JP2004256380A - Method of joining glass substrate - Google Patents

Method of joining glass substrate Download PDF

Info

Publication number
JP2004256380A
JP2004256380A JP2003052165A JP2003052165A JP2004256380A JP 2004256380 A JP2004256380 A JP 2004256380A JP 2003052165 A JP2003052165 A JP 2003052165A JP 2003052165 A JP2003052165 A JP 2003052165A JP 2004256380 A JP2004256380 A JP 2004256380A
Authority
JP
Japan
Prior art keywords
bonding
glass
glass substrates
glass substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003052165A
Other languages
Japanese (ja)
Other versions
JP4000076B2 (en
Inventor
Yoshihiro Kurami
義弘 倉見
Takaaki Onoe
高明 尾上
Hideto Satomi
秀人 里見
Masashi Amatsu
正史 天津
Teru Azumi
輝 安積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003052165A priority Critical patent/JP4000076B2/en
Publication of JP2004256380A publication Critical patent/JP2004256380A/en
Application granted granted Critical
Publication of JP4000076B2 publication Critical patent/JP4000076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the formation of bubbles at the joining part of glass substrates to solve a problem that the bubbles damage the appearance of the product and lowers the joining strength. <P>SOLUTION: In a method of joining a plurality of glass substrates, the glass substrates are stacked and heated under a pressure applied in the thickness direction of the glass substrates. Before joining the glass substrates, a dummy groove other than a channel groove to flow a fluid is formed on the joining surface of at least one glass substrate, and through-holes communicating with the dummy groove and opening to the atmosphere are formed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス基板の接合方法に関し、特に、石英ガラス基板の接合方法に関する。
【0002】
【従来の技術】
ガラスや石英ガラスは耐薬品性・耐熱性に優れるばかりではなく、きわめて安定した理化学容器材料であり、半導体製造装置用処理槽等の治具材料として広く用いられてきた。また、最近では、化学やバイオテクノロジーの分野においてマイクロチップやマイクロ化学プラント等、化学反応の集積化を目的に微細な三次元構造を持つガラス部材や石英ガラス部材が注目を集めている。
【0003】
このようなガラスや石英ガラスを接合する場合に、接着剤や低融点ガラス等の接合物質を介在させると耐薬品性や耐熱性を損なう場合があるため、このような接合物質を介さずに素材自身を完全一体化できる熱融着を行うことが望ましい(例えば、特許文献1参照)。
【0004】
【特許文献1】特開平6−298539号公報(第2〜5頁)
【0005】
【発明が解決しようとする課題】
図2にマイクロ化学プラントチップの構造例を示す。このマイクロ化学プラントチップは、2つの薬液の注入口A11、注入口B12と1つの注出口13とからなる貫通穴をあけた前面基板17と、薬液が流れる流路となる流路溝15が形成された背面基板18とを接合したものである。
【0006】
注入口A11と注入口B12からは、反応させようとする個別の薬液を注入し、流路となる溝15の合流部において2つの薬液が混合される。
【0007】
二つの薬液の反応時間は、合流部以降の溝15の流路長と薬液の流速で制御され、注出口13から反応が終わった薬液を取り出すものである。
【0008】
このようなマイクロ化学プラントチップの場合、図2の泡残り部位19に示すような比較的広い面積で流路が形成されていない部分に大きな泡残りが生じ易いという問題点がある。
【0009】
図4(a)から(e)に上記の泡残りのメカニズムの説明図を示す。図4(a)に示したガラス基板の昇温過程では、重ね合わした前面基板17と背面基板18が、ガラス基板の内側よりも外側が先に温度が上がるというガラス基板内の温度分布の不均一によるガラス基板が接着面を凹にした反りによって前面基板17と背面基板18の間に泡20Aが発生する。
【0010】
高温をキープしている間に図4(b)から(d)に示すように、ガラス基板全体が均熱化されていくに従って基板の反りは軽減されて、前面基板17と背面基板18の外周部分から接合が進行するが、泡20Dは逃げる経路が無いために、前面基板17と背面基板18の間に残ってしまう。
【0011】
このような未接合部分(泡残り部分)が発生すると製品の外観を損ねるだけでなく、接合強度を低下させるという問題点がある。特にマイクロ化学プラントチップのように、高圧で薬液を注入する際には、接合強度の信頼性が問題となってくる。
【0012】
【課題を解決するための手段】
発明者らは、ガラス基板の融着の検討を行った結果、ガラス基板の融着時にガラス基板間に泡を残さない接合方法を発明するに至った。
【0013】
請求項1の発明では、複数枚のガラス基板を重ね合わせて、複数枚のガラス基板の厚さ方向に圧力を加えながら加熱を行い複数枚のガラス基板を接合する接合方法において、ガラス基板を接合するに先立って、少なくとも一方のガラス基板の接合面に流体を流す流路溝とは別にダミー溝を形成するとともに、ダミー溝と連結し、かつ大気中に通ずる貫通穴を形成することを特徴とするガラス基板の接合方法である。
【0014】
請求項2の発明では、液体を注入する貫通穴と液体を注出する貫通穴とが形成された第一のガラス基板と液体を流す流路溝が形成された第二のガラス基板との位置合わせを行い、厚さ方向に圧力を加えながら加熱を行い第一のガラス基板と第二のガラス基板とを接合する接合方法において、第二のガラス基板の接合面には、流路溝と平行するダミー溝を流路溝と共に形成し、第一のガラス基板にはダミー溝と連結し、かつ大気中に通ずる貫通穴を流体の注入、注出用貫通穴と共に形成し、これら第一および第二のガラス基板を接合することを特徴とするガラス基板の接合方法である。
【0015】
請求項3の発明では、ガラス基板が石英ガラスであることを特徴とするガラス基板の接合方法である。
【0016】
請求項4の発明では、加熱を行う際に、接合されるガラス基板を空気(酸素、窒素)分子よりも分子サイズの小さいガス雰囲気中で接合を行うことを特徴とするガラス基板の接合方法である。
【0017】
請求項5の発明では、ガラス基板を重ね合わせる時に、少なくともガラス基板の接合面を水で濡らすことを特徴とするガラス基板の接合方法である。
【0018】
【発明の実施の形態】
〔実施例1〕
図1は、本発明の実施例1に係るマイクロ化学プラントチップの製造手順を示す図である。
【0019】
まず、図1に示すように各々100mm角、厚さ2mmの石英ガラスからなる前面基板17と背面基板18を用意し、前面基板17には、基板の厚さ方向に貫通し直径2mmの穴である注入口A11、注入口B12、注出口13及びダミー貫通穴14をサンドブラスト法もしくはダイヤドリル等を用いて形成する。
【0020】
また、背面基板18の接合面には、前記2つの注入口と1つの注出口に連通する流路溝15と、前記ダミー貫通穴に連通するダミー溝16とをそれぞれ深さ500μm、幅500μmで形成する。このダミー溝16は基板上の泡残りが生じやすい領域に形成され、前記流路溝の形成と同一工程で形成するのが望ましい。具体的には、流路溝15とダミー溝16を形成しない基板部分を耐性のあるレジストで被覆し、サブトラクティブ法により形成する。サブトラクティブ法としては、サンドブラスト法やフッ酸による化学エッチング法が用いられる。
【0021】
なお、ダミー貫通穴14は背面基板18に形成しても構わない。
なお、ダミー溝は、図1に示すように溝のパターンを閉じた形にした方が、接着強度が上がるのでより好ましい。
【0022】
ダミー溝16のピッチは、接合強度と泡残り性から0.5〜2mmが好ましい。
【0023】
次に、接合する前面基板17と背面基板18の接合面を研磨によって、数μm程度の面精度に仕上げる。この研磨は、上記穴加工や溝加工の前に行っていても構わない。
【0024】
研磨の終了後、10%フッ化水素酸溶液によって、少なくとも接合面全面にわたって洗浄する。
【0025】
フッ化水素酸溶液を純水で十分に洗い流した後、水分が十分に残っている状態で、前面基板17と背面基板18を位置合わせしながら重ね合わせ、接合面同士が密着するように押し付ける。なお、この工程は、一旦接合面を乾かしてから、再度接合面を濡らしても構わないし、また、純水中に前面基板17と背面基板18とを浸漬した状態で、位置合わせを行い、接合面を密着させると接合面に異物が残らないのでより好ましい。
【0026】
接合面同士を密着させた前面基板17と背面基板18を、1平方センチメートル当たり100〜300gの圧力を加えて接合面の密着状態を維持するための治具に固定する。
【0027】
密着した接合面同士の界面に介在している水分が蒸発しないうちに、治具に固定したままの前面基板17と背面基板18を大気雰囲気のオーブンで昇温レートが10〜50℃/分で、キープ温度を1500℃で2時間加熱する。この加圧、加熱工程において基板接合面に生じる泡(気体)はダミー溝16とダミー貫通穴14とを介して基板外に排出されるので、基板接合面での泡残りを防止することができる。
【0028】
なお、加熱雰囲気は、ヘリウム雰囲気もしくは水素雰囲気で接合を行うとガスの分子サイズが空気の酸素や窒素よりも小さいために、より泡残りを低減することができる。
【0029】
図1(b)は、こうして接合されたマイクロ化学プラントチップの完成状態を示す。こうして形成されたマイクロ化学プラントチップは、ダミー溝と流路溝が同時に形成でき、注入口、注出口とダミー貫通穴も同時に形成できるので、工程が増加しないという長所がある。
【0030】
なお、実施例1では、石英ガラスについて説明を行ったが、ガラス基板の材質は、ソーダライムガラス、登録商標パイレックスガラス等のガラス材料を用いても構わないが、その際には、キープ温度を使用するガラス材料の転移点よりも高く軟化点よりも低い温度に設定する。
【0031】
〔実施例2〕
図3は第2実施例に係るマイクロ化学プラントチップの形成例で、第1実施例とは流路溝27を前面基板端面まで形成して、その端面に薬液の注入口A24、注入口B25、注出口26を設けた点で異なる。この第2実施例による構造では、注入口A24及び注入口B25を上に向けてマイクロ化学プラントチップを立てて配置することが可能になり、第1実施例に比べてマイクロ化学プラントチップの設置面積を小さくすることができる。
【0032】
実施例1および実施例2では、マイクロ化学プラントチップのへの適用例を説明したが、さまざまな流路溝のパターンを選択し、流路溝の形成されない領域にダミー溝と貫通穴を設けることでバイオチップ等のガラス基板を接合して形成されるチップの形成に応用できる。また、これら実施例1、2では、ダミー溝と貫通穴が各1ヶ所であったが、複数設けても構わない。
【0033】
図5(a)〜(e)は以上説明した泡残りの生じない基板接合法の工程図を示す。
【0034】
この図を参照して泡残りが生じないメカニズムを説明すると、先ず図5(a)に示す昇温過程では、図4(a)に示したように、重ね合わした前面基板17と背面基板18が、ガラス基板の内側よりも外側が先に温度が上がるというガラス基板内の温度分布の不均一によるガラス基板が接着面を凹にした反りによって前面基板17と背面基板18の間に泡23Aが発生する。
【0035】
図5(b)〜(d)は、高温にキープしている時の泡23B、23C、23Dの動向を示している。高温にキープされるとガラス基板全体が均熱化されていくに従って基板の反りは軽減されて、前面基板17と背面基板18の外周部分から接合が進行し、泡の中の気体は、ダミー溝16を通ってダミー貫通穴14から抜けるために、泡は徐々に小さくなり、最後は図5(e)に示すように、泡残りがない状態で前面基板17と背面基板18とが接合される。
【0036】
【発明の効果】
以上詳細に述べたごとく本発明は、ガラス基板同士を接合する際に、薬液等の流体の流路溝の他に、ダミー溝とダミー溝に連結した貫通穴を設けることで、ガラス基板接合面での泡残りの発生を抑止することができるため、ガラス基板間の接合強度をあげることができ、ガラス基板間の接合の信頼性をあげることができる。
【図面の簡単な説明】
【図1】本発明の実施例1に係るマイクロ化学プラントチップの製造手順を示す図。
【図2】マイクロ化学プラントチップの構造例を示す図。
【図3】本発明の実施例2に係るマイクロ化学プラントチップの形成例を示す図。
【図4】基板接合時に泡残りが生じるメカニズムの説明図。
【図5】基板接合時に泡残りが生じないメカニズムの説明図。
【符号の説明】
11 注入口A
12 注入口B
13 注出口
14 ダミー貫通穴
15 流路溝
16 ダミー溝
17 前面基板
18 背面基板
19 泡残り部位
20A、20B、20C、20D 泡
23A、23B、23C、23D 泡
24 注入口A
25 注入口B
26 注出口
27 流路溝
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for joining glass substrates, and more particularly, to a method for joining quartz glass substrates.
[0002]
[Prior art]
Glass and quartz glass are not only excellent in chemical resistance and heat resistance but also extremely stable physicochemical containers, and have been widely used as jig materials for processing tanks for semiconductor manufacturing equipment. Recently, in the fields of chemistry and biotechnology, glass members and quartz glass members having a fine three-dimensional structure, such as microchips and microchemical plants, have attracted attention for the purpose of integrating chemical reactions.
[0003]
When bonding such a glass or quartz glass, if a bonding material such as an adhesive or low-melting glass is interposed, chemical resistance or heat resistance may be impaired. It is desirable to perform heat fusion that can completely integrate itself (for example, see Patent Document 1).
[0004]
[Patent Document 1] JP-A-6-298538 (pages 2 to 5)
[0005]
[Problems to be solved by the invention]
FIG. 2 shows a structural example of a microchemical plant chip. In this microchemical plant chip, a front substrate 17 having a through-hole formed of an inlet A11 for two chemicals, an inlet B12 and one outlet 13 and a flow channel 15 serving as a flow path for a chemical are formed. And the rear substrate 18 thus bonded.
[0006]
Individual chemicals to be reacted are injected from the injection port A11 and the injection port B12, and the two chemicals are mixed at the junction of the grooves 15 serving as flow paths.
[0007]
The reaction time of the two chemicals is controlled by the flow path length of the groove 15 and the flow rate of the chemicals after the confluence, and the chemicals after the reaction are taken out from the outlet 13.
[0008]
In the case of such a microchemical plant chip, there is a problem that large bubbles are likely to be generated in a portion where a flow path is not formed in a relatively large area as shown in a bubble remaining portion 19 in FIG.
[0009]
FIGS. 4 (a) to 4 (e) are illustrations of the mechanism of the above-mentioned residual foam. In the process of raising the temperature of the glass substrate shown in FIG. 4A, the superimposed front substrate 17 and rear substrate 18 have a non-uniform temperature distribution in the glass substrate such that the temperature rises outside the glass substrate before the inside. Due to the warpage of the glass substrate due to the concaved adhesive surface, bubbles 20A are generated between the front substrate 17 and the rear substrate 18.
[0010]
While keeping the high temperature, as shown in FIGS. 4B to 4D, the warpage of the substrate is reduced as the entire glass substrate is soaked, and the outer circumferences of the front substrate 17 and the rear substrate 18 are reduced. Although the bonding proceeds from the portion, the bubble 20D remains between the front substrate 17 and the rear substrate 18 because there is no escape route.
[0011]
When such an unjoined portion (bubble remaining portion) occurs, there is a problem that not only the appearance of the product is impaired, but also the joining strength is reduced. Particularly when a chemical solution is injected at a high pressure as in a microchemical plant chip, the reliability of the bonding strength becomes a problem.
[0012]
[Means for Solving the Problems]
The present inventors have studied the fusion of glass substrates, and as a result, have come to invent a bonding method that does not leave bubbles between the glass substrates when the glass substrates are fused.
[0013]
According to the first aspect of the present invention, in a bonding method in which a plurality of glass substrates are stacked and heated while applying pressure in a thickness direction of the plurality of glass substrates to bond the plurality of glass substrates, Prior to doing so, a dummy groove is formed separately from the flow path groove for flowing a fluid on at least one of the glass substrate bonding surfaces, and the through hole is formed to be connected to the dummy groove and communicate with the atmosphere. This is a method for bonding glass substrates to be bonded.
[0014]
According to the invention of claim 2, the position of the first glass substrate in which the through hole for injecting the liquid and the through hole for injecting the liquid are formed, and the position of the second glass substrate in which the flow channel for flowing the liquid is formed. In the joining method of joining and bonding the first glass substrate and the second glass substrate by heating while applying pressure in the thickness direction, the joining surface of the second glass substrate is parallel to the flow channel. The first glass substrate is connected to the dummy groove, and a through hole communicating with the atmosphere is formed together with a through hole for injecting and discharging a fluid. A method for joining glass substrates, comprising joining two glass substrates.
[0015]
According to a third aspect of the present invention, there is provided the method for bonding glass substrates, wherein the glass substrate is quartz glass.
[0016]
According to a fourth aspect of the present invention, there is provided a method of bonding glass substrates, wherein, when heating, the glass substrates to be bonded are bonded in a gas atmosphere having a molecular size smaller than that of air (oxygen, nitrogen) molecules. is there.
[0017]
According to a fifth aspect of the present invention, there is provided a method for bonding glass substrates, wherein when bonding the glass substrates, at least a bonding surface of the glass substrates is wetted with water.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
[Example 1]
FIG. 1 is a diagram illustrating a manufacturing procedure of a microchemical plant chip according to the first embodiment of the present invention.
[0019]
First, as shown in FIG. 1, a front substrate 17 and a rear substrate 18 each made of quartz glass of 100 mm square and 2 mm thick are prepared, and the front substrate 17 is formed with a hole having a diameter of 2 mm penetrating in the thickness direction of the substrate. A certain injection port A11, an injection port B12, a spout 13 and a dummy through hole 14 are formed by a sand blast method or a diamond drill.
[0020]
A flow channel 15 communicating with the two inlets and one spout and a dummy groove 16 communicating with the dummy through hole are formed on the joint surface of the rear substrate 18 at a depth of 500 μm and a width of 500 μm, respectively. Form. The dummy groove 16 is formed in a region on the substrate where bubbles are likely to remain, and is desirably formed in the same step as the formation of the flow channel. Specifically, a substrate portion where the flow channel groove 15 and the dummy groove 16 are not formed is covered with a resistant resist, and is formed by a subtractive method. As the subtractive method, a sand blast method or a chemical etching method using hydrofluoric acid is used.
[0021]
Note that the dummy through holes 14 may be formed in the rear substrate 18.
It is more preferable that the dummy groove has a closed groove pattern as shown in FIG. 1 because the adhesive strength is increased.
[0022]
The pitch of the dummy grooves 16 is preferably 0.5 to 2 mm from the viewpoint of the bonding strength and the bubble remaining property.
[0023]
Next, the joining surface between the front substrate 17 and the rear substrate 18 to be joined is finished to a surface accuracy of about several μm by polishing. This polishing may be performed before the hole processing and the groove processing.
[0024]
After completion of the polishing, at least the entire bonding surface is washed with a 10% hydrofluoric acid solution.
[0025]
After the hydrofluoric acid solution is sufficiently rinsed with pure water, the front substrate 17 and the rear substrate 18 are overlapped while being aligned with each other in a state where sufficient moisture remains, and pressed so that the bonding surfaces are in close contact with each other. In this step, the bonding surface may be once dried and then the bonding surface may be wetted again, or the alignment is performed by immersing the front substrate 17 and the rear substrate 18 in pure water. Adhering the surfaces is more preferable because no foreign matter remains on the joint surface.
[0026]
The front substrate 17 and the rear substrate 18 having the bonding surfaces adhered to each other are fixed to a jig for applying a pressure of 100 to 300 g per square centimeter to maintain the bonding state of the bonding surfaces.
[0027]
The front substrate 17 and the rear substrate 18 which are fixed to the jig are heated in an oven in an air atmosphere at a heating rate of 10 to 50 ° C./min before the moisture existing at the interface between the bonded bonding surfaces is evaporated. And heating at 1500 ° C. for 2 hours. Since bubbles (gas) generated on the substrate bonding surface in the pressurizing and heating steps are discharged out of the substrate through the dummy grooves 16 and the dummy through holes 14, it is possible to prevent bubbles from remaining on the substrate bonding surface. .
[0028]
Note that, when bonding is performed in a helium atmosphere or a hydrogen atmosphere, since the molecular size of the gas is smaller than that of oxygen or nitrogen in air, remaining bubbles can be further reduced.
[0029]
FIG. 1 (b) shows a completed state of the microchemical plant chip thus joined. The microchemical plant chip thus formed has an advantage that the number of steps is not increased because the dummy groove and the flow path groove can be formed at the same time, and the injection port, the spout and the dummy through hole can be formed at the same time.
[0030]
In the first embodiment, quartz glass has been described. However, the glass substrate may be made of a glass material such as soda lime glass or registered trademark Pyrex glass. The temperature is set higher than the transition point of the glass material used and lower than the softening point.
[0031]
[Example 2]
FIG. 3 shows an example of forming a microchemical plant chip according to the second embodiment, which is different from the first embodiment in that a flow channel 27 is formed up to the end face of the front substrate, and the liquid inlet A24, the inlet B25, It differs in that a spout 26 is provided. In the structure according to the second embodiment, it is possible to arrange the microchemical plant chip upright with the inlet A24 and the inlet B25 facing upward, and the installation area of the microchemical plant chip is larger than in the first embodiment. Can be reduced.
[0032]
In the first and second embodiments, an example of application to a microchemical plant chip has been described. However, various patterns of flow channels are selected, and dummy grooves and through holes are provided in regions where flow channels are not formed. Can be applied to the formation of a chip formed by bonding a glass substrate such as a biochip. In each of the first and second embodiments, the dummy groove and the through hole are each one, but a plurality of dummy grooves and through holes may be provided.
[0033]
5 (a) to 5 (e) show process diagrams of the above-described substrate bonding method in which no bubble remains.
[0034]
Referring to this figure, the mechanism in which no bubble remains will be described. First, in the heating process shown in FIG. 5A, as shown in FIG. A bubble 23A is generated between the front substrate 17 and the rear substrate 18 due to the unevenness of the temperature distribution in the glass substrate such that the temperature rises before the inside of the glass substrate and the inside of the glass substrate causes the bonding surface to be concave. I do.
[0035]
FIGS. 5B to 5D show the movement of the bubbles 23B, 23C, and 23D when keeping the temperature at a high temperature. When the glass substrate is kept at a high temperature, the warpage of the substrate is reduced as the entire glass substrate is soaked, the bonding proceeds from the outer peripheral portions of the front substrate 17 and the rear substrate 18, and the gas in the bubbles flows into the dummy grooves. Since the bubbles gradually escape from the dummy through-holes 14 through the holes 16, the front substrate 17 and the rear substrate 18 are joined together without any remaining bubbles as shown in FIG. .
[0036]
【The invention's effect】
As described in detail above, the present invention provides, when bonding glass substrates, a dummy groove and a through-hole connected to the dummy groove, in addition to a flow channel groove for a fluid such as a chemical solution, so that a glass substrate bonding surface is provided. This can suppress the generation of residual bubbles in the glass, so that the bonding strength between the glass substrates can be increased, and the reliability of the bonding between the glass substrates can be increased.
[Brief description of the drawings]
FIG. 1 is a diagram showing a manufacturing procedure of a microchemical plant chip according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a structural example of a microchemical plant chip.
FIG. 3 is a diagram showing an example of forming a microchemical plant chip according to a second embodiment of the present invention.
FIG. 4 is an explanatory view of a mechanism in which bubbles remain when bonding substrates.
FIG. 5 is an explanatory diagram of a mechanism that does not cause a bubble to remain when bonding substrates.
[Explanation of symbols]
11 Inlet A
12 Inlet B
13 Injection port 14 Dummy through hole 15 Flow path groove 16 Dummy groove 17 Front substrate 18 Back substrate 19 Bubbles remaining portions 20A, 20B, 20C, 20D Bubbles 23A, 23B, 23C, 23D Bubbles 24 Inlet A
25 Inlet B
26 Outlet 27 Flow channel

Claims (5)

複数枚のガラス基板を重ね合わせて、該複数枚のガラス基板の厚さ方向に圧力を加えながら加熱を行い前記複数枚のガラス基板を接合する接合方法において、
ガラス基板を接合するに先立って、少なくとも一方のガラス基板の接合面に流体を流す流路溝とは別にダミー溝を形成するとともに、該ダミー溝と連結し、かつ大気中に通ずる貫通穴を形成することを特徴とするガラス基板の接合方法。
In a bonding method of stacking a plurality of glass substrates, heating while applying pressure in the thickness direction of the plurality of glass substrates, and bonding the plurality of glass substrates,
Prior to bonding the glass substrates, a dummy groove is formed separately from a flow channel for flowing a fluid on at least one of the glass substrate bonding surfaces, and a through hole that connects to the dummy groove and communicates with the air is formed. A method of bonding glass substrates, comprising:
液体を注入する貫通穴と液体を注出する貫通穴とが形成された第一のガラス基板と液体を流す流路溝が形成された第二のガラス基板との位置合わせを行い、厚さ方向に圧力を加えながら加熱を行い第一のガラス基板と第二のガラス基板とを接合する接合方法において、
前記第二のガラス基板の接合面には、前記流路溝と平行するダミー溝を該流路溝と共に形成し、前記第一のガラス基板には前記ダミー溝と連結し、かつ大気中に通ずる貫通穴を前記流体の注入、注出用貫通穴と共に形成し、これら第一および第二のガラス基板を接合することを特徴とするガラス基板の接合方法。
A first glass substrate having a through hole for injecting a liquid and a through hole for discharging a liquid is aligned with a second glass substrate having a channel groove for flowing the liquid, and the thickness direction. In the joining method of joining the first glass substrate and the second glass substrate by heating while applying pressure to the first glass substrate,
On the bonding surface of the second glass substrate, a dummy groove parallel to the flow channel is formed together with the flow channel, and the first glass substrate is connected to the dummy groove and communicates with the atmosphere. A method for bonding glass substrates, comprising: forming a through hole together with the through hole for injecting and discharging a fluid; and bonding the first and second glass substrates.
前記ガラス基板が石英ガラスであることを特徴とする請求項1または請求項2に記載のガラス基板の接合方法。The method for bonding glass substrates according to claim 1, wherein the glass substrate is quartz glass. 前記加熱を行う際に、接合されるガラス基板を空気(酸素、窒素)分子よりも分子サイズの小さいガス雰囲気中で接合を行うことを特徴とする請求項1乃至請求項3のいずれかに記載のガラス基板の接合方法。4. The method according to claim 1, wherein when the heating is performed, the glass substrates to be bonded are bonded in a gas atmosphere having a molecular size smaller than that of air (oxygen, nitrogen) molecules. 5. Glass substrate bonding method. 前記ガラス基板を重ね合わせる時に、少なくともガラス基板の接合面を水で濡らすことを特徴とする請求項1乃至請求項4のいずれかに記載のガラス基板の接合方法。The method for bonding glass substrates according to claim 1, wherein when the glass substrates are overlapped, at least a bonding surface of the glass substrates is wetted with water.
JP2003052165A 2003-02-28 2003-02-28 Glass substrate bonding method Expired - Fee Related JP4000076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003052165A JP4000076B2 (en) 2003-02-28 2003-02-28 Glass substrate bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003052165A JP4000076B2 (en) 2003-02-28 2003-02-28 Glass substrate bonding method

Publications (2)

Publication Number Publication Date
JP2004256380A true JP2004256380A (en) 2004-09-16
JP4000076B2 JP4000076B2 (en) 2007-10-31

Family

ID=33117098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003052165A Expired - Fee Related JP4000076B2 (en) 2003-02-28 2003-02-28 Glass substrate bonding method

Country Status (1)

Country Link
JP (1) JP4000076B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224014A (en) * 2005-02-18 2006-08-31 Yokogawa Electric Corp Micro-flowing passage device
WO2010147173A1 (en) * 2009-06-19 2010-12-23 ソニーケミカル&インフォメーションデバイス株式会社 Manufacturing method for small-sized reactors and small-sized reactors
WO2011118692A1 (en) * 2010-03-24 2011-09-29 日本電気硝子株式会社 Manufacturing method for glass plate laminated body, glass plate bonding method, and glass plate laminated body manufactured using the manufacturing method
JP2020527528A (en) * 2018-04-24 2020-09-10 クンシャン ゴー−ビシオノクス オプト−エレクトロニクス カンパニー リミテッドKunshan Go−Visionox Opto−Electronics Co., Ltd. Display groove processing method and display
WO2024080427A1 (en) * 2022-10-11 2024-04-18 (재)한국나노기술원 Bonding structure of heterogeneous substrates, manufacturing method therefor, and elastic wave device using same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224014A (en) * 2005-02-18 2006-08-31 Yokogawa Electric Corp Micro-flowing passage device
WO2010147173A1 (en) * 2009-06-19 2010-12-23 ソニーケミカル&インフォメーションデバイス株式会社 Manufacturing method for small-sized reactors and small-sized reactors
JP2011000557A (en) * 2009-06-19 2011-01-06 Sony Chemical & Information Device Corp Method for manufacturing small reactor
WO2011118692A1 (en) * 2010-03-24 2011-09-29 日本電気硝子株式会社 Manufacturing method for glass plate laminated body, glass plate bonding method, and glass plate laminated body manufactured using the manufacturing method
JP2020527528A (en) * 2018-04-24 2020-09-10 クンシャン ゴー−ビシオノクス オプト−エレクトロニクス カンパニー リミテッドKunshan Go−Visionox Opto−Electronics Co., Ltd. Display groove processing method and display
US11252270B2 (en) 2018-04-24 2022-02-15 Kunshan Go-Visionox Opto-Electronics Co., Ltd. Display screens and methods for manufacturing display screens
WO2024080427A1 (en) * 2022-10-11 2024-04-18 (재)한국나노기술원 Bonding structure of heterogeneous substrates, manufacturing method therefor, and elastic wave device using same

Also Published As

Publication number Publication date
JP4000076B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
JP4969449B2 (en) Fluid container composed of two plates
JP2003222633A (en) Microchip
KR101985639B1 (en) Method of attaching substrate and manufacturing method of microchip
JP2007136292A (en) Manufacturing method of microchannel structure, microchannel structure, and microreactor
JP5559493B2 (en) Manufacturing method of small reactor
JP2004033141A (en) Polymerase chain reaction container and method for producing the same
JP2010043928A (en) Manufacturing method of biochip, and the biochip
JP2006187684A (en) Microfluid device
JP2006187685A (en) Microstructure, microreactor, heat exchanger and manufacturing method of microstructure
JP2009518599A (en) Thin wire joining and / or sealing system and method
JP2004256380A (en) Method of joining glass substrate
CN109701674A (en) Micro-fluidic chip microelectrode technique
JP2006234600A (en) Plastic microchip and its manufacturing method
JP4192450B2 (en) Manufacturing method of microchannel structure
JP2007240461A (en) Plastic microchip, joining method therefor, and biochip or micro analytical chip using the same
WO2020235398A1 (en) Microchip
JP5598432B2 (en) Microchannel device manufacturing method and microchannel chip
JP2007144419A (en) Micro chemical reactor
TWI808205B (en) Nozzle for cleaning substrate and method of manufacturing the same
US20080266360A1 (en) Ink-jet head and manufacturing method thereof
Li et al. Energy director structure and self‐balancing jig for the ultrasonic bonding of microfluidic chips
JP2009069051A (en) Manufacturing method of microfluid device
JP2005224688A (en) Method for manufacturing microreactor chip
CN102319593B (en) Cytosis polymer microfluidic chip and preparation method thereof
JP2006133003A (en) Microchemical device and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040602

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040602

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees