JP2004256176A - Pressure container and method of manufacturing the same - Google Patents

Pressure container and method of manufacturing the same Download PDF

Info

Publication number
JP2004256176A
JP2004256176A JP2004050709A JP2004050709A JP2004256176A JP 2004256176 A JP2004256176 A JP 2004256176A JP 2004050709 A JP2004050709 A JP 2004050709A JP 2004050709 A JP2004050709 A JP 2004050709A JP 2004256176 A JP2004256176 A JP 2004256176A
Authority
JP
Japan
Prior art keywords
polyester
pressurized container
reinforced
container
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004050709A
Other languages
Japanese (ja)
Inventor
Wit Gerrit De
ゲリット・デ・ウィット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2004256176A publication Critical patent/JP2004256176A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • F17C1/06Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/01Reinforcing or suspension means
    • F17C2203/011Reinforcing means
    • F17C2203/012Reinforcing means on or in the wall, e.g. ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0617Single wall with one layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • F17C2203/0643Stainless steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0646Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0665Synthetics in form of fibers or filaments radially wound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0668Synthetics in form of fibers or filaments axially wound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0673Polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/068Special properties of materials for vessel walls
    • F17C2203/0697Special properties of materials for vessel walls comprising nanoparticles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2118Moulding by injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2127Moulding by blowing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/221Welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/013Carbone dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/036Avoiding leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/02Applications for medical applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0545Tools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0563Pneumatic applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/07Applications for household use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/07Applications for household use
    • F17C2270/0754Fire extinguishers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plastic-made pressure container which is excellent in gas and humidity shielding property, creep resistance and shock resistance, and is particularly suitable for beverage. <P>SOLUTION: The pressure container for storing a gas used for an air pressure device or carbonated drinks such as liquid carbon dioxide, beer and soft drinks is formed of fiber reinforced polyester and has excellent creep resistance, elastic modulus and yield strength. The pressure container comprising the reinforced polyester maintains dissolved carbon dioxide of 0.25wt% or more at a storage temperature of 30 to 35°C in a six month if a liquid containing the dissolved carbon dioxide of about 0.4 to 0.6wt% is filled in the container at an internal pressure of 1 bar or more. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、強化熱可塑性プラスチック製加圧容器並びに強化熱可塑性プラスチックから加圧容器を製造する方法に関する。   The present invention relates to a pressurized container made of reinforced thermoplastics and a method for producing a pressurized container from reinforced thermoplastics.

加圧容器、主に飲料用加圧容器にプラスチックを使用することに関心が増しているが、園芸用加圧スプレー、動力工具などの高圧二酸化炭素で機械的動力を与える空気圧装置用の気体又は液体二酸化炭素供給容器のような他の用途にプラスチックを使用することの関心も増しつつある。また、消火器、実験室配送用の医療用ガスボンベや大形(例えば容量5〜50L程度)ボンベ、工業ユーザへの酸素、窒素、二酸化炭素などの配送に用いられるボンベなど、様々な用途にプラスチック容器を使用することへの関心も高まっている。   There is increasing interest in the use of plastics in pressurized containers, mainly pressurized containers for beverages, but also for pressurized sprays for horticulture, gas or pneumatics for mechanically powering with high pressure carbon dioxide, such as power tools. There is also increasing interest in using plastics for other applications, such as liquid carbon dioxide supply vessels. In addition, plastics can be used for various purposes, such as fire extinguishers, medical gas cylinders for laboratory delivery, large (eg, about 5 to 50 L) cylinders, and cylinders used for delivery of oxygen, nitrogen, carbon dioxide, etc. to industrial users. There is also increasing interest in using containers.

飲料容器での使用に関して、米国特許第3712497号には、複数の別々の部材をなす薄肉の可撓性合成プラスチックを後で一緒に摩擦圧接してなるボトルで、最高75psiの内圧に耐えることができるボトルが開示されている。   For use in beverage containers, U.S. Pat. No. 3,712,497 discloses that a bottle made of a plurality of separate pieces of thin, flexible synthetic plastic that is subsequently friction welded together can withstand an internal pressure of up to 75 psi. A possible bottle is disclosed.

飲料容器に関しては、米国特許第4591066号にも、ポリスチレン、PET又はポリプロピレン製の加圧液体飲料用一体成形プラスチック体が開示されている。しかし、この米国特許に開示された容器に生ビールを入れると、その容器が二酸化炭素を透過しやすいことが分かる。一般に、ビール貯蔵用に用いると、プラスチック膜/壁を通しての二酸化炭素の移動が温度に関係している(30〜32°Fよりも室温の方が移動性が高い)ので、従来技術のプラスチック容器に貯蔵したビールは数日後にはその二酸化炭素含量の大半を失って、もはや口当たりのよいものではなく、気の抜けたものとなる。欧州特許明細書第0578711号には、2種以上のプラスチック材料からなる層状構造をもつビールその他の飲料用の改良容器で、これらのプラスチック材料が相互に緊締された及び/又は積層された隣接層として配置されている改良容器が開示されている。この改良容器は約420kPa又は約65psiまでの圧力に耐える。容器の一実施形態では、第一のプラスチック材料はポリエチレンテレフタレートであり、第二のプラスチック材料はナイロンである。
米国特許第3712497号 米国特許第4591066号 欧州特許明細書第0578711号
Regarding beverage containers, U.S. Pat. No. 4,591,066 also discloses an integrally molded plastic body for pressurized liquid beverages made of polystyrene, PET or polypropylene. However, when draft beer is placed in the container disclosed in this US patent, it can be seen that the container is permeable to carbon dioxide. In general, prior art plastic containers are used for beer storage because the movement of carbon dioxide through the plastic membrane / wall is temperature related (room temperature is more mobile than 30-32 ° F). Beer stored in a few days loses most of its carbon dioxide content after a few days, and is no longer palatable, but rather depressed. EP 0 578 711 discloses an improved container for beer and other beverages having a layered structure of two or more plastic materials, wherein these plastic materials are clamped and / or laminated adjacent layers. An improved container is disclosed. The improved container withstands pressures up to about 420 kPa or about 65 psi. In one embodiment of the container, the first plastic material is polyethylene terephthalate and the second plastic material is nylon.
U.S. Pat.No. 3,712,497 U.S. Pat. No. 4,510,066 European Patent Specification No. 0578711

本発明者らは、加圧容器に強化ポリエステルを使用すると、ガス及び湿気遮蔽性を有するだけでなく、貯蔵又は使用時の圧力の影響によるクリープ又は寸法変化が極めて小さいという点で優れた物性と、貯蔵及び取扱い時の安全に十分な衝撃強さとを併せ持つパッケージが得られるという知見を得た。   The present inventors have found that the use of reinforced polyester in a pressurized container not only has gas and moisture shielding properties, but also has excellent physical properties in that creep or dimensional change due to the influence of pressure during storage or use is extremely small. It has been found that a package having both sufficient impact strength for safe storage and handling can be obtained.

本発明は、優れた耐クリープ性、衝撃強さ、CO2及びO2遮蔽性を有する強化ポリエステル製の加圧容器であって、内圧1バール以上で溶存二酸化炭素含量約0.4〜0.6重量%の液体を充填したとき、貯蔵温度約30〜35℃で6ヶ月後に溶存二酸化炭素含量0.25重量%以上を維持し、O2透過率1.0ppm未満である加圧容器に関する。 The present invention has excellent creep resistance, impact strength, a CO 2 and O 2 enhanced polyester pressure vessel having a shielding property, about dissolved carbon dioxide content in the inner pressure 1 bar or more from 0.4 to 0. The invention relates to a pressurized container which, when filled with 6% by weight of liquid, maintains a dissolved carbon dioxide content of 0.25% by weight or more and a O 2 permeability of less than 1.0 ppm after 6 months at a storage temperature of about 30 to 35 ° C.

本発明は、優れた耐クリープ性、衝撃強さ、水及びCO2/O2遮蔽性を付与するため加圧容器にガラス長繊維強化ポリエステルを使用することに関する。 The present invention has excellent creep resistance, impact strength, relates to the use of long glass fiber reinforced polyester in pressurized for imparting water and CO 2 / O 2 barrier properties.

本発明者らは、強化プラスチック材料、すなわちガラス長繊維など各種材料で強化したポリエステルが、低いガス透過性、高強度及び高温での低クリープなどの優れた遮蔽性と物性との組合せを与え、飲料、食品などに使用される加圧容器のような包装用途に最適であることを発見した。   The present inventors have reinforced plastic materials, i.e. polyesters reinforced with various materials such as long glass fibers, provide a combination of excellent shielding properties and properties, such as low gas permeability, high strength and low creep at high temperatures, It has been found to be optimal for packaging applications such as pressurized containers used in beverages, foods and the like.

容器用の強化熱可塑性プラスチック材料
本発明で用いられるポリエステル樹脂には、一般に、ジオールとジカルボン酸又はその反応性誘導体との線状飽和縮合物がある。ポリエステルはフィルム及び繊維形成材料として周知であり、米国特許第2465319号及び同第3047539号に開示された方法を始めとして、当技術分野で公知の方法で製造される。
Reinforced Thermoplastic Materials for Containers The polyester resins used in the present invention generally include linear saturated condensates of diols with dicarboxylic acids or reactive derivatives thereof. Polyester is well known as a film and fiber forming material and is made by methods known in the art, including those disclosed in U.S. Patent Nos. 2,465,319 and 3,047,539.

一実施形態では、ポリエステルは芳香族ジカルボン酸と脂肪族ジオールとの縮合物を含む。別の実施形態では、ポリエステルはポリ(1,4−ジメチロールシクロヘキサンジカルボキシレート)、例えばポリ(1,4−ジメチロールシクロヘキサンテレフタレート)である。フタレートに加えて、少量の他の芳香族ジカルボン酸(例えばイソフタルジカルボン酸、ナフタレンジカルボン酸)又は脂肪族ジカルボン酸(例えばアジピン酸)が樹脂中に存在していてもよい。同様に、実施形態によっては、少量の脂環式ジオールの添加によって、ジオール成分も変更可能である。   In one embodiment, the polyester comprises a condensate of an aromatic dicarboxylic acid and an aliphatic diol. In another embodiment, the polyester is poly (1,4-dimethylolcyclohexanedicarboxylate), for example, poly (1,4-dimethylolcyclohexaneterephthalate). In addition to phthalate, small amounts of other aromatic dicarboxylic acids (eg, isophthaldicarboxylic acid, naphthalenedicarboxylic acid) or aliphatic dicarboxylic acids (eg, adipic acid) may be present in the resin. Similarly, in some embodiments, the diol component can be modified by the addition of small amounts of alicyclic diols.

一実施形態では、ポリエステルはアルキレン基の炭素原子数が2〜10のポリ(アルキレンテレフタレート)、ポリ(アルキレンイソフタレート)又はポリ(アルキレン混成イソフタレート−テレフタレート)(例えばイソフタレート含量30モル%以下のもの)を含み、例えばポリ(エチレンテレフタレート)(略称PET)又はポリ(1,4−ブチレンテレフタレート)(略称PBT)を含む。さらに他の実施形態では、ポリエステル樹脂はPET、PBT又はこれらの組合せのみからなるものでもよい。一実施形態では、ポリエステルは、重量比約1:1〜約20:1のPBT/PET混合物を含む。   In one embodiment, the polyester is a poly (alkylene terephthalate), poly (alkylene isophthalate) or poly (alkylene hybrid isophthalate-terephthalate) having 2 to 10 carbon atoms in the alkylene group (e.g., having an isophthalate content of 30 mole% or less). For example, poly (ethylene terephthalate) (abbreviated PET) or poly (1,4-butylene terephthalate) (abbreviated PBT). In still other embodiments, the polyester resin may consist solely of PET, PBT or a combination thereof. In one embodiment, the polyester comprises a PBT / PET mixture in a weight ratio of about 1: 1 to about 20: 1.

一実施形態では、使用するポリ(1,4−ブチレンテレフタレート)樹脂は、70モル%以上、好ましくは80モル%以上がテトラメチレングリコールからなるグリコール成分と、70モル%以上、好ましくは80モル%以上がテレフタル酸及びそのポリエステル形成性誘導体からなる酸又はエステル成分との重合で得られるものである。   In one embodiment, the poly (1,4-butylene terephthalate) resin used comprises a glycol component comprising at least 70 mol%, preferably at least 80 mol%, of tetramethylene glycol, and at least 70 mol%, preferably at least 80 mol%. The above is obtained by polymerization with an acid or ester component comprising terephthalic acid and its polyester-forming derivative.

別の実施形態では、ポリエステルはポリ(1,4−ブチレンテレフタレート)ホモポリエステルである。さらに別の実施形態では、コポリエステルを使用する。コポリエステルは、モノマーの全量を基準にして、約70モル%以上のブチレンとテレフタレート単位とを含む。コモノマーはジカルボン酸でも、ジオールでも、これらの組合せでもよい。適当なジカルボン酸コモノマーには、C8−C16芳香族ジカルボン酸、具体的にはベンゼンジカルボン酸、すなわちフタル酸及びイソフタル酸及びそれらのアルキル(例えばメチル)誘導体、及びC4−C16脂肪族及び脂環式ジカルボン酸、具体的にはセバシン酸、グルタル酸、アゼライン酸、テトラメチルコハク酸、1,2−、1,3−及び1,4−シクロヘキサンジカルボン酸などがある。適当なジオールコモノマーには、C2−C8脂肪族及び脂環式ジオール、例えばエチレングリコール、ヘキサンジオール、ブタンジオール及び1,2−、1,3−及び1,4−シクロヘキサンジメタノールなどがあるが、これらに限定されない。 In another embodiment, the polyester is a poly (1,4-butylene terephthalate) homopolyester. In yet another embodiment, a copolyester is used. The copolyester contains about 70 mol% or more of butylene and terephthalate units, based on the total amount of monomers. The comonomer may be a dicarboxylic acid, a diol, or a combination thereof. Suitable dicarboxylic acid comonomers include C 8 -C 16 aromatic dicarboxylic acids, specifically benzenedicarboxylic acids, ie, phthalic acid and isophthalic acid and their alkyl (eg, methyl) derivatives, and C 4 -C 16 aliphatic. And alicyclic dicarboxylic acids, specifically, sebacic acid, glutaric acid, azelaic acid, tetramethylsuccinic acid, 1,2-, 1,3- and 1,4-cyclohexanedicarboxylic acid. Suitable diol comonomers, C 2 -C 8 aliphatic and cycloaliphatic diols, such as ethylene glycol, hexanediol, butanediol and 1,2, and the like 1,3- and 1,4-cyclohexane dimethanol However, it is not limited to these.

一実施形態では、ポリエステル樹脂は用いた強化材の熱膨張係数(CTE)よりも高いCTEを有しており、その結果ポリエステル材料が強化材の周囲で収縮し、圧縮応力を生じて強化材を適切な位置に保持する。   In one embodiment, the polyester resin has a CTE that is higher than the coefficient of thermal expansion (CTE) of the reinforcement used, such that the polyester material shrinks around the reinforcement, creating compressive stress and causing the reinforcement to shrink. Hold in place.

本発明の別の実施形態では、ポリエステルをポリカーボネート樹脂とブレンドしてもよい。かかるブレンドの形成に有用なポリカーボネート樹脂は概して芳香族ポリカーボネート樹脂である。   In another embodiment of the present invention, the polyester may be blended with a polycarbonate resin. Polycarbonate resins useful in forming such blends are generally aromatic polycarbonate resins.

ポリエステル樹脂マトリックスへの任意添加剤
本発明の一実施形態では、ポリエステルは、各種添加剤、例えば反り抑制剤としての高分子量ポリエーテルイミド系材料(例えばポリエーテルイミドエステルエラストマー)で改質してもよい。
Optional Additives to the Polyester Resin Matrix In one embodiment of the present invention, the polyester may be modified with various additives, such as high molecular weight polyetherimide-based materials as warpage inhibitors (eg, polyetherimide ester elastomers). Good.

ポリエステルがPBTである本発明の別の実施形態では、(コ)ポリオレフィン又はポリエチレンのような添加剤を衝撃強さの向上を目的として添加する。例えば、衝撃強さ改良剤はエチレン−酢酸ビニル(EVA)、線状低密度ポリエチレン(LLDPE)及びα−オレフィン−グリシジルメタクリレートコポリマー及びターポリマーから選択される。   In another embodiment of the invention where the polyester is PBT, additives such as (co) polyolefins or polyethylene are added for the purpose of improving impact strength. For example, the impact modifier is selected from ethylene-vinyl acetate (EVA), linear low density polyethylene (LLDPE) and α-olefin-glycidyl methacrylate copolymers and terpolymers.

ポリエステル/強化材の重量比が約2.25以下である本発明の別の実施形態では、衝撃強さと溶融粘度を改良して完成加圧容器の製造を容易にするため、グリシジル2−アルケノエート及びα−オレフィンからなるコポリマー又はインターポリマーをポリエステルに添加する。   In another embodiment of the present invention, wherein the weight ratio of polyester / reinforcement is about 2.25 or less, glycidyl 2-alkenoate and glycidyl 2-alkenoate to improve impact strength and melt viscosity to facilitate manufacture of the finished pressurized container. A copolymer or interpolymer consisting of an α-olefin is added to the polyester.

別の実施形態では、ポリエステルは、さらに1種以上の慣用添加剤、例えば酸化防止剤、カーボンブラック、強化材、可塑剤、滑剤、色安定剤、紫外線吸収剤、X線不透明剤、染料、顔料、無機充填剤などの充填剤、ポリエチレンなどの離型剤などを含んでいてもよい。   In another embodiment, the polyester further comprises one or more conventional additives, such as antioxidants, carbon black, reinforcing agents, plasticizers, lubricants, color stabilizers, UV absorbers, X-ray opaque agents, dyes, pigments. , A filler such as an inorganic filler, and a release agent such as polyethylene.

一実施形態では、アルミナ、無定形シリカ、無水ケイ酸アルミニウム、長石、タルク、ガラス粉末、フェノール樹脂、ガラス微小球、二酸化チタンなどの金属酸化物、硫化亜鉛、石英粉末、水和ケイ酸アルミニウムなどのクレーを始めとする無機充填剤をポリエステルマトリックスに添加する。   In one embodiment, alumina, amorphous silica, anhydrous aluminum silicate, feldspar, talc, glass powder, phenolic resin, glass microspheres, metal oxides such as titanium dioxide, zinc sulfide, quartz powder, hydrated aluminum silicate, etc. Inorganic fillers, including clays, are added to the polyester matrix.

別の実施形態では、フェノール類及びその誘導体、アミン類及びその誘導体、水酸基及びアミン基両方を含有する化合物、ヒドロキシアジン、オキシム、高分子量フェノールエステル、多価金属の塩などを始めとする熱、酸化及び/又は紫外線安定剤を任意成分としてポリエステル樹脂に添加してもよい。   In another embodiment, heat, including phenols and derivatives thereof, amines and derivatives thereof, compounds containing both hydroxyl and amine groups, hydroxyazines, oximes, high molecular weight phenol esters, salts of polyvalent metals, etc. Oxidation and / or UV stabilizers may be optionally added to the polyester resin.

ポリエステル樹脂マトリックス用の強化材
一実施形態では、強化材は、ファイバーガラス状の繊維、ロービング又は織布状の炭素又はアラミド繊維、又はガラス繊維と炭素又はアラミド繊維との組合せである。別の実施形態では、強化材は金属をワイヤ又はフィラメントに延伸したもの、又はアミド基−CONHを有するポリアミドポリマーである。別の実施形態では、強化材はロービング、連続ストランドマット又はステッチドロービング(配向0°、90°及び±45°)として入手可能なガラス繊維のみである。
Reinforcement for Polyester Resin Matrix In one embodiment, the reinforcement is fiberglass-like fiber, roving or woven carbon or aramid fiber, or a combination of glass fiber and carbon or aramid fiber. In another embodiment, the reinforcement is a metal drawn into a wire or filament, or a polyamide polymer having an amide group -CONH. In another embodiment, the reinforcement is only glass fibers available as rovings, continuous strand mats or stitched rovings (0 °, 90 ° and ± 45 ° orientation).

一実施形態では、繊維をバインダでプレコートして、ポリエステル樹脂マトリックスとの相容性を高める。コーティングには、通常のガラス繊維コーティング材料、例えばポリウレタン樹脂、ポリアクリレート樹脂、ポリエステル樹脂、ポリエポキシド樹脂及び官能性シラン(特にエポキシ又はアミン官能性アルコキシシラン)が挙げられる。コーティング材の使用量は一般にフィラメントを連続ストランドへと結合するのに十分な量である。一般に、この量はガラスフィラメントの重量を基準にして約1.0重量%であればよい。   In one embodiment, the fibers are pre-coated with a binder to increase compatibility with the polyester resin matrix. Coatings include common glass fiber coating materials such as polyurethane resins, polyacrylate resins, polyester resins, polyepoxide resins and functional silanes, especially epoxy or amine functional alkoxysilanes. The amount of coating material used is generally sufficient to bind the filaments into a continuous strand. Generally, this amount may be about 1.0% by weight, based on the weight of the glass filament.

繊維径は典型的には約3〜50μmである。別の実施形態では、ガラス繊維の形態のフィラメントは約5〜30μmの直径を有する。さらに他の実施形態では、繊維径は約10〜20μmである。   The fiber diameter is typically about 3 to 50 μm. In another embodiment, the filaments in the form of glass fibers have a diameter of about 5-30 μm. In yet another embodiment, the fiber diameter is about 10-20 μm.

繊維を強化材として用いる実施形態では、チョップドガラス繊維ストランドの形態の繊維は約1/8〜1インチの長さを有する。別の実施形態では、容器の強度及び成形性を高めるため、長さ1インチ超の長繊維を用いる。さらに他の実施形態では、ガラス繊維は
比較的ソーダ分の少ないライム−アルミニウムホウケイ酸ガラスからなる。これは「Eガラス」として知られる。別の実施形態では、他のガラス、例えば「Cガラス」として知られる低ソーダガラスを使用する。他の実施形態では、Gフィラメントとして知られるガラスフィラメントを使用する。
In embodiments where fibers are used as reinforcement, the fibers in the form of chopped glass fiber strands have a length of about 1/8 to 1 inch. In another embodiment, long fibers longer than 1 inch are used to increase the strength and moldability of the container. In yet another embodiment, the glass fibers comprise a lime-aluminum borosilicate glass having a relatively low soda content. This is known as "E-glass". In another embodiment, other glasses are used, for example, low soda glass known as "C glass". In another embodiment, a glass filament known as a G filament is used.

ガラスフィラメントは蒸気又は空気吹付法、火炎吹付法又は機械的引出法などの常法で製造される。一実施形態では、フィラメントは機械的引出法で製造される。一実施形態では、本発明の加圧容器に用いられるポリエステルの強化に最終的に使用するため、フィラメントを繊維束として束ねてもよいし、繊維束をさらに束ねてヤーンやロープやロービングにしてもよい。   Glass filaments are produced by conventional methods such as steam or air blowing, flame blowing or mechanical drawing. In one embodiment, the filament is manufactured by a mechanical drawing method. In one embodiment, the filament may be bundled as a fiber bundle, or the fiber bundle may be further bundled into yarn, rope, or roving, for final use in reinforcing the polyester used in the pressurized container of the present invention. Good.

本発明の一実施形態では、強化材は、ガラス繊維以外にも広範な材料を包含し、また微小球などフィラメント以外の形態のものも包含する。例として、ガラスだけでなく、セラミック材料、例えばグラファイト、ウォラストナイト、炭素、金属類、例えばアルミニウム、鉄、ニッケル、ステンレス鋼など、チタン酸塩、例えばチタネートウィスカー、石英、クレイ、マイカ、タルク、これらの混合物などがある。金属及び金属ガラス繊維材料としては、米国特許第4525314号(その開示内容は援用によって本明細書の内容の一部をなす。)に開示されているものなどを使用できる。強化繊維の原料となり得るセラミック材料には、炭化ケイ素、窒化ケイ素、炭素、グラファイト及び酸化アルミニウムが挙げられる。強化材として使用できる金属、セラミック及びガラス微小球には、米国特許第4671994号(その開示内容は援用によって本明細書の内容の一部をなす。)に開示されているものなどがある。   In one embodiment of the present invention, the reinforcement includes a wide range of materials besides glass fibers, and also includes forms other than filaments, such as microspheres. By way of example, not only glass, but also ceramic materials, such as graphite, wollastonite, carbon, metals, such as aluminum, iron, nickel, stainless steel, etc., titanates such as titanate whiskers, quartz, clay, mica, talc, These include mixtures. As the metal and metallic glass fiber material, those disclosed in U.S. Pat. No. 4,525,314 (the disclosure of which is incorporated herein by reference) can be used. Ceramic materials that can be the source of reinforcing fibers include silicon carbide, silicon nitride, carbon, graphite, and aluminum oxide. Metal, ceramic, and glass microspheres that can be used as reinforcement include those disclosed in U.S. Patent No. 4,674,1994, the disclosure of which is incorporated herein by reference.

一実施形態では、強化材は、熱可塑性樹脂ブレンド組成物の全重量を基準にして約5〜60重量%の量で使用される。別の実施形態では、強化材の濃度は、体積%で表示して、約1〜50体積%の範囲内にある。体積%は、完成部品の断面の総面積と繊維の断面積との比較によって計算できる。別の実施形態では、強化材の量は約40体積%未満である。第三の実施形態では、30体積%未満であり、第四の実施形態では、約5〜20体積%である。   In one embodiment, the reinforcement is used in an amount of about 5-60% by weight, based on the total weight of the thermoplastic blend composition. In another embodiment, the concentration of the reinforcement, expressed as a percentage by volume, is in the range of about 1 to 50% by volume. Volume% can be calculated by comparing the total cross-sectional area of the finished part to the cross-sectional area of the fiber. In another embodiment, the amount of reinforcement is less than about 40% by volume. In a third embodiment, less than 30% by volume, and in a fourth embodiment, about 5-20% by volume.

強化ポリエステルの加工と加圧容器の形成
強化材として長繊維を用いる本発明の一実施形態では、当技術分野で公知の引抜成形法を用いて成分を所定形状に賦形する。引抜成形法では、ガラス長繊維材料を、ポリエステル樹脂及び任意成分の添加剤を含有する浴を通して引き抜く。引抜成形法の一例では、ガラス長繊維材料をまず本発明のポリエステル樹脂(プラス任意の添加剤)で含浸する。形成された積層物を、最終容器用途仕様に応じて精密な公差に制御された加熱ダイを通して引き抜く。得られた生成物を切断し、容器の各種部品、例えば側壁、頂部、底部などに加工する。これらの部品を後で溶着して完成容器を形成する。
Processing Reinforced Polyester and Forming Pressurized Containers In one embodiment of the present invention using long fibers as reinforcement, the components are shaped into a predetermined shape using a pultrusion process known in the art. In the pultrusion method, a long glass fiber material is drawn through a bath containing a polyester resin and optional additives. In one example of the pultrusion method, a long glass fiber material is first impregnated with the polyester resin of the present invention (plus any optional additives). The formed laminate is drawn through a heating die controlled to precise tolerances according to the final container application specification. The resulting product is cut and processed into various parts of the container, such as side walls, tops, bottoms and the like. These parts are later welded to form the finished container.

さらに他の実施形態では、背の高い加圧容器に特に有用な直線構造に、欧州特許明細書第0820848号(その開示内容は援用によって本明細書の内容の一部をなす。)に記載されているような方法を使用する。この方法では、本発明の溶融ポリエステル材料をダイに供給する。ダイは溶融材料を受け入れる入口と、本発明の容器の所望部分に対応する形状を有する出口とを有する。出口は入口の下流に位置し、溶融ポリエステル樹脂が入口から出口まで流れる。この流れに複数の繊維束を所定の半径方向に離した位置で導入して、直線プロファイルに繊維補強を付与する。繊維束はプロファイル内の所定位置で、長さ方向に延在する。得られた生成物を切断し、加工して容器の各種部品、例えば側壁、頂部、底部などとする。   In yet another embodiment, a straight structure particularly useful for tall pressurized containers is described in EP-A-0 820 848, the disclosure of which is incorporated herein by reference. Use the method that you have. In this method, the molten polyester material of the present invention is supplied to a die. The die has an inlet for receiving the molten material and an outlet having a shape corresponding to a desired portion of the container of the present invention. The outlet is located downstream of the inlet and the molten polyester resin flows from the inlet to the outlet. A plurality of fiber bundles are introduced into the flow at predetermined radially separated positions to impart fiber reinforcement to the linear profile. The fiber bundle extends lengthwise at a predetermined position in the profile. The resulting product is cut and processed into various parts of the container, such as side walls, tops, bottoms, and the like.

引抜成形又は押出法でこれらの部品を形成し、さらに当技術分野で公知の溶接その他の方法で部品を組み立てて完成容器とした後、「Blast Resistant And Blast Directing Containers」と題する欧州特許明細書第0852695号に教示されているような材料のバンドで容器をさらに補強することができる。一実施形態では、加圧容器は、容器に取り付けられ、容器を強化する複数の互いにほぼ平行に離間した複合材ストリップを含む。各ストリップは、一方向高強度繊維のテープ又は延伸フィルムであり、容器をフープ方向に1周以上取り囲む。   After forming these parts by pultrusion or extrusion and assembling the parts by welding or other methods known in the art into a finished container, the European patent specification entitled "Blast Resistant And Blast Directing Containers". The container can be further reinforced with a band of material as taught in US Pat. In one embodiment, the pressurized container includes a plurality of substantially parallel spaced apart composite strips attached to the container and reinforcing the container. Each strip is a tape or stretched film of unidirectional high strength fibers, surrounding the container one or more turns in the hoop direction.

本発明の別の実施形態では、強化材としてチョップドガラスストランドを使用する。チョップドガラスストランドをまずポリエステル樹脂と配合し、押出機に供給し、押出物を切断してペレットとする。別の例では、チョップドガラスストランドとポリエステル樹脂を別々に押出機の供給ホッパーに供給し、強化ポリエステルペレットを製造する。押出物を切断して得たペレットは、長さ1/4インチ以下でよい。分散したガラス繊維は、押出機バレル内でのチョップドガラスストランドに加わる剪断作用の結果、長さが短くなる。   In another embodiment of the invention, chopped glass strands are used as reinforcement. The chopped glass strands are first compounded with a polyester resin, fed to an extruder, and the extrudate is cut into pellets. In another example, chopped glass strands and polyester resin are separately fed to a feed hopper of an extruder to produce reinforced polyester pellets. Pellets obtained by cutting the extrudate may be 1/4 inch or less in length. The dispersed glass fibers are reduced in length as a result of the shearing action on the chopped glass strands in the extruder barrel.

次に、当技術分野で公知の慣用法、例えば押出ブロー成形、射出ブロー成形、異形押出、パイプ押出、共押出、押出コーティング、発泡成形、発泡押出、熱成形などで、強化ポリエステル樹脂を加圧容器又はその部品に成形する。部品はその後溶接して完成加圧容器を形成することができる。   The reinforced polyester resin is then pressed using conventional methods known in the art, such as extrusion blow molding, injection blow molding, profile extrusion, pipe extrusion, coextrusion, extrusion coating, foam molding, foam extrusion, thermoforming, and the like. Form into containers or parts thereof. The parts can then be welded to form a finished pressurized container.

加圧容器の特性
厚さ2〜4mmの強化ポリエステル加圧容器をビール容器、すなわちビール樽として使用する本発明の一実施形態では、本発明の強化ポリエステル加圧容器は固有の性質として低いCO2及び酸素透過性を有しており、内圧1バール以上で溶存二酸化炭素含量約0.4〜0.6重量%の液体を充填したとき貯蔵温度約30〜35℃で0.5年後に溶存二酸化炭素含量0.25重量%以上を維持し、O2透過度1.0ppm未満であることが判明した。
Reinforced polyester pressurized vessel beer container pressure vessel characteristics thickness 2-4 mm, i.e. in one embodiment of the present invention for use as a beer keg, reinforced polyester pressurized container of the present invention is low CO 2 as inherent property When filled with a liquid having an internal pressure of 1 bar or more and a dissolved carbon dioxide content of about 0.4 to 0.6% by weight, the storage temperature is about 30 to 35 ° C., and after 0.5 year the dissolved carbon dioxide It was found that the carbon content was maintained at 0.25% by weight or more and the O 2 permeability was less than 1.0 ppm.

クリープ特性に関しては、本発明の一実施形態では、強化ポリエステルから製造した加圧容器は、初期内圧1〜5バールで使用して、室温0.5年後にクリープ<3%である。   With respect to creep properties, in one embodiment of the present invention, a pressurized container made from reinforced polyester has a creep <3% after 0.5 years at room temperature using an initial internal pressure of 1-5 bar.

耐衝撃破壊性に関しては、ガラス長繊維を強化材として使用し、引抜成形技術を用いて本発明の加圧容器を製作する実施形態では、肉厚2〜4mm、容量15Lの異なるデザインの多数の容器を製造し試験した結果、加圧容器(50%充填及び80%充填)が、高さ0.45〜1mから落としても耐破壊性であることが確認される。   Regarding the impact fracture resistance, in the embodiment in which the glass long fiber is used as a reinforcing material and the pressurized container of the present invention is manufactured using a pultrusion molding technique, a large number of different designs having a thickness of 2 to 4 mm and a capacity of 15 L are used. As a result of manufacturing and testing the container, it is confirmed that the pressurized container (50% filling and 80% filling) is resistant to breakage even when dropped from a height of 0.45 to 1 m.

食品用途、例えばビール樽又はソフトドリンクや各種食品用加圧容器では、本発明の強化ポリエステル容器は、内容物に容認し難いレベルの風味変化をもち込まないことが分かる。   For food applications, such as beer barrels or soft drinks and pressurized containers for various foods, it can be seen that the reinforced polyester containers of the present invention do not impart unacceptable levels of flavor change to the contents.

以下の実施例は本願の教示内容に寄与した研究の代表例にすぎない。   The following examples are merely representative of the work that has contributed to the teachings of the present application.

実施例1〜4
本例では、強化ポリエステル組成物は、分子量約80000(PS分子量として表示)を有するPBT(ポリブチレンテレフタレート)、安定剤として0.15%のIrganox1010、離型剤として約1%のポリエチレン及び30〜50重量%のガラス繊維からなる。
Examples 1-4
In this example, the reinforced polyester composition comprises PBT (polybutylene terephthalate) having a molecular weight of about 80000 (expressed as PS molecular weight), 0.15% Irganox 1010 as a stabilizer, about 1% polyethylene as a mold release agent and Consists of 50% by weight of glass fibers.

ガラス短繊維(SGF)又はガラス長繊維(LGF)いずれかの使用に応じて、これらの組成物を30%SGF、50%SGF、30%LGF及び50%LGFと呼ぶ。ガラス短繊維は、NEG社からT−120として市販されているEガラスチョップドストランドである。ガラス長繊維(例えばEガラス系)は、目的用途に応じて必要であれば、シラン系カップリング剤のような仕上剤、ウレタン系樹脂又はエポキシ系樹脂のような集束剤、ホスファイト系樹脂を典型例とする熱安定剤その他適当な表面処理剤で処理してもよい。   Depending on the use of either short glass fibers (SGF) or long glass fibers (LGF), these compositions are referred to as 30% SGF, 50% SGF, 30% LGF and 50% LGF. Short glass fiber is E glass chopped strand commercially available as T-120 from NEG. The glass long fiber (for example, E glass type) may include a finishing agent such as a silane-based coupling agent, a sizing agent such as a urethane-based resin or an epoxy-based resin, and a phosphite-based resin if necessary according to the intended use. It may be treated with a typical example of a heat stabilizer or other suitable surface treatment agent.

LGF組成物は、米国特許第4559262号(その開示内容は援用によって本明細書の内容の一部をなす。)に開示されているような引抜成形法で製造される。実施例では、PBTポリマーメルトを約260℃の浴で調製する。溶融ポリマーからガラス繊維フィラメント(ガラスロービングの形態)を、浴内に配置した1本のスプレッダーバーに沿って30cm/分で引き抜き、浴内滞留時間30秒とする。含浸ロービングを、浴壁に位置する直径3mmのダイを通して引き抜き、次いで冷却し、完全に濡れた材料とする。得られた生成物(繊維濃度30又は50重量%)中のPBTの量は、繊維束が加熱スプレッダー表面に接触する通路の長さによって制御する。   The LGF composition is manufactured by a pultrusion process as disclosed in US Pat. No. 4,559,262, the disclosure of which is incorporated herein by reference. In the examples, a PBT polymer melt is prepared in a bath at about 260 ° C. Glass fiber filaments (in the form of glass rovings) are drawn from the molten polymer at 30 cm / min along one spreader bar placed in the bath, giving a residence time in the bath of 30 seconds. The impregnated roving is withdrawn through a 3 mm diameter die located on the bath wall and then cooled to a completely wet material. The amount of PBT in the resulting product (fiber concentration 30 or 50% by weight) is controlled by the length of the passage where the fiber bundle contacts the heated spreader surface.

連続引抜成形で得られる生成物を次に切断して、長さ5〜10mmのペレットを形成する。使用したLGF製品は、LNPからVertonAF7006(30%LGF)及びWF700 10(50%LGF)として供給された。   The product from continuous pultrusion is then cut to form pellets 5-10 mm in length. The LGF products used were supplied by LNP as Verton AF7006 (30% LGF) and WF70010 (50% LGF).

SGFブレンドの製造では、まずガラス繊維以外の成分をドライブレンドする。次にブレンドをWP25mm同方向回転押出機で混練するが、ガラスは押出機の下流から別個に供給する。溶融温度は約250〜260℃で、回転数は300rpmであった。得られた生成物を押出してペレットを形成する。   In the production of an SGF blend, components other than glass fibers are first dry-blended. The blend is then kneaded in a WP 25 mm co-rotating extruder, with the glass being fed separately from downstream of the extruder. The melting temperature was about 250-260 ° C. and the number of revolutions was 300 rpm. The resulting product is extruded to form pellets.

Engel75トン成形機を用いて、(スロートからノズルまでの)温度設定240〜260℃及び金型温度60℃にて、SGF及びLGF生成物を成形して試料を得る。成形前に、ペレットを120℃で2時間乾燥させた。   The SGF and LGF products are molded using an Engel 75 ton molding machine at a temperature setting (from throat to nozzle) of 240-260 ° C and a mold temperature of 60 ° C to obtain samples. Prior to molding, the pellets were dried at 120 ° C. for 2 hours.

実施例1〜4のガラス短繊維(SGF)及びガラス長繊維(LGF)試料の特性を下記の方法で測定する。   The properties of the short glass fiber (SGF) and long glass fiber (LGF) samples of Examples 1 to 4 are measured by the following methods.

ノッチ付アイゾッド(INI)及びノッチなしアイゾッド(UNI)
この試験法ではISO 180法に基づいて、ノッチ付試験片又はノッチなし試験片を試験してノッチ付(INI)及びノッチなし(UNI)衝撃強さを得た。試験結果は、試験片の単位幅当たりの吸収エネルギーとして記載し、キロジュール/平方メートル(kJ/m2)で表す。典型的には、最終試験結果を5枚の試験片の試験結果の平均として計算する。
Notched Izod (INI) and Notched Izod (UNI)
In this test method, notched or unnotched specimens were tested according to the ISO 180 method to obtain notched (INI) and unnotched (UNI) impact strength. The test results are described as absorbed energy per unit width of the test piece, and are expressed in kilojoules / square meter (kJ / m 2 ). Typically, the final test result is calculated as the average of the test results of five test specimens.

曲げ板衝撃試験
この試験法では、ISO6603法に基づいて種々の速度で最大力、最大エネルギー、破断点エネルギー及び破断点撓みを測定する。
Bending plate impact test In this test method, the maximum force, the maximum energy, the energy at break, and the deflection at break are measured at various speeds based on the ISO6603 method.

Figure 2004256176
Figure 2004256176

実施例2
本例では、実施例2の50%LGF組成物を繊維強化ポリエステル加圧容器、すなわちビール樽に使用し、引抜成形法を用いてビール樽の部品を形成する。
Example 2
In this example, the 50% LGF composition of Example 2 is used in a fiber reinforced polyester pressurized container, i.e., a beer keg, to form parts of a beer keg using a pultrusion process.

ビール樽にビールタンクから約2バールの適当な内圧及び約20〜35℃の温度でビールを充填する。ビールの溶存二酸化炭素含量は約0.5重量%である。   The beer keg is filled with beer from a beer tank at a suitable internal pressure of about 2 bar and a temperature of about 20-35 ° C. The dissolved carbon dioxide content of the beer is about 0.5% by weight.

温度20〜35℃での約6ヶ月の保存期間後、本発明の繊維強化ポリエステルビール樽内のビールの溶存二酸化炭素含量は約0.25重量%以上であることが確認される。また、ビールを注いで飲んだとき、ビールが気の抜けたものでないことも確認される。また、ビールの一部を消費し、ビール樽内で約20〜35℃で2、3日貯蔵した後、残りのビールが依然として約0.25重量%の溶存二酸化炭素量を含有していることが確認される。さらに、ビールは良好な味を保ち、気の抜けたものでなく、しかも外部圧力源を一切必要としない。   After a storage period of about 6 months at a temperature of 20-35 ° C., the dissolved carbon dioxide content of the beer in the fiber reinforced polyester beer keg of the present invention is determined to be about 0.25% by weight or more. Also, when the beer is poured and drunk, it is also confirmed that the beer is not unreliable. Also, after consuming a portion of the beer and storing it in a beer barrel at about 20-35 ° C. for a few days, the remaining beer still contains about 0.25% by weight of dissolved carbon dioxide Is confirmed. In addition, the beer retains good taste, is not wily, and does not require any external pressure source.

以上の説明は本発明の例示にすぎない。当業者であれば、発明の技術的範囲から逸脱することなく、様々な変更、置換を用いることができよう。したがって、本発明は、かかる置換、変更、変形で特許請求の範囲に属するものをすべて包含する。   The above description is only illustrative of the present invention. Those skilled in the art will be able to use various changes and substitutions without departing from the technical scope of the invention. Therefore, the present invention covers all such substitutions, changes and modifications that fall within the scope of the appended claims.

Claims (10)

強化ポリエステル製加圧容器であって、内圧1バール以上で溶存二酸化炭素含量約0.4〜0.6重量%の液体を充填したとき、加圧容器が貯蔵温度約30〜35℃で0.5年後に溶存二酸化炭素含量0.25重量%以上を維持する、加圧容器。 A reinforced polyester pressurized container filled with a liquid having an internal pressure of 1 bar or more and a dissolved carbon dioxide content of about 0.4 to 0.6% by weight. A pressurized container that maintains a dissolved carbon dioxide content of 0.25% by weight or more after 5 years. ポリエステルが、ガラス繊維、炭素繊維、金属繊維、芳香族ポリアミド繊維及びこれらの組合せからなる群から選択される強化材で強化されている、請求項1記載の加圧容器。 The pressurized container of claim 1, wherein the polyester is reinforced with a reinforcement selected from the group consisting of glass fibers, carbon fibers, metal fibers, aromatic polyamide fibers, and combinations thereof. 射出成形、熱成形、ホットプレス成形、射出圧縮成形、ブロー成形、引抜成形、押出及びこれらの組合せからなる群から選択される慣用熱可塑性プラスチック加工法で得られる、請求項1記載の加圧容器。 2. The pressurized container according to claim 1, obtained by a conventional thermoplastic processing method selected from the group consisting of injection molding, thermoforming, hot press molding, injection compression molding, blow molding, pultrusion molding, extrusion and combinations thereof. . さらに、当該容器に取り付けられ、容器を強化する複数の強化ストリップを含み、各ストリップが容器をフープ方向に1周以上取り囲む、請求項1記載の加圧容器。 The pressurized container of claim 1, further comprising a plurality of reinforcing strips attached to the container for reinforcing the container, each strip surrounding the container one or more times in a hoop direction. 強化材が長さ0.5cm以上のガラス繊維である、請求項1記載の加圧容器。 The pressurized container according to claim 1, wherein the reinforcing material is glass fiber having a length of 0.5 cm or more. ポリエステルが強化ポリエステルの全重量を基準にして20重量%以上の量のガラス繊維で強化されている、請求項1記載の加圧容器。 The pressurized container according to claim 1, wherein the polyester is reinforced with glass fibers in an amount of at least 20% by weight based on the total weight of the reinforced polyester. ポリエステルが約1〜50体積%の量のガラス繊維で強化されている、請求項1記載の加圧容器。 The pressurized container of claim 1 wherein the polyester is reinforced with glass fibers in an amount of about 1 to 50% by volume. 肉厚が0.2mm以上である、請求項1記載の加圧容器。 The pressurized container according to claim 1, wherein the wall thickness is 0.2 mm or more. 全液体容量が15L以上である、請求項1記載の加圧容器。 The pressurized container according to claim 1, wherein the total liquid volume is 15L or more. 肉厚0.2mm以上、二酸化炭素透過度0.8g/100in2/24時間/ミル未満である強化ポリエステル製の加圧容器。 Thickness 0.2mm or more, the carbon dioxide permeability 0.8 g / 100in 2/24 hours / reinforced polyester pressure vessel is less than mils.
JP2004050709A 2003-02-26 2004-02-26 Pressure container and method of manufacturing the same Withdrawn JP2004256176A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US45045403P 2003-02-26 2003-02-26
US10/661,444 US20040166266A1 (en) 2003-02-26 2003-09-12 Pressurized containers and method for making thereof

Publications (1)

Publication Number Publication Date
JP2004256176A true JP2004256176A (en) 2004-09-16

Family

ID=32776294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004050709A Withdrawn JP2004256176A (en) 2003-02-26 2004-02-26 Pressure container and method of manufacturing the same

Country Status (3)

Country Link
US (1) US20040166266A1 (en)
EP (1) EP1457732A3 (en)
JP (1) JP2004256176A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10350443B2 (en) 2005-11-04 2019-07-16 Hector Rousseau Fire extinguisher with internal mixing and external gas cartridge
US8757282B2 (en) * 2006-10-12 2014-06-24 Hector Rousseau Self servicing fire extinguisher with internal mixing and external CO2 chamber
US10046188B2 (en) 2005-11-04 2018-08-14 Randy Rousseau Self-fluffing vehicle fire extinguisher
US20070267447A1 (en) * 2006-05-16 2007-11-22 Timothy James Kennedy Flammable propellants in plastic aerosols
US20070272768A1 (en) * 2006-05-26 2007-11-29 Williams Donald R Water-Based Airless Adhesive Application Container
US7448517B2 (en) * 2006-05-31 2008-11-11 The Clorox Company Compressed gas propellants in plastic aerosols
US7721920B2 (en) * 2006-05-31 2010-05-25 The Clorox Company Ergonomic cap for plastic aerosol container
WO2010044298A1 (en) * 2008-10-16 2010-04-22 株式会社初田製作所 Fire extinguisher, storage container for fire-extinguishing agent, and preform of storage container for fire-extinguishing agent
US8820423B2 (en) 2010-08-05 2014-09-02 Hector Rousseau Self servicing fire extinguisher with internal mixing and external CO2 chamber
US10926119B1 (en) 2014-06-24 2021-02-23 Rusoh Inc. Fire extinguisher with internal mixing and gas cartridge
US9993673B2 (en) 2014-06-24 2018-06-12 Hector Rousseau Fire extinguisher with internal mixing and gas cartridge
US11383115B1 (en) 2014-09-08 2022-07-12 Hector Rousseau Smart fire extinguisher
US10478647B2 (en) 2014-11-27 2019-11-19 Williams Rdm, Inc Stovetop fire suppressor with shuttle actuator and method
WO2016099823A1 (en) * 2014-11-27 2016-06-23 Murray Donald W A stovetop fire suppressor with backup activation and method
US11305140B1 (en) 2019-05-31 2022-04-19 Rusoh, Inc. Fire extinguisher with internal mixing and gas cartridge

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2465319A (en) * 1941-07-29 1949-03-22 Du Pont Polymeric linear terephthalic esters
US3047539A (en) * 1958-11-28 1962-07-31 Goodyear Tire & Rubber Production of polyesters
GB1150131A (en) * 1966-04-29 1969-04-30 R S F Resin Fiber S System S R Method and machine for the manufacture of tanks from fibre reinforced plastic material
US3368708A (en) * 1966-07-28 1968-02-13 Smith Corp A O Filament wound tank design
US3814725A (en) * 1969-08-29 1974-06-04 Celanese Corp Polyalkylene terephthalate molding resin
US3712497A (en) * 1970-10-12 1973-01-23 Koehring Co Thin walled thermoplastic pressure vessels particularly for carbonated beverages and methods of making same
US4559262A (en) * 1981-01-21 1985-12-17 Imperial Chemical Industries, Plc Fibre reinforced compositions and methods for producing such compositions
US4525314A (en) * 1981-03-18 1985-06-25 Torobin Leonard B Producing metal and metal glass microfilaments
DE3119139A1 (en) * 1981-05-14 1982-12-02 Basf Ag METHOD FOR THE PRODUCTION OF MOLDS FROM GLASS FIBER REINFORCED SATURED POLYESTERS
US4421804A (en) * 1981-09-11 1983-12-20 Japan Crown Cork Co., Ltd. Bottle for carbonated drink
GB2158079B (en) * 1984-05-01 1987-09-16 Diego Duse Glass fibre reinforced polyester resins
US4591066A (en) * 1984-07-25 1986-05-27 Adolph Coors Company Plastic container with base cup formed from single blow molded plastic body
JPS62147172A (en) * 1985-12-19 1987-07-01 Sumitomo Chem Co Ltd Pressure vessel and manufacture thereof
US4671994A (en) * 1986-02-10 1987-06-09 Materials Technology Corporation Method for producing fiber reinforced hollow microspheres
US5281360A (en) * 1990-01-31 1994-01-25 American National Can Company Barrier composition and articles made therefrom
US5150812A (en) * 1990-07-05 1992-09-29 Hoechst Celanese Corporation Pressurized and/or cryogenic gas containers and conduits made with a gas impermeable polymer
JPH0526395A (en) * 1991-07-15 1993-02-02 Polyplastics Co Internal pressure container
SE510801C2 (en) * 1995-03-29 1999-06-28 Perstorp Ab Pressure vessels
US6112925A (en) * 1997-02-21 2000-09-05 Continental Pet Technologies, Inc. Enhanced shelf-life pressurized container with ribbed appearance
DE10058680B4 (en) * 2000-11-25 2006-10-12 Air Liquide Deutschland Gmbh Protection system for pressurized gas containers

Also Published As

Publication number Publication date
EP1457732A2 (en) 2004-09-15
EP1457732A3 (en) 2008-10-22
US20040166266A1 (en) 2004-08-26

Similar Documents

Publication Publication Date Title
JP2004256176A (en) Pressure container and method of manufacturing the same
JP5024050B2 (en) Multilayer bottle
EP1562728B1 (en) Pet copolymer composition with enhanced mechanical properties and stretch ratio, articles made therewith and methods
AU618770B2 (en) Transparent gas-barrier multilayer structure
US20060234073A1 (en) Multilayered, transparent articles containing polyesters comprising a cyclobutanediol and a process for their preparation
US20060247388A1 (en) Transparent, oxygen-scavenging compositions containing polyesters comprising a cyclobutanediol and articles prepared therefrom
US20040013833A1 (en) Compatibilized polyester/polyamide blends
US5068136A (en) Five-layered container
MXPA03004050A (en) Multilayered package with barrier properties.
CN101365573B (en) Method for filling into multilayer bottle
EP2505354A1 (en) Multi-layered bottle
JP2009512756A (en) PET polymer with improved properties
KR20080021013A (en) Transparent polymer blends containing polyesters comprising a cyclobutanediol and articles prepared therefrom
KR20160115919A (en) Fiber-reinforced multilayered pellet, molded article molded therefrom, and method for producing fiber-reinforced multilayered pellet
KR20170140349A (en) Multilayer materials and articles made therefrom and methods of making the same
US5122551A (en) Glass filled copolyether-polyester compositions
US4844987A (en) Polyamide molding material and hollow-molded body obtained therefrom
JP5673010B2 (en) Multilayer bottle
JP5256615B2 (en) Multi-layer bottle manufacturing method
JP2016198911A (en) Multilayer structural body
JPS6035944B2 (en) Glass fiber reinforced polyester resin composition
JP2953534B2 (en) Polyester resin composition and use thereof
CA1265637A (en) Bottle grade polyester resins reinforced with glass fibres and containers made of such resins
CN113015768B (en) Polymer composition
JPWO2020137808A1 (en) Multi-layer container and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

RD12 Notification of acceptance of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7432

Effective date: 20080902

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090306