JP2004255441A - Friction stir equipment and method - Google Patents

Friction stir equipment and method Download PDF

Info

Publication number
JP2004255441A
JP2004255441A JP2003050922A JP2003050922A JP2004255441A JP 2004255441 A JP2004255441 A JP 2004255441A JP 2003050922 A JP2003050922 A JP 2003050922A JP 2003050922 A JP2003050922 A JP 2003050922A JP 2004255441 A JP2004255441 A JP 2004255441A
Authority
JP
Japan
Prior art keywords
load
friction
rotor
moving
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003050922A
Other languages
Japanese (ja)
Inventor
Masami Ueno
正巳 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2003050922A priority Critical patent/JP2004255441A/en
Publication of JP2004255441A publication Critical patent/JP2004255441A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To properly follow up a change in stirring-condition that is possibly caused in the middle of friction stirring and to control the metal temperature of the friction stirring part in a plastic flow temperature range without being affected by the change in the stirring-condition. <P>SOLUTION: The friction stir equipment performs friction stirring by pressurizing to a workpiece 2 and relatively moving a rotary shaft 12 and a rotor 13 which are made of a material having a higher hardness and melting point than the workpiece including a metallic material, and then, by raising the temperature of the metallic material to the plastic flow temperature range and softening it. The friction stir equipment is provided with a control unit C/U, 6 for controlling the operation of a rotary driving device 11 and a main-shaft transfer device 16. The control unit is equipped with a rotary load detecting means (current detector) for detecting the rotary load of the rotary shaft and the rotor, a transfer load detecting means (6, transfer controller) for detecting the transfer load of the rotary shaft and the rotor, and an operation control means (transfer controller, rotation controller) for variably controlling the operation of the rotary driving device and the main-shaft transfer device on the basis of the rotary load and the transfer load detected by the respective detecting means. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、摩擦撹拌装置及び摩擦撹拌方法に関するものであり、より詳細には、摩擦撹拌中に生じ得る撹拌条件の変化に適切に追従し、被撹拌部の金属温度を塑性流動温度域に確実に維持管理する摩擦撹拌装置及び摩擦撹拌方法に関するものである。
【0002】
【従来の技術】
アルミニウム合金やマグネシウム合金等の軽金属成形品は、軽量で、しかも、熱放散性に優れるので、例えば、エンジンシリンダーブロック、シリンダーヘッド、ブレーキディスク、マニホールド等の自動車部品として使用される。
【0003】
このような金属成形品の製法として、鍛造法又は粉末焼結法等の採用も考慮し得るが、鍛造法又は粉末焼結法等の製法では、所望の設計自由度を得難く、成形可能な製品形状に限界が生じることから、一般には、設計自由度が高く、任意の形状又は複雑な形状の製品を成型し得る鋳造法が、この種の軽金属成形品の製法として採用される。
【0004】
軽金属成形品の鋳造法に関し、成形法自体に起因する課題、即ち、鋳物内部の凝固組織が不均一になり易く、巣や気孔等の鋳造欠陥が生じ易いという課題が長年に亘って指摘されている。しかしながら、組織の粗大化による素材特性のバラツキや品質低下等の鋳造法特有の課題は、容易には克服し難く、このため、素材を強化すべく、金属、セラミックス繊維等の添加による金属鋳物材料の複合化、圧接による鍛造材及び異種金属の接合、レーザーを用いたリメルト処理、更には、元素添加による合金化又は合金特性の改善等により、鋳造法の課題を克服する努力が払われてきた。
【0005】
このような鋳造法特有の課題を克服し得る手段として、近年、摩擦攪拌接合法(FSW法)を応用した鋳物材の表面改質技術が注目されている。摩擦撹拌接合法は、接合すべき金属材料の接合部に高融点且つ高硬度のロッド状回転工具を押圧し、回転工具の高速回転により発生する摩擦熱を利用して接合部の金属材料を軟化し、金属同士を接合する接合法として知られており、これは、固体溶接法又は固相接合法の一種である。このように金属溶融を伴わない摩擦撹拌接合法によれば、金属材料の合金成分が失われ難く、接合部が母材強度に近い接合強度を発揮するなど、多くの利点が得られる。
【0006】
摩擦撹拌接合法を応用した金属表面の改質方法においても又、表面改質すべき金属材よりも高融点且つ高硬度のロッド状回転工具を金属材の表面に加圧接触せしめた状態で回転工具を回転させ且つ移動させ、金属材の表層部を塑性流動温度域に加熱し且つ摩擦攪拌して、金属材表層部の金属組織を緻密化ないし微細化する。このような表面改質法によれば、摩擦攪拌時の発熱及び機械的エネルギーにより、鋳物材の表層を改質し得る(特許文献1〜3参照)。
【0007】
【特許文献1】
特開2000−312980号公報
【0008】
【特許文献2】
特開2000−336465号公報
【0009】
【特許文献3】
特開2001−32058号公報
【0010】
【発明が解決しようとする課題】
この種の摩擦撹拌接合法及び表面改質方法では、半溶融状態の金属を回転軸及び回転子により撹拌するので、被撹拌部分の金属材料の温度を塑性流動温度域に維持管理する必要がある。例えば、金属の温度が塑性流動温度域に達しない状態で摩擦撹拌を継続すると、回転軸及び回転子が過大な回転抵抗及び移動抵抗を受け、回転軸又は回転子が損傷する虞がある。他方、金属温度が塑性流動温度域を超える場合、金属が溶融するので、所望の金属組成を達成し難いばかりでなく、回転軸先端のショルダー面で溶融金属を完全に押さえることができず、溶融金属が周囲に飛散する事態が懸念される。このため、従来の摩擦撹拌装置では、金属材料の温度を組成流動温度域に維持すべく、回転工具の回転数(回転速度)及び送り速度(移動速度)を常時一定値に維持しようとする。
【0011】
しかしながら、実際に接合又は改質すべき金属材料には、摩擦撹拌中に撹拌条件の変動又は変化をもたらす要因、例えば、肉厚の変化、金属組成の変化等があり、このような場合、従来の摩擦撹拌装置では、回転数及び送り速度を撹拌条件の変動又は変化に適切に追従させることができず、これに起因する接合不良、改質不良、金属溶融、回転工具損傷等が生じてしまう。
【0012】
本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、摩擦撹拌中に生じ得る撹拌条件の変化に適切に追従し、撹拌条件の変化に影響されることなく被撹拌部の金属温度を塑性流動温度域に維持管理することができる摩擦撹拌装置及び摩擦撹拌方法を提供することにある。
【0013】
【課題を解決するための手段】
上記目的を達成すべく、本発明は、金属材料を含むワークよりも高硬度且つ高融点の素材からなる回転軸及び回転子と、前記回転軸及び回転子を回転させる回転駆動装置と、前記回転軸及び回転子をワークに対して押圧し且つ相対移動させる主軸移動装置とを有し、前記金属材料を塑性流動温度域に昇温して軟化し、摩擦撹拌により前記金属材料の金属組織を微細化する摩擦撹拌装置において、
前記回転駆動装置及び主軸移動装置の作動を制御する制御装置を有し、該制御装置は、前記回転軸及び回転子の回転負荷を検出する回転負荷検出手段と、前記回転軸及び回転子の移動負荷を検出する移動負荷検出手段と、前記金属材料の温度を塑性流動温度域に維持すべく、回転負荷検出手段及び/又は移動負荷検出手段により検出された回転負荷及び/又は移動負荷を基準に前記回転駆動装置及び/又は主軸移動装置の制御目標値を調節する作動制御手段とを備えたことを特徴とする摩擦撹拌装置を提供する。
【0014】
被撹拌部の金属温度が高い場合、金属の流動抵抗は比較的低く、他方、被撹拌部の金属温度が低い場合、金属の流動抵抗は比較的高く顕れる。本発明の上記構成によれば、制御装置の作動制御手段は、回転軸及び回転子の回転負荷及び/又は移動負荷の検出結果に基づき、被撹拌部の金属温度を塑性流動温度に維持するように回転駆動装置及び/又は主軸移動装置の制御目標値を調節し、制御装置は、この制御目標値に従って回転駆動装置及び/又は主軸移動装置の作動を制御する。例えば、金属温度が上昇すると、回転負荷又は移動負荷は低下するので、制御装置は、回転軸及び回転子の移動速度を増大し、又は回転速度を低下させ、これにより、金属温度を低下させる。他方、金属温度が降下すると、回転負荷又は移動負荷は増大するので、制御装置は、回転軸及び回転子の移動速度を低下し、又は回転速度を増大し、これにより、金属温度を上昇させる。制御装置は、このような制御を継続することにより、被撹拌部の金属温度を塑性流動温度域の制御目標温度に維持管理する。
【0015】
好ましくは、上記制御装置は、摩擦撹拌開始後に所定時間経過した時期、又は上記回転軸が摩擦撹拌開始後に所定距離移動したとき、作動制御手段による制御目標値の調節を開始させる制御開始手段を更に有する。摩擦撹拌開始時には、回転軸及び回転子がワークに部分的にのみ接触するにすぎない状態や、ワークの金属温度が比較的低温であるため、回転負荷及び移動負荷と金属温度との相関関係は、定常運転時の相関関係と大きく相違する。このため、制御装置は、摩擦撹拌開始直後には、上述の制御を行わず、摩擦撹拌開始後に所定時間が経過し又は回転軸が所定距離移動した後に上述の制御を開始する。
【0016】
更に好ましくは、上記回転駆動装置は、回転軸を回転駆動する電動モータからなり、回転負荷検出手段は、電動モータの消費電力の計測により回転負荷を検出し、移動負荷検出手段は、回転軸及び回転子の進行方向の荷重を計測するための荷重計を含み、荷重計の計測値に基づき移動負荷を検出する。
【0017】
好適には、上記制御装置は、回転負荷及び/又は移動負荷と、被撹拌部の金属材料の温度との相関関係を示す関数又はマップを記憶した記憶・演算手段を備え、該記憶・演算手段は、回転負荷及び/又は移動負荷に基づき、金属材料の温度を所定の塑性流動温度に制御すべく、上記制御目標値を設定する。所望により、制御装置は、回転負荷検出手段又は移動負荷検出手段により検出された回転負荷又は移動負荷が所定範囲外の値を示すときに、異常を判定する異常判定手段を有する。
【0018】
本発明は又、金属材料を含むワークに対して、該ワークよりも高硬度且つ高融点の素材からなる回転軸及び回転子を押圧し、回転状態の前記回転軸及び回転子を前記ワークに摩擦接触せしめ、摩擦接触により発生する発熱で前記金属材料を塑性流動温度域に昇温し且つ軟化し、摩擦撹拌作用により前記金属材料の金属組織を微細化する摩擦撹拌方法において、
前記回転軸及び回転子の回転負荷を検出するとともに、前記回転軸及び回転子の移動負荷を検出し、前記回転負荷及び/又は移動負荷の検出値に基づき、前記金属材料の温度を塑性流動温度域に維持するように前記回転軸及び回転子の回転数及び/又は移動速度をフィードバック制御することを特徴とする摩擦撹拌方法を提供する。
【0019】
本発明の上記構成によれば、回転軸及び回転子の回転数及び/又は移動速度のフィードバック制御により、摩擦撹拌中に生じ得る撹拌条件の変化に適切に追従し、金属温度を塑性流動温度域に維持することができる。
【0020】
好ましくは、摩擦撹拌開始後の所定時間内、又は回転軸が摩擦撹拌開始後に所定距離移動するまで、回転数及び/又は移動速度のフィードバック制御実行を制限し、所定時間経過後又は所定距離移動後にフィードバック制御を実行する。更に好ましくは、回転負荷及び/又は移動負荷により検出した金属材料の温度に基づき、被撹拌部の金属温度の正常又は異常を判定する。
【0021】
【発明の実施の形態】
以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。
図1は、本発明に係る摩擦攪拌装置の全体構成を示す正面図であり、図2は、図1に示す回転ツール及びプローブ部分の構造を示す部分拡大断面図である。
【0022】
金属材料の表層を摩擦撹拌して金属組織を微細化し、金属材料の表面改質を行うように構成した摩擦撹拌装置1が、図1及び図2に示されている。摩擦攪拌装置1は、回転駆動装置11、回転ツール12及びプローブ13を有する。回転ツール12及びプローブ13は夫々、回転軸及び回転子を構成する。回転駆動装置11は、主軸移動装置16を介して支柱15に支持され、支柱15は、支持台14に垂直に固定される。ワークテーブル17が、支持台14上に配設され、アルミニウム合金又はマグネシウム合金等の軽金属鋳物からなるワーク2が、ワークテーブル17上に静置される。回転駆動装置11は、電動モータからなり、回転ツール12は、回転駆動装置11の作動時に、回転駆動装置11の回転駆動軸(図示せず)と一体的に回転する。主軸移動装置16は、回転駆動装置11をワーク2に対して垂直方向に相対移動させるとともに、回転駆動装置11をワーク2に対して水平方向に相対変位させる。主軸移動装置16は、制御ユニットC/U(図示せず)に接続され、制御ユニットC/Uの制御下に回転駆動装置11を垂直方向及び水平方向に移動させる。主軸移動装置16には、回転軸11の軸荷重を検出する荷重計6が配設される。
【0023】
回転ツール12は、主軸回転軸線CLを軸芯とした均一な円形横断面を有し、ワーク2の母材よりも高硬度且つ高融点の金属材料、例えば、ステンレス鋼の成形品からなる。図2に示す如く、回転ツール12の下端部は、ワーク2の上面を押圧可能な水平押圧面18を備える。押圧面18は、軟化金属の飛び出しを防止し且つ摩擦接触面積を確保するショルダー面を構成する。押圧面18の中心には、プローブ13の上部を受入可能な凹部19が形成される。プローブ13の上部は、凹部19内に挿入され、回転ツール12の本体部分に着脱可能に固定される。プローブ13の下部は、押圧面18の中心において主軸回転軸線CLと同心に下方に突出する。プローブ13も又、主軸回転軸線CLを軸芯とした均一な円形横断面を有し、ワーク2の母材よりも高硬度且つ高融点の金属材料、例えば、ステンレス鋼の成形品からなる。図2に示す如く、プローブ13の下部表面は、金属材料に添加すべき添加材3で被覆される。
【0024】
図3は、図1に示す摩擦攪拌装置における回転ツール12の軸負荷及びワーク部分の温度の関係を示す線図であり、図4(A)〜(C)は、表面改質工程を段階的に示す工程説明図である。また、図5は、摩擦攪拌時の状態を示す回転ツール先端部の拡大断面図であり、図6は、摩擦攪拌時の状態を示す斜視図である。
【0025】
図4(A)に示す如く、ワーク2は、摩擦攪拌装置1のワークテーブル17上に固定される。摩擦攪拌装置1の制御ユニットC/Uは、回転駆動装置11及び主軸移動装置16を作動し、回転ツール12及びプローブ13は、ワーク2の上面レベルに降下し且つ高速回転する。
【0026】
主軸移動装置16は、回転ツール12及びプローブ13をワーク2に対して水平移動させ、図4(B)に示すように、押圧面18によりワーク2上面を押圧した状態で回転ツール12及びプローブ13をワーク2の母材と摩擦接触せしめる。回転ツール12とワーク2との相対運動により発生する摩擦熱により、ワーク2の母材は軟化し、摩擦攪拌される。
【0027】
主軸移動装置16は、主軸の回転軸線方向Gに鉛直荷重Fを加え続けるとともに、回転ツール12を進行方向Hに水平移動させる。回転駆動装置11は、回転ツール12及びプローブ13の高速回転を維持し、押圧面18は、ワークWの表面を押圧し続ける。この結果、ワーク2の表層は、図4(C)及び図5に示す如く、回転ツール12の移動経路に沿って、摩擦攪拌による改質作用を受ける。
【0028】
摩擦撹拌時に温度上昇する金属は、金属固有の融点温度において固相から液相に状態変化する。金属は、融点温度以下の塑性流動温度域において流動化し、回転ツール12及びプローブ13の摩擦撹拌作用を受ける。融点温度を超える溶融温度域においては、金属を構成する合金成分が失われたり、過剰な摩擦撹拌により溶融液が飛散するなどの現象が生じるので、摩擦撹拌は、金属の塑性流動温度域において実施しなければならない。
【0029】
ここに、摩擦撹拌時の金属温度を正確且つ直接的に測定することは、非常に困難であるが、図3に示す如く、回転ツール12の軸負荷S(回転負荷、移動負荷)は、金属温度Tの上昇につれて低下する傾向を示す。従って、回転ツール12の軸負荷Sを測定し、これを指標として、比較的正確に金属温度Tを検出することができる。
【0030】
塑性流動温度域に相応する軸負荷Sの範囲ΔS1が、図3に図示されている。軸負荷Sが負荷範囲ΔS1に達しない負荷領域では、金属温度Tは、溶融温度域に達し、軸負荷Sが負荷範囲ΔS1を超える負荷領域では、十分な金属の流動性が得られない。従って、摩擦撹拌は、負荷範囲ΔS1内において実施され、所望の摩擦撹拌を達成し得る軸負荷Sの範囲ΔS2が、制御目標値として設定される。摩擦撹拌装置1の軸負荷Sは、以下の如く、制御目標値ΔS2を基準にフィードバック制御される。
【0031】
図7は、軸負荷Sとして検出すべき要素を概念的に示す回転ツール12の側面図であり、図8は、摩擦撹拌装置1の制御系構成を概略的に示すブロック図である。
【0032】
回転ツール12は、摩擦撹拌時に高速回転しながら進行方向Hに移動する際、半溶融状態の金属の流動抵抗が、回転ツール12の回転負荷として回転駆動装置11に作用するとともに、回転ツール12の移動負荷(送り負荷)として主軸移動装置16に作用する。回転負荷の変化は、回転駆動装置11の電流値変化として顕れ、移動負荷の変化は、回転ツール12のラジアル方向(径方向)反力の変化、即ち、主軸移動装置16の荷重変化として顕れる。従って、回転負荷は、回転駆動装置11に給電される電流の電流値変化を測定することにより検出することができ、移動負荷は、主軸移動装置16のラジアル方向の荷重値を荷重計6で測定することにより検出することができる。
【0033】
図1及び図8に示す如く、摩擦撹拌装置1は、回転駆動装置11及び主軸移動装置16の作動を制御する制御ユニットC/Uを備える。荷重計6は、回転ツール12及びプローブ13の移動負荷を検出する移動負荷検出手段を構成し、荷重計6及び制御ユニットC/Uを含む制御系(図8)は、摩擦攪拌装置1の制御装置を構成する。
制御ユニットC/Uの電源供給部には、摩擦撹拌装置1の動力が給電される。制御ユニットC/Uの回転制御部は、電流検出部により検出された回転駆動装置11の消費電力値に基づき、回転駆動部から回転駆動装置11に供給される作動電力を可変制御する。荷重計6の荷重検出値は、制御ユニットC/Uの移動制御部に入力され、移動制御部は、移動装置駆動部から主軸移動装置16に供給される作動電力を制御し、回転ツール12の軸線方向荷重及びラジアル方向荷重を可変制御する。なお、電流検出部は、回転ツール12及びプローブ13の回転負荷を検出する回転負荷検出手段を構成し、回転制御部及び移動制御部は、回転負荷及び移動負荷を基準に回転駆動装置11及び主軸移動装置16の制御目標値を調節する作動制御手段を構成する。
【0034】
図9は、制御ユニットC/Uが実行する制御フローを概略的に示すフローチャートである。
摩擦撹拌開始時には、回転ツール12が低温のワーク2に接触し、回転ツール12は、瞬間的に大きな移動抵抗(進行方向負荷)を受け、負荷ピーク等が生じる。摩擦熱による金属温度の上昇により、金属温度は安定し、摩擦撹拌装置1は、定常運転に移行する。制御ユニットC/Uは、撹拌条件が安定しない接触初期段階から定常運転に移行したことを検出すべく、初期判定を先ず実行する(S1)。初期判定は、摩擦撹拌装置1の作動開始後の経過時間、或いは、作動開始後の回転ツール12の移動距離に基づいて実行される。制御ユニットC/Uは、摩擦撹拌装置1の作動開始後、所定時間が経過し、或いは、回転ツール12が所定距離移動したことを検出すると、負荷検出を開始する(S2)。
【0035】
制御ユニットC/Uの電流検出部は、回転駆動装置11の消費電流値を継続的に検出し、回転制御部は、消費電流値を常時監視する(S2)。制御ユニットC/Uの移動制御部には、荷重計6の荷重検出値が継続的に入力され、移動制御部は、回転ツール12のラジアル方向荷重を常時監視する(S2)。回転制御部及び移動制御部は、消費電流値及びラジアル方向荷重が所定範囲内の値を示すとき、回転ツール12の適正負荷を判定し、初期設定値に基づく回転駆動装置11及び主軸移動装置16の定常運転を維持する。
【0036】
制御ユニットC/Uは、消費電流値が所定値を超え、或いは、荷重計6のラジアル方向荷重が所定値を超えた場合、回転ツール12の過大負荷を判定し、他方、消費電流値が所定値未満に低下し、或いは、荷重計6のラジアル方向荷重値が所定値未満に低下したとき、回転ツール12の過小負荷を判定する(S3)。
【0037】
制御ユニットC/Uは、消費電流値及びラジアル方向荷重と金属温度との相関関係を関数化した関数式又は制御マップを記憶する記憶・演算部(図8)を内蔵しており、記憶・演算部は、過大負荷又は過小負荷状態が回転制御部又は移動制御部により検出されると、金属温度を制御目標範囲内に収束すべく、回転ツール12の回転数及び送り速度の最適値(目標電流値及び目標荷重値)を設定する。なお、記憶・演算部は、回転負荷及び移動負荷と、金属材料の温度との相関関係を示す関数又はマップを記憶した記憶・演算手段を構成する。
回転制御部は、記憶・演算部が設定した目標電流値に基づき、回転駆動装置11に対する供給電力を制御し、移動制御部は、記憶・演算部が設定した目標荷重値に基づき、主軸移動装置16に対する供給電力を制御する(S5)。例えば、制御ユニットC/Uは、過小負荷運転状態では、回転ツール12及びプローブ13の移動速度を増大し且つ回転速度を低下させ、これにより、金属温度を低下させる。他方、制御ユニットC/Uは、過大負荷状態を検出すると、回転ツール12及びプローブ13の移動速度を低下し且つ回転速度を増大する。この結果、金属温度は上昇する。
【0038】
制御ユニットC/Uは、このような負荷検出(S2)、負荷判断(S3)及び制御目標値変更(S5)のルーチンを継続的に実行し、消費電流値及びラジアル方向荷重に基づくフィードバック制御、即ち、回転負荷及び移動負荷の適正化ないし最適化により金属温度を塑性流動温度域内の所定温度に維持するフィードバック制御を実行する。
【0039】
摩擦撹拌装置1が、予め設定された所定距離を移動し、摩擦撹拌による表面改質を完了すると、制御ユニットC/Uは、このようなフィードバック制御を終了し、各種制御値を初期化する(S4)。
【0040】
このように、本実施形態によれば、摩擦撹拌装置1の制御ユニットC/Uは、被撹拌部の金属温度の指標として回転ツール12の回転負荷及び移動負荷を用い、過大負荷又は過小負荷を検出すると回転ツール12の制御目標値を設定変更し、被撹拌部の金属温度を塑性流動温度域内の所定温度に維持するように回転ツール12の回転数及び移動速度を調節するフィードバック制御を実行する。
【0041】
このような構成の摩擦撹拌装置1によれば、回転負荷及び移動負荷の適正化により被撹拌部の金属温度を塑性流動温度に確実に維持管理し得るので、肉厚が変化する偏肉ワークや、多種多様な形状の軽金属鋳物の如く、摩擦撹拌中に撹拌条件が変化するワークを確実に塑性流動温度域で摩擦撹拌することができ、この結果、摩擦撹拌作用は均一化し、製品の品質は安定する。
【0042】
なお、上記制御ユニットC/Uは、摩擦撹拌開始時の条件不安定域においては、回転ツール2の送り速度及び回転数を一定値に制御する。しかしながら、制御ユニットC/Uは、摩擦撹拌開始時に生じ得る負荷ピークを回避する回転数制御及び移動制御を実施しても良い。例えば、制御ユニットC/Uは、摩擦撹拌開始時に回転ツール12の移動速度(進行方向速度)を低速から高速に段階的に変化させ、或いは、線形変化させ、初期の負荷ピーク発生を防止する。この場合、制御ユニットC/Uは、回転負荷を消費電流値より監視し、回転負荷が一定値に低下したことにより、金属温度安定を確認して回転ツールの移動速度を定常速度に設定変更するようにしても良く、或いは、回転負荷の低下に比例して回転ツール12の移動速度を増減する移動速度制御を行っても良い。このような初期制御によれば、摩擦撹拌初期に生じ易い空隙発生又は局所的強度低下等の不良を防止するとともに、急激な負荷変動や負荷ピーク発生による回転ツール12の寿命低下等の問題を解消し得る。また、このような初期制御は、金属部材端部における不良部分発生を防止する上で有効であるので、殊に、表面改質又は金属接合処理を施す金属部材が比較的短く、不良端部の切断処理を施し難い場合、有益である。
【0043】
また、制御ユニットC/Uは、軸負荷Sの範囲ΔS1を超えるような異常な軸負荷を検出したとき、異常警報を外部に発し、或いは、摩擦撹拌装置1の操作ディスプレイ上にエラー表示を表示する等の異常警報手段を備えても良い。
更に、上記実施形態では、荷重検出手段の構成要素として、回転ツール12のラジアル方向荷重値を測定する荷重計6を採用したが、主軸移動装置16の駆動電流値の変動や、消費電力値の変化などにより回転ツール12の移動負荷を検出するように荷重検出手段を構成することも可能である。
【0044】
なお、上記実施形態は、摩擦撹拌接合法を応用した金属表面の改質に関するものであるが、金属を接合する一般的な摩擦撹拌接合に上記構成を適用し得ることは、いうまでもない。
【0045】
【発明の効果】
以上説明したとおり、本発明の摩擦撹拌装置又は摩擦撹拌方法によれば、摩擦撹拌中に生じ得る撹拌条件の変化に適切に追従し、被撹拌部の金属温度を定常的に塑性流動温度域に維持管理することができる。
【図面の簡単な説明】
【図1】本発明に係る摩擦攪拌装置の全体構成を示す正面図である。
【図2】図1に示す回転ツール及びプローブ部分の構造を示す部分拡大断面図である。
【図3】図1に示す摩擦攪拌装置における回転軸の軸負荷及びワーク部分の温度の関係を示す線図である。
【図4】表面改質工程を段階的に示す工程説明図である。
【図5】摩擦攪拌時の状態を示す回転ツール先端部の拡大断面図である。
【図6】摩擦攪拌時の状態を示す斜視図である。
【図7】回転負荷及び軸負荷として検出すべき要素を概念的に示す回転軸の側面図である。
【図8】摩擦撹拌装置の制御系構成を概略的に示すブロック図である。
【図9】制御ユニットが実行する制御フローを概略的に示すフローチャートである。
【符号の説明】
1 摩擦攪拌装置
2 ワーク
6 荷重計
11 回転駆動装置
12 回転ツール
13 プローブ
16 主軸移動装置
C/U 制御ユニット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a friction stirrer and a friction stirrer method, and more specifically, appropriately follows a change in stirring conditions that may occur during friction stirrer, and ensures that a metal temperature of a portion to be stirred is in a plastic flow temperature range. The present invention relates to a friction stirrer and a friction stirrer method that are maintained and controlled.
[0002]
[Prior art]
Light metal molded articles such as aluminum alloys and magnesium alloys are lightweight and have excellent heat dissipation, and are therefore used as automobile parts such as engine cylinder blocks, cylinder heads, brake discs, and manifolds.
[0003]
As a method of manufacturing such a metal molded product, forging or powder sintering may be considered, but in a method such as forging or powder sintering, it is difficult to obtain a desired degree of design freedom and molding is possible. Since the shape of the product is limited, a casting method which has a high degree of freedom in designing and which can mold a product having an arbitrary shape or a complicated shape is generally employed as a method for producing such a light metal molded product.
[0004]
Regarding the casting method of light metal molded articles, problems caused by the molding method itself, that is, the problem that the solidification structure inside the casting tends to be uneven and casting defects such as cavities and pores are likely to occur have been pointed out for many years. I have. However, problems unique to the casting method, such as variations in material properties and deterioration in quality due to coarsening of the structure, are difficult to overcome easily. Therefore, in order to strengthen the material, metal casting materials by adding metals, ceramic fibers, etc. Efforts have been made to overcome the problems of the casting method by combining iron, forging and dissimilar metals by pressure welding, remelting using a laser, and alloying or improving alloy properties by adding elements. .
[0005]
In recent years, as a means capable of overcoming such a problem unique to the casting method, a technique for modifying the surface of a casting material using a friction stir welding method (FSW method) has attracted attention. In the friction stir welding method, a rod-shaped rotating tool with a high melting point and high hardness is pressed against the joint of the metal materials to be joined, and the metal material at the joint is softened using the frictional heat generated by the high-speed rotation of the rotating tool. It is also known as a joining method for joining metals, which is a kind of a solid welding method or a solid state joining method. According to the friction stir welding method that does not involve melting of the metal, many advantages can be obtained, such as the alloy component of the metal material is not easily lost, and the joint exhibits a joint strength close to the base metal strength.
[0006]
In a method for modifying a metal surface using a friction stir welding method, a rotating tool having a rod-shaped rotating tool having a higher melting point and a higher hardness than the metal material to be surface-modified is brought into pressure contact with the surface of the metal material. Is rotated and moved to heat the surface layer portion of the metal material to the plastic flow temperature range and frictionally stir to refine or refine the metal structure of the metal material surface layer portion. According to such a surface modification method, the surface layer of a casting material can be modified by heat generated during friction stirring and mechanical energy (see Patent Documents 1 to 3).
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-321980
[Patent Document 2]
JP 2000-336465 A
[Patent Document 3]
JP 2001-32058 A
[Problems to be solved by the invention]
In the friction stir welding method and the surface modification method of this type, since the metal in the semi-molten state is stirred by the rotating shaft and the rotor, it is necessary to maintain and control the temperature of the metal material in the portion to be stirred in the plastic flow temperature range. . For example, if friction stirring is continued in a state where the temperature of the metal does not reach the plastic flow temperature range, the rotating shaft and the rotor may receive excessive rotational resistance and moving resistance, and the rotating shaft or the rotor may be damaged. On the other hand, when the metal temperature exceeds the plastic flow temperature range, the metal is melted, so not only is it difficult to achieve the desired metal composition, but also the molten metal cannot be completely held down by the shoulder surface at the tip of the rotating shaft, and There is a concern that metal may scatter around. For this reason, in the conventional friction stirrer, the rotation speed (rotation speed) and the feed speed (movement speed) of the rotary tool are always maintained at constant values in order to maintain the temperature of the metal material in the composition flow temperature range.
[0011]
However, metal materials to be actually joined or modified include factors that cause fluctuations or changes in stirring conditions during friction stirring, for example, changes in wall thickness, changes in metal composition, and the like. In the friction stirrer, the number of revolutions and the feed rate cannot be made to appropriately follow the fluctuation or change of the stirring conditions, and the resulting poor joining, poor reforming, melting of the metal, damage to the rotating tool, and the like occur.
[0012]
The present invention has been made in view of such a problem, and an object thereof is to appropriately follow a change in stirring conditions that may occur during friction stirring, without being affected by a change in stirring conditions. An object of the present invention is to provide a friction stirrer and a friction stir method capable of maintaining and controlling the metal temperature of a portion to be stirred within a plastic flow temperature range.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a rotating shaft and a rotor made of a material having a higher hardness and a higher melting point than a work containing a metal material, a rotation driving device for rotating the rotating shaft and the rotor, A spindle moving device for pressing the shaft and the rotor against the work and moving the shaft relatively to the workpiece, wherein the metal material is heated to a plastic flow temperature range and softened, and the metal structure of the metal material is finely divided by friction stirring. Friction stirrer
A control device that controls the operation of the rotation drive device and the spindle moving device; the control device includes: a rotation load detection unit configured to detect a rotation load of the rotation shaft and the rotor; and a movement of the rotation shaft and the rotor. A moving load detecting means for detecting a load, and a rotational load and / or a moving load detected by the rotating load detecting means and / or the moving load detecting means to maintain the temperature of the metal material in a plastic flow temperature range. An operation control means for adjusting a control target value of the rotary drive device and / or the spindle moving device is provided.
[0014]
When the temperature of the metal to be stirred is high, the flow resistance of the metal is relatively low. On the other hand, when the temperature of the metal to be stirred is low, the flow resistance of the metal appears relatively high. According to the configuration of the present invention, the operation control means of the control device maintains the metal temperature of the agitated portion at the plastic flow temperature based on the detection result of the rotational load and / or the moving load of the rotating shaft and the rotor. The control target value of the rotary driving device and / or the spindle moving device is adjusted, and the control device controls the operation of the rotary driving device and / or the spindle moving device according to the control target value. For example, when the metal temperature increases, the rotational load or the moving load decreases, and thus the control device increases the moving speed of the rotating shaft and the rotor or decreases the rotating speed, thereby lowering the metal temperature. On the other hand, when the metal temperature decreases, the rotational load or the moving load increases, so that the controller reduces or increases the rotational speed of the rotating shaft and the rotor, thereby increasing the metal temperature. By continuing such control, the control device maintains and manages the metal temperature of the portion to be stirred at the control target temperature in the plastic flow temperature range.
[0015]
Preferably, the control device further includes control start means for starting adjustment of the control target value by the operation control means when a predetermined time has elapsed after the start of friction stirring or when the rotating shaft has moved a predetermined distance after the start of friction stirring. Have. At the start of friction stirring, the rotating shaft and the rotor are only in partial contact with the workpiece, and the metal temperature of the workpiece is relatively low. , Greatly differ from the correlation at the time of steady operation. Therefore, the control device does not perform the above-described control immediately after the start of the friction stir, but starts the above-described control after a lapse of a predetermined time after the start of the friction stir or after the rotation shaft has moved a predetermined distance.
[0016]
More preferably, the rotation drive device includes an electric motor that rotationally drives a rotation shaft, the rotation load detection unit detects a rotation load by measuring power consumption of the electric motor, and the movement load detection unit includes a rotation shaft and a rotation shaft. A load meter for measuring a load in the traveling direction of the rotor is included, and a moving load is detected based on a measurement value of the load meter.
[0017]
Preferably, the control device includes a storage / arithmetic unit that stores a function or a map indicating a correlation between the rotational load and / or the moving load and the temperature of the metal material of the portion to be agitated. Sets the control target value to control the temperature of the metal material to a predetermined plastic flow temperature based on the rotational load and / or the moving load. If desired, the control device includes abnormality determination means for determining abnormality when the rotation load or the movement load detected by the rotation load detection means or the movement load detection means indicates a value outside a predetermined range.
[0018]
The present invention also presses a rotating shaft and a rotor made of a material having a higher hardness and a higher melting point than a work containing a metal material, and frictionally applies the rotating shaft and the rotor in a rotating state to the work. In the friction stir method, the metal material is heated to a plastic flow temperature range and softened by heat generated by frictional contact, and softened, and the metal structure of the metal material is refined by friction stir action.
The rotational load of the rotating shaft and the rotor is detected, and the moving load of the rotating shaft and the rotor is detected. Based on the detected value of the rotating load and / or the moving load, the temperature of the metal material is determined as a plastic flow temperature. A friction stir method, wherein the rotational speed and / or the moving speed of the rotating shaft and the rotor are feedback-controlled so as to maintain the rotational speed in the range.
[0019]
According to the above configuration of the present invention, the feedback control of the rotation speed and / or the moving speed of the rotating shaft and the rotor appropriately follows a change in stirring conditions that may occur during frictional stirring, and reduces the metal temperature in the plastic flow temperature range. Can be maintained.
[0020]
Preferably, the feedback control of the rotation speed and / or the moving speed is restricted within a predetermined time after the start of friction stirring or until the rotation axis moves a predetermined distance after the start of friction stirring, and after a predetermined time elapses or after a predetermined distance movement. Execute feedback control. More preferably, the normal or abnormal metal temperature of the portion to be agitated is determined based on the temperature of the metal material detected by the rotating load and / or the moving load.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a front view showing the entire configuration of the friction stirrer according to the present invention, and FIG. 2 is a partially enlarged cross-sectional view showing the structure of the rotary tool and probe shown in FIG.
[0022]
FIG. 1 and FIG. 2 show a friction stirrer 1 configured to refine a metal structure by frictionally stirring a surface layer of a metal material and perform surface modification of the metal material. The friction stirrer 1 includes a rotation drive device 11, a rotation tool 12, and a probe 13. The rotating tool 12 and the probe 13 constitute a rotating shaft and a rotor, respectively. The rotation drive device 11 is supported on a support 15 via a spindle moving device 16, and the support 15 is fixed vertically to a support 14. A work table 17 is provided on the support table 14, and the work 2 made of a light metal casting such as an aluminum alloy or a magnesium alloy is left on the work table 17. The rotation drive device 11 is formed of an electric motor, and the rotation tool 12 rotates integrally with a rotation drive shaft (not shown) of the rotation drive device 11 when the rotation drive device 11 operates. The spindle moving device 16 relatively moves the rotary drive device 11 in the vertical direction with respect to the work 2 and also relatively displaces the rotary drive device 11 in the horizontal direction with respect to the work 2. The spindle moving device 16 is connected to a control unit C / U (not shown), and moves the rotary drive device 11 in the vertical direction and the horizontal direction under the control of the control unit C / U. The main shaft moving device 16 is provided with a load meter 6 for detecting a shaft load of the rotating shaft 11.
[0023]
The rotating tool 12 has a uniform circular cross section centered on the main spindle rotation axis CL, and is made of a metal material having a higher hardness and a higher melting point than the base material of the work 2, for example, a molded product of stainless steel. As shown in FIG. 2, the lower end of the rotating tool 12 includes a horizontal pressing surface 18 that can press the upper surface of the work 2. The pressing surface 18 forms a shoulder surface that prevents the softened metal from jumping out and secures a frictional contact area. At the center of the pressing surface 18, a concave portion 19 capable of receiving the upper portion of the probe 13 is formed. The upper portion of the probe 13 is inserted into the concave portion 19 and is detachably fixed to the main body of the rotating tool 12. The lower portion of the probe 13 projects downward at the center of the pressing surface 18 concentrically with the spindle rotation axis CL. The probe 13 also has a uniform circular cross-section centered on the spindle rotation axis CL, and is formed of a metal material having a higher hardness and a higher melting point than the base material of the work 2, for example, a molded product of stainless steel. As shown in FIG. 2, the lower surface of the probe 13 is coated with an additive 3 to be added to the metal material.
[0024]
FIG. 3 is a diagram showing the relationship between the axial load of the rotating tool 12 and the temperature of the work part in the friction stirrer shown in FIG. 1, and FIGS. FIG. FIG. 5 is an enlarged cross-sectional view of the tip of the rotary tool showing a state during friction stirring, and FIG. 6 is a perspective view showing a state during friction stirring.
[0025]
As shown in FIG. 4A, the work 2 is fixed on a work table 17 of the friction stirrer 1. The control unit C / U of the friction stirrer 1 operates the rotation driving device 11 and the spindle moving device 16, and the rotation tool 12 and the probe 13 descend to the upper surface level of the work 2 and rotate at high speed.
[0026]
The spindle moving device 16 horizontally moves the rotating tool 12 and the probe 13 with respect to the work 2, and presses the upper surface of the work 2 with the pressing surface 18, as shown in FIG. Is brought into frictional contact with the base material of the work 2. Due to the frictional heat generated by the relative motion between the rotary tool 12 and the work 2, the base material of the work 2 is softened and frictionally stirred.
[0027]
The spindle moving device 16 keeps applying the vertical load F in the rotation axis direction G of the spindle, and horizontally moves the rotary tool 12 in the traveling direction H. The rotation drive device 11 maintains the high-speed rotation of the rotary tool 12 and the probe 13, and the pressing surface 18 keeps pressing the surface of the work W. As a result, as shown in FIGS. 4C and 5, the surface layer of the work 2 is subjected to a reforming action by friction stirring along the moving path of the rotary tool 12.
[0028]
A metal that rises in temperature during friction stirring changes its state from a solid phase to a liquid phase at the melting point temperature inherent to the metal. The metal is fluidized in a plastic flow temperature range equal to or lower than the melting point temperature, and is subjected to the friction stir action of the rotating tool 12 and the probe 13. In the melting temperature range exceeding the melting point temperature, alloy components constituting the metal may be lost, or the melt may be scattered due to excessive friction stirring, so friction stirring is performed in the plastic flow temperature range of the metal. Must.
[0029]
Here, it is very difficult to accurately and directly measure the metal temperature during friction stirring, but as shown in FIG. 3, the axial load S (rotary load, moving load) of the rotating tool 12 is It tends to decrease as the temperature T increases. Therefore, it is possible to relatively accurately detect the metal temperature T by measuring the axial load S of the rotating tool 12 and using this as an index.
[0030]
The range ΔS1 of the axial load S corresponding to the plastic flow temperature range is illustrated in FIG. In the load region where the axial load S does not reach the load range ΔS1, the metal temperature T reaches the melting temperature range, and in the load region where the axial load S exceeds the load range ΔS1, sufficient metal fluidity cannot be obtained. Therefore, friction stirring is performed within the load range ΔS1, and the range ΔS2 of the axial load S that can achieve the desired friction stirring is set as the control target value. The axial load S of the friction stirrer 1 is feedback-controlled based on the control target value ΔS2 as described below.
[0031]
FIG. 7 is a side view of the rotary tool 12 conceptually showing elements to be detected as the axial load S, and FIG. 8 is a block diagram schematically showing a control system configuration of the friction stirrer 1.
[0032]
When the rotating tool 12 moves in the traveling direction H while rotating at high speed during friction stirring, the flow resistance of the semi-molten metal acts on the rotating drive device 11 as a rotating load on the rotating tool 12, and the rotating tool 12 It acts on the spindle moving device 16 as a moving load (feed load). The change in the rotation load appears as a change in the current value of the rotary drive device 11, and the change in the movement load appears as a change in the radial (radial) reaction force of the rotary tool 12, that is, a change in the load on the spindle moving device 16. Therefore, the rotational load can be detected by measuring a change in the current value of the current supplied to the rotary drive device 11, and the moving load is measured by the load meter 6 in the radial direction of the spindle moving device 16. Can be detected.
[0033]
As shown in FIGS. 1 and 8, the friction stirrer 1 includes a control unit C / U that controls operations of the rotation drive device 11 and the spindle moving device 16. The load cell 6 constitutes a moving load detecting means for detecting the moving load of the rotating tool 12 and the probe 13, and a control system including the load cell 6 and the control unit C / U (FIG. 8) controls the friction stirrer 1. Configure the device.
The power of the friction stirrer 1 is supplied to the power supply unit of the control unit C / U. The rotation control unit of the control unit C / U variably controls the operating power supplied to the rotation drive device 11 from the rotation drive unit based on the power consumption value of the rotation drive device 11 detected by the current detection unit. The load detection value of the load cell 6 is input to the movement control unit of the control unit C / U, and the movement control unit controls the operating power supplied from the moving device driving unit to the main shaft moving device 16, Variable control of axial load and radial load. Note that the current detection unit constitutes a rotation load detection unit that detects a rotation load of the rotation tool 12 and the probe 13, and the rotation control unit and the movement control unit perform the rotation driving device 11 and the main spindle based on the rotation load and the movement load. An operation control means for adjusting the control target value of the moving device 16 is constituted.
[0034]
FIG. 9 is a flowchart schematically showing a control flow executed by the control unit C / U.
At the start of frictional stirring, the rotating tool 12 comes into contact with the low-temperature workpiece 2, and the rotating tool 12 instantaneously receives a large movement resistance (load in the traveling direction), causing a load peak or the like. The metal temperature is stabilized by the increase in the metal temperature due to the frictional heat, and the friction stirrer 1 shifts to the steady operation. The control unit C / U first performs an initial determination in order to detect a transition from a contact initial stage in which the stirring conditions are not stable to a steady operation (S1). The initial determination is performed based on the elapsed time after the start of the operation of the friction stirrer 1 or the moving distance of the rotary tool 12 after the start of the operation. When the control unit C / U detects that a predetermined time has elapsed after the start of the operation of the friction stirrer 1 or that the rotary tool 12 has moved a predetermined distance, the control unit C / U starts load detection (S2).
[0035]
The current detection unit of the control unit C / U continuously detects the current consumption value of the rotary drive device 11, and the rotation control unit constantly monitors the current consumption value (S2). The detected load value of the load meter 6 is continuously input to the movement control unit of the control unit C / U, and the movement control unit constantly monitors the radial load of the rotating tool 12 (S2). When the current consumption value and the radial load indicate values within a predetermined range, the rotation control unit and the movement control unit determine an appropriate load on the rotating tool 12, and determine whether the rotation driving device 11 and the spindle moving device 16 are based on the initial set values. Maintain steady operation of
[0036]
When the current consumption value exceeds a predetermined value or the radial load of the load cell 6 exceeds a predetermined value, the control unit C / U determines that the rotating tool 12 is overloaded, while the current consumption value is a predetermined value. When the value falls below the predetermined value, or when the radial load value of the load cell 6 falls below the predetermined value, it is determined that the rotating tool 12 is underloaded (S3).
[0037]
The control unit C / U has a built-in storage / arithmetic unit (FIG. 8) for storing a function formula or a control map in which the correlation between the current consumption value and the radial load and the metal temperature is functioned. When an overload or underload condition is detected by the rotation control unit or the movement control unit, the unit adjusts the rotation speed of the rotary tool 12 and the optimum value of the feed rate (target current) in order to converge the metal temperature within the control target range. Value and target load value). The storage / arithmetic unit constitutes a storage / arithmetic unit that stores a function or a map indicating a correlation between the rotational load and the moving load and the temperature of the metal material.
The rotation control unit controls the power supplied to the rotary drive device 11 based on the target current value set by the storage / calculation unit, and the movement control unit sets the spindle moving device based on the target load value set by the storage / calculation unit. The power supply to the power supply 16 is controlled (S5). For example, the control unit C / U increases the moving speed of the rotating tool 12 and the probe 13 and reduces the rotating speed in the underload operation state, thereby lowering the metal temperature. On the other hand, when the control unit C / U detects the overload state, it decreases the moving speed of the rotating tool 12 and the probe 13 and increases the rotating speed. As a result, the metal temperature increases.
[0038]
The control unit C / U continuously executes such load detection (S2), load determination (S3) and control target value change (S5) routines, and performs feedback control based on the current consumption value and the radial load. That is, feedback control is performed to maintain the metal temperature at a predetermined temperature in the plastic flow temperature range by optimizing or optimizing the rotational load and the moving load.
[0039]
When the friction stirrer 1 moves a predetermined distance and completes the surface modification by friction stirring, the control unit C / U ends such feedback control and initializes various control values ( S4).
[0040]
As described above, according to the present embodiment, the control unit C / U of the friction stirrer 1 uses the rotational load and the moving load of the rotary tool 12 as an index of the metal temperature of the portion to be agitated, and generates an excessive load or an excessive load. Upon detection, the control target value of the rotating tool 12 is changed, and feedback control is performed to adjust the rotation speed and the moving speed of the rotating tool 12 so as to maintain the metal temperature of the portion to be stirred at a predetermined temperature within the plastic flow temperature range. .
[0041]
According to the friction stirrer 1 having such a configuration, the metal temperature of the portion to be stirred can be reliably maintained at the plastic flow temperature by optimizing the rotational load and the moving load. However, it is possible to surely stir the workpiece whose stirring conditions change during friction stir in the plastic flow temperature range, such as light metal castings of various shapes, and as a result, the friction stir action is uniform and the product quality is Stabilize.
[0042]
Note that the control unit C / U controls the feed speed and the number of rotations of the rotary tool 2 to constant values in a condition unstable region at the start of friction stirring. However, the control unit C / U may perform rotation speed control and movement control that avoid a load peak that may occur at the start of friction stirring. For example, the control unit C / U changes the moving speed (traveling speed) of the rotary tool 12 stepwise from a low speed to a high speed or linearly changes at the start of frictional stirring to prevent an initial load peak from occurring. In this case, the control unit C / U monitors the rotational load from the consumed current value, confirms that the metal temperature is stable when the rotational load has decreased to a constant value, and changes the setting of the moving speed of the rotary tool to the steady speed. Alternatively, a moving speed control for increasing or decreasing the moving speed of the rotary tool 12 in proportion to a decrease in the rotational load may be performed. According to such initial control, it is possible to prevent defects such as void generation or local decrease in strength, which are likely to occur in the initial stage of friction stirring, and to solve problems such as a sudden load change and a reduction in the life of the rotary tool 12 due to the occurrence of a load peak. I can do it. In addition, since such initial control is effective in preventing the occurrence of a defective portion at the end of the metal member, the metal member to be subjected to the surface modification or the metal bonding treatment is particularly short, and the defective end is particularly short. This is useful when it is difficult to perform the cutting process.
[0043]
When detecting an abnormal shaft load exceeding the range ΔS1 of the shaft load S, the control unit C / U issues an abnormal alarm to the outside, or displays an error display on the operation display of the friction stirrer 1. It may be provided with an abnormality warning means such as performing.
Further, in the above-described embodiment, the load meter 6 for measuring the radial load value of the rotary tool 12 is employed as a component of the load detecting means. However, the drive current value of the spindle moving device 16 fluctuates, and the power It is also possible to configure the load detecting means so as to detect the moving load of the rotary tool 12 based on a change or the like.
[0044]
The above embodiment relates to the modification of the metal surface by applying the friction stir welding method. However, it goes without saying that the above configuration can be applied to general friction stir welding for joining metals.
[0045]
【The invention's effect】
As described above, according to the friction stirrer or the friction stir method of the present invention, it is possible to appropriately follow a change in stirring conditions that may occur during friction stirring, and to constantly bring the metal temperature of the portion to be stirred into the plastic flow temperature range. Can be maintained.
[Brief description of the drawings]
FIG. 1 is a front view showing the overall configuration of a friction stirrer according to the present invention.
FIG. 2 is a partially enlarged sectional view showing a structure of a rotary tool and a probe part shown in FIG.
FIG. 3 is a diagram showing a relationship between an axial load of a rotating shaft and a temperature of a work portion in the friction stirrer shown in FIG. 1;
FIG. 4 is a process explanatory view showing the surface modification step in stages.
FIG. 5 is an enlarged cross-sectional view of a tip portion of the rotary tool showing a state at the time of friction stirring.
FIG. 6 is a perspective view showing a state during friction stirring.
FIG. 7 is a side view of a rotating shaft conceptually showing elements to be detected as a rotating load and a shaft load.
FIG. 8 is a block diagram schematically showing a control system configuration of the friction stirrer.
FIG. 9 is a flowchart schematically showing a control flow executed by a control unit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Friction stirrer 2 Work 6 Load cell 11 Rotary drive device 12 Rotary tool 13 Probe 16 Spindle moving device C / U control unit

Claims (9)

金属材料を含むワークよりも高硬度且つ高融点の素材からなる回転軸及び回転子と、前記回転軸及び回転子を回転させる回転駆動装置と、前記回転軸及び回転子をワークに対して押圧し且つ相対移動させる主軸移動装置とを有し、前記金属材料を塑性流動温度域に昇温して軟化し、摩擦撹拌により前記金属材料の金属組織を微細化する摩擦撹拌装置において、
前記回転駆動装置及び主軸移動装置の作動を制御する制御装置を有し、該制御装置は、前記回転軸及び回転子の回転負荷を検出する回転負荷検出手段と、前記回転軸及び回転子の移動負荷を検出する移動負荷検出手段と、前記金属材料の温度を塑性流動温度域に維持すべく、回転負荷検出手段及び/又は移動負荷検出手段により検出された回転負荷及び/又は移動負荷を基準に前記回転駆動装置及び/又は主軸移動装置の制御目標値を調節する作動制御手段とを備えたことを特徴とする摩擦撹拌装置。
A rotating shaft and a rotor made of a material having a higher hardness and a higher melting point than a work including a metal material, a rotation driving device for rotating the rotating shaft and the rotor, and pressing the rotating shaft and the rotor against the work. And a main shaft moving device that relatively moves the metal material, the metal material is heated to a plastic flow temperature range and softened, and a friction stir device that refines the metal structure of the metal material by friction stirring,
A control device that controls the operation of the rotation drive device and the spindle moving device; the control device includes: a rotation load detection unit configured to detect a rotation load of the rotation shaft and the rotor; and a movement of the rotation shaft and the rotor. A moving load detecting means for detecting a load, and a rotational load and / or a moving load detected by the rotating load detecting means and / or the moving load detecting means to maintain the temperature of the metal material in a plastic flow temperature range. An operation control means for adjusting a control target value of the rotary drive device and / or the spindle moving device.
前記制御装置は、摩擦撹拌開始後に所定時間経過した時期、又は前記回転軸が摩擦撹拌開始後に所定距離移動したとき、前記作動制御手段による制御目標値の調節を開始させる制御開始手段を更に有することを特徴とする請求項1に記載の摩擦撹拌装置。The control device may further include control start means for starting adjustment of a control target value by the operation control means when a predetermined time has elapsed after the start of friction stirring or when the rotating shaft has moved a predetermined distance after the start of friction stirring. The friction stirrer according to claim 1, wherein: 前記回転駆動装置は、前記回転軸を回転駆動する電動モータからなり、前記回転負荷検出手段は、前記電動モータの消費電力の計測により前記回転負荷を検出することを特徴とする請求項1に記載の摩擦撹拌装置。2. The rotary drive device according to claim 1, wherein the rotary drive includes an electric motor that drives the rotary shaft to rotate, and the rotary load detecting unit detects the rotary load by measuring power consumption of the electric motor. 3. Friction stirrer. 前記移動負荷検出手段は、前記回転軸及び回転子の進行方向の荷重を計測する荷重計を含み、該荷重計の計測値に基づき前記移動負荷を検出することを特徴とする請求項1に記載の摩擦撹拌装置。The moving load detecting means includes a load meter that measures a load in a traveling direction of the rotating shaft and the rotor, and detects the moving load based on a measured value of the load meter. Friction stirrer. 前記制御装置は、前記回転負荷及び/又は移動負荷と、被撹拌部の金属材料の温度との相関関係を示す関数又はマップを記憶した記憶・演算手段を備え、該記憶・演算手段は、前記回転負荷及び/又は移動負荷に基づき、金属材料の温度を所定の塑性流動温度に制御するように前記制御目標値を設定することを特徴とする請求項1乃至4のいずれか1項に記載の摩擦撹拌装置。The control device includes a storage / arithmetic unit that stores a function or a map indicating a correlation between the rotational load and / or the moving load and the temperature of the metal material of the portion to be agitated. 5. The control target value according to claim 1, wherein the control target value is set such that the temperature of the metal material is controlled to a predetermined plastic flow temperature based on a rotational load and / or a moving load. 6. Friction stirrer. 前記制御装置は、回転負荷検出手段又は移動負荷検出手段により検出された回転負荷又は移動負荷が所定範囲外の値を示すときに、金属温度の異常を判定する異常判定手段を有することを特徴とする請求項1乃至5のいずれか1項に記載の摩擦撹拌装置。The control device has an abnormality determination unit that determines an abnormality in metal temperature when the rotation load or the movement load detected by the rotation load detection unit or the movement load detection unit indicates a value outside a predetermined range. The friction stirrer according to claim 1. 金属材料を含むワークに対して、該ワークよりも高硬度且つ高融点の素材からなる回転軸及び回転子を押圧し、回転状態の前記回転軸及び回転子を前記ワークに摩擦接触せしめ、摩擦接触により発生する発熱で前記金属材料を塑性流動温度域に昇温し且つ軟化し、摩擦撹拌作用により前記金属材料の金属組織を微細化する摩擦撹拌方法において、
前記回転軸及び回転子の回転負荷を検出するとともに、前記回転軸及び回転子の移動負荷を検出し、前記回転負荷及び/又は移動負荷の検出値に基づき、前記金属材料の温度を塑性流動温度域に維持するように前記回転軸及び回転子の回転数及び/又は移動速度をフィードバック制御することを特徴とする摩擦撹拌方法。
A rotating shaft and a rotor made of a material having a higher hardness and a higher melting point than the work are pressed against a work including a metal material, and the rotating shaft and the rotor in a rotating state are brought into frictional contact with the work. In the friction stir method of raising the temperature of the metal material to the plastic flow temperature range by the heat generated by the softening and softening, and finer the metal structure of the metal material by friction stir action,
The rotational load of the rotating shaft and the rotor is detected, and the moving load of the rotating shaft and the rotor is detected. Based on the detected value of the rotating load and / or the moving load, the temperature of the metal material is determined as a plastic flow temperature. A friction stir method, wherein the rotational speed and / or the moving speed of the rotating shaft and the rotor are feedback-controlled so as to maintain the rotational speed in a range.
摩擦撹拌開始後の所定時間内、又は前記回転軸が摩擦撹拌開始後に所定距離移動するまで、前記回転数及び/又は移動速度のフィードバック制御実行を禁止し、前記所定時間経過後又は所定距離移動後に前記フィードバック制御を実行することを特徴とする請求項7に記載の摩擦撹拌方法。Within the predetermined time after the start of friction stirring, or until the rotating shaft moves a predetermined distance after the start of friction stirring, execution of the feedback control of the rotation speed and / or the moving speed is prohibited, and after the predetermined time has elapsed or after the predetermined distance The method according to claim 7, wherein the feedback control is performed. 前記回転負荷及び/又は移動負荷により検出した前記金属材料の温度により、被撹拌部の金属温度の正常又は異常を判定することを特徴とする請求項7又は8に記載の摩擦撹拌方法。The friction stir method according to claim 7 or 8, wherein the normal or abnormal metal temperature of the portion to be stirred is determined based on the temperature of the metal material detected by the rotation load and / or the movement load.
JP2003050922A 2003-02-27 2003-02-27 Friction stir equipment and method Pending JP2004255441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003050922A JP2004255441A (en) 2003-02-27 2003-02-27 Friction stir equipment and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003050922A JP2004255441A (en) 2003-02-27 2003-02-27 Friction stir equipment and method

Publications (1)

Publication Number Publication Date
JP2004255441A true JP2004255441A (en) 2004-09-16

Family

ID=33116204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003050922A Pending JP2004255441A (en) 2003-02-27 2003-02-27 Friction stir equipment and method

Country Status (1)

Country Link
JP (1) JP2004255441A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511893A (en) * 2006-12-05 2010-04-15 ザ・ボーイング・カンパニー Apparatus and method for measuring load applied to friction stir welding tool
CN102284782A (en) * 2011-04-21 2011-12-21 西北工业大学 Friction stir welding physical simulation test device
CN105108322A (en) * 2015-09-15 2015-12-02 昆山斯格威电子科技有限公司 Stir friction welding equipment
JP6340466B1 (en) * 2017-10-05 2018-06-06 株式会社日立パワーソリューションズ Bonding management system and bonding condition management method
JP2020108902A (en) * 2019-01-07 2020-07-16 川崎重工業株式会社 Friction stir spot welding device and friction stir spot welding method
JP2021090993A (en) * 2019-12-12 2021-06-17 株式会社日立パワーソリューションズ Friction stir welding device and friction stir welding method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511893A (en) * 2006-12-05 2010-04-15 ザ・ボーイング・カンパニー Apparatus and method for measuring load applied to friction stir welding tool
CN102284782A (en) * 2011-04-21 2011-12-21 西北工业大学 Friction stir welding physical simulation test device
CN105108322A (en) * 2015-09-15 2015-12-02 昆山斯格威电子科技有限公司 Stir friction welding equipment
JP6340466B1 (en) * 2017-10-05 2018-06-06 株式会社日立パワーソリューションズ Bonding management system and bonding condition management method
JP2019063861A (en) * 2017-10-05 2019-04-25 株式会社日立パワーソリューションズ Joint control system and joint condition control method
WO2020145243A1 (en) * 2019-01-07 2020-07-16 川崎重工業株式会社 Friction stir spot welding device and friction stir spot welding method
JP2020108902A (en) * 2019-01-07 2020-07-16 川崎重工業株式会社 Friction stir spot welding device and friction stir spot welding method
CN113226621A (en) * 2019-01-07 2021-08-06 川崎重工业株式会社 Friction stir spot welding apparatus and friction stir spot welding method
KR20210105989A (en) * 2019-01-07 2021-08-27 카와사키 주코교 카부시키 카이샤 Friction stir point joining device and friction stir point joining method
JP7216551B2 (en) 2019-01-07 2023-02-01 川崎重工業株式会社 Friction stir spot welding device and friction stir spot welding method
KR102553682B1 (en) 2019-01-07 2023-07-10 카와사키 주코교 카부시키 카이샤 Friction stir point joining device and friction stirring point joining method
CN113226621B (en) * 2019-01-07 2023-10-24 川崎重工业株式会社 Friction stir spot welding device and friction stir spot welding method
JP2021090993A (en) * 2019-12-12 2021-06-17 株式会社日立パワーソリューションズ Friction stir welding device and friction stir welding method

Similar Documents

Publication Publication Date Title
US20020158109A1 (en) Method of processing metal members
US8025200B2 (en) Friction stir welding machine and friction stir welding tool
TWI391199B (en) Friction stir method
KR101574688B1 (en) A method of and a device for forming a projection on a metal member and a member part processed by the method of forming a projection
EP2551049A1 (en) Friction processing tool, and method and apparatus for friction processing using same
US20060131364A1 (en) Friction plug welding method for a hole in a metal part, use of a restraint part and supporting part for implementing the method
JP2011501701A5 (en)
JP2004255441A (en) Friction stir equipment and method
JPWO2004043642A1 (en) Joining method of aluminum powder alloy
US20040112939A1 (en) Machining control method, machining control device, computer program for executing the method, and information storage medium having the computer program stored therein
TW201329411A (en) Arc melting furnace device and arc melting method for material to be melted
JP2011177792A (en) Method for producing hollow ingot, and production system therefor
CN110977142B (en) Impact stirring friction welding device for connecting magnesium-aluminum alloy heterogeneous workpieces
JP2011200872A (en) Friction stir processing apparatus and friction stir processing method
JP3463671B2 (en) Joining method and apparatus using friction stirring
JP7433663B2 (en) Dissimilar material solid phase joining method, dissimilar material solid phase joining structure, and dissimilar material solid phase joining device
Palanivel et al. Friction stir spot welding of similar and dissimilar nonferrous alloys
Mjali et al. Varying rotational speeds and their effect on the mechanical properties of friction stir welded 6082-T651 aluminium alloy plates
JP2004255440A (en) Method and device for reforming surface of light metal casting
CN1044247A (en) Make the equipment of the method and this method of enforcement of metal wire
JP2013039601A (en) Method and device for processing metallic material
JP2010149424A (en) Vibration welding method and vibration welding apparatus used for the same
JP2004298902A (en) Method and apparatus for friction-stir jointing
JP2012206133A (en) Friction stir processing device and friction stir processing method
RU2183530C1 (en) Apparatus for making bimetallic rolling rolls