class compound from eupatorium lindleynun var. trifoliolatum
JP2022546752A (en) * 2019-09-11 2022-11-07 上海同田生物技術有限公司 Method for Simultaneous Isolation of Cannabidivarin and Cannabigerol
JP7261943B2 (en) 2019-09-11 2023-04-20 上海同田生物技術有限公司 Method for Simultaneous Isolation of Cannabidivarin and Cannabigerol
CN114280201A (en) * 2021-12-31 2022-04-05 山东省千佛山医院 Efficient separation method for polyphenol components in dandelion

Similar Documents

Publication Publication Date Title
Zhang et al. Techniques for extraction and isolation of natural products: A comprehensive review
Hashim et al. Rapid solid-phase extraction and analysis of resveratrol and other polyphenols in red wine
Sticher Natural product isolation
Zhang et al. Isolation and purification of four flavone C-glycosides from antioxidant of bamboo leaves by macroporous resin column chromatography and preparative high-performance liquid chromatography
Köhler et al. Preparative isolation of procyanidins from grape seed extracts by high-speed counter-current chromatography
Lu et al. Application of preparative high-speed counter-current chromatography for separation of chlorogenic acid from Flos Lonicerae
Kalili et al. Toward unraveling grape tannin composition: Application of online hydrophilic interaction chromatography× reversed-phase liquid chromatography–time-of-flight mass spectrometry for grape seed analysis
Svedström et al. High-performance liquid chromatographic determination of oligomeric procyanidins from dimers up to the hexamer in hawthorn
Svedström et al. Fractionation of polyphenols in hawthorn into polymeric procyanidins, phenolic acids and flavonoids prior to high-performance liquid chromatographic analysis
Silva et al. A fast method using a new hydrophilic–lipophilic balanced sorbent in combination with ultra-high performance liquid chromatography for quantification of significant bioactive metabolites in wines
Tanaka et al. Comprehensive separation and structural analyses of polyphenols and related compounds from bracts of hops (Humulus lupulus L.)
Lu et al. Application of high-speed counter-current chromatography to the preparative separation and purification of baicalin from the Chinese medicinal plant Scutellaria baicalensis
Shikanga et al. Isolation of Sceletium alkaloids by high-speed countercurrent chromatography
Zeng et al. Separation and identification of flavonoids from complex samples using off-line two-dimensional liquid chromatography tandem mass spectrometry
Pyrzynska et al. Chromatographic analysis of polyphenols
Tsai et al. Identification and determination of honokiol and magnolol from Magnolia officinalis by high-performance liquid chromatography with phtodiode-array UV detection
Wang et al. Pipette tip solid-phase extraction and high-performance liquid chromatography for the determination of flavonoids from Epimedii herba in rat serum and application of the technique to pharmacokinetic studies
Lu et al. Screening of complex natural extracts by countercurrent chromatography using a parallel protocol
Reid et al. Isolation of natural products by low-pressure column chromatography
Wang et al. On-line two-dimensional countercurrent chromatography× high performance liquid chromatography system with a novel fragmentary dilution and turbulent mixing interface for preparation of coumarins from Cnidium monnieri
JP2004256481A (en) Method for separating polyphenols
JP5337574B2 (en) Separation and purification method of proanthocyanidins
Hamed et al. Sample preparation methods for determination of quercetin and quercetin glycosides in diverse matrices
Chen et al. Online polar two phase countercurrent chromatography× high performance liquid chromatography for preparative isolation of polar polyphenols from tea extract in a single step
Huang et al. A target analogue imprinted polymer for the recognition of antiplatelet active ingredients in Radix Salviae Miltiorrhizae by LC/MS/MS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330