JP2004255429A - Processing method for steel with high young's modulus and high fatigue strength - Google Patents

Processing method for steel with high young's modulus and high fatigue strength Download PDF

Info

Publication number
JP2004255429A
JP2004255429A JP2003049904A JP2003049904A JP2004255429A JP 2004255429 A JP2004255429 A JP 2004255429A JP 2003049904 A JP2003049904 A JP 2003049904A JP 2003049904 A JP2003049904 A JP 2003049904A JP 2004255429 A JP2004255429 A JP 2004255429A
Authority
JP
Japan
Prior art keywords
forging die
modulus
die
fatigue strength
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003049904A
Other languages
Japanese (ja)
Inventor
Takemi Sugawara
毅巳 菅原
Zenji Iida
善次 飯田
Kentaro Takada
健太郎 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003049904A priority Critical patent/JP2004255429A/en
Publication of JP2004255429A publication Critical patent/JP2004255429A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a processing method for a steel with high Young's modulus and high fatigue strength, which can improve the service lifetime of a die by suppressing the reaction of C in the base structure of the steel with the materials of a forging die. <P>SOLUTION: The processing method for the steel with the high Young's modulus and high fatigue strength includes hot forging which is executed with the forging die to an iron based alloy including 1.5-2.5 wt % of C and a hard carbide forming element such as W, V. A coating layer for inhibiting the reaction of C in the iron based alloy with the materials of the forging die, is coated and fixed at least on the engraved face of the forging die or formed on the surface layer part of the forging die. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高ヤング率高疲労強度鋼の加工方法に係り、特に、そのような材料を熱間鍛造するときの鍛造金型の寿命を向上させる技術に関するものである。
【0002】
【従来の技術】
本出願人は、先に、高いヤング率を示すことにより剛性の向上が図られ、かつ、軽量コンパクト化に好適な剛性の向上が図られる高ヤング率高疲労強度鋼を提案した(特許文献1)。この鉄基合金は、C:1.5〜2.5wt%、Ni:0.25〜4.75wt%、および適量のWとVを含むもので、MC型炭化物を析出させることにより高ヤング率高疲労強度を達成したものである。
【0003】
【特許文献1】
特開2002−3272524号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記高ヤング率高疲労強度鋼を用いて熱間鍛造を行ったところ、鍛造金型の寿命が短くなることが判明した。したがって、本発明は、高ヤング率高疲労強度鋼を用いて熱間鍛造を行うに際して、鍛造金型の寿命を向上させることができる高ヤング率高疲労強度鋼の加工方法を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明者等は、金型寿命の低下の原因として鉄基合金の高い炭素含有量に着目した。1.5以上の炭素含有量を有する鉄基合金は、熱間においても脆性が残っていることから、一般には熱間鍛造されることはまずありえない。しかしながら、上記高ヤング率高疲労強度鋼は、高ヤング率と高疲労強度を満足させるために固溶析出型の炭化物を用いている。このため、常温では炭素は殆どが炭化物となって基地組織は亜共析組織となる一方、熱間では、炭化物(W,V系)は基地組織に固溶され、基地組織は高炭素組成となる。
【0006】
本発明者等の検討によれば、熱間で炭化物が被鍛造材の基地組織に固溶される結果、熱間加工性が向上する反面、基地組織の炭素が鍛造金型の材料と反応して脆弱なセメンタイトを析出する結果、鍛造金型の型彫り面に焼付きが生じることが判明した。
【0007】
本発明の高ヤング率高疲労強度鋼の加工方法は上記知見に基づいてなされたもので、Cを1.5〜2.5重量%と、W、V等の硬質炭化物形成元素とを含む鉄基合金を鍛造金型によって熱間鍛造する高ヤング率高疲労強度鋼の加工方法において、鍛造金型の少なくとも型彫り面に、鉄基合金中のCと鍛造金型の材料との反応を阻害する被覆層を被覆固着しまたは鍛造金型の表層部に形成したことを特徴としている。
【0008】
本発明によれば、鍛造金型の型彫り面に被覆層が設けられているから、高ヤング率高疲労強度鋼の基地組織中のCと鍛造金型の材料との反応が抑制される。したがって、高ヤング率高疲労強度鋼の熱間加工性が良好なことと相俟って金型寿命を大幅に向上させることができる。
【0009】
なお、従来より熱間鍛造では鍛造金型の型彫り面に離型剤を吹き付けることが行われている。しかしながら、離型剤では、鍛造時の型彫り面と材料との摺接によって離型剤の膜が破れ、その結果、材料と型彫り面との接触は避けることができず、材料中のCと鍛造金型の材料との反応を抑制することはできない。本発明の被覆層は、離型剤のような一時的な被覆とは異なり、型彫り面に被覆固着されるか、または、鍛造金型の表層部に形成されることにより、早期に剥離または摩滅することなく長期に亘って型彫り面に存在するものをいう。
【0010】
【発明の実施の形態】
以下、本発明の好適な実施の形態について被覆層の構成を主体に説明する。
被覆層は、熱間鍛造温度で鉄基合金に含まれるCと炭化物を形成しないかまたは炭化物を形成し難い材料であることが望ましい。この態様によれば、被覆層自体の耐久性を向上させることができるので、鍛造金型の寿命を大幅に向上させることができる。
【0011】
1.Cと炭化物を形成しない材料
(1)被覆により固着するもの
Cと炭化物を形成しない材料としては、TiC、NbC、ZrC、TaC、BCなどの炭化物、Al、SiO、MgOなどの酸化物、TiN、BN、ZrNなどの窒化物がある。これらの材料の粉末をバインダーや溶剤と混合してペースト状またはスラリー状とし、それを鍛造金型の型彫り面に塗布した後に焼付け乾燥して固着することができる。また、その際には、型彫り面に微細な凹凸を形成しておき、アンカー効果によって固着強度を高めることもできる。あるいは、ニッケルなどのメッキ浴に上記材料の粒子を分散させ、その粒子をメッキ材とともに鍛造金型に固着することもできる。
【0012】
上記した材料は、溶射によって型彫り面に吹き付けて固着することもできる。また、真空蒸着やイオンプレーティングなどの手段を用いることもできる。あるいは、上記材料をプレート状に形成し、複数のプレートを型彫り面に接着やボルト締結等の手段で被覆固着することもできる。
【0013】
Cと炭化物を形成しない他の材料としては、肉盛り用合金を用いることができる。肉盛り用合金は、金型などの摩耗した部分を肉盛りして補修するために用いられるもので、Co基合金とNi基合金が提供されている。Co基合金としては、Co−Cr−Fe合金、Ni基合金としてはNi−Cr合金があり、それらの成分を表1に示す。
【0014】
【表1】

Figure 2004255429
【0015】
上記のような合金は、粉末やワイヤー等の形態で溶接により肉盛りに供される。溶接方法としては、ガス溶接、レーザ溶接、アーク溶接、エレクトロスラグ溶接、プラズマアーク溶接などを用いることができる。
【0016】
(2)鍛造金型の表層部に形成するもの
被覆層は、各種拡散浸透処理によって型彫り面の表層部に形成することができる。たとえば、Al、Ti、Si、Bを拡散させるアルミナイジング、チタナイジング、シリコナイジング、ボライディングなどがあり、このような拡散浸透処理により、例えばAlが鍛造金型の表層部に浸透し、表層部に固溶しているC、O、N等と反応する。そして、表層部にCと反応しない炭化物等が分散し、鍛造金型の深部へのCの浸透を阻止する。
【0017】
2.Cと炭化物を形成する材料
(1)被覆により固着するもの
本発明の被覆層は、Cと炭化物を形成する材料であっても良い。そのような材料は、例えば亜鉛メッキの犠牲陽極と類似した機能を発揮して鍛造金型の材料とCとの反応を抑制することができる。この場合において、被覆層がCと反応して摩滅したら、被覆層を再度被覆して修復することができる。
【0018】
Cと炭化物を形成する材料としては、WC、MoC、Cr、VCなどの炭化物、Fe、MnO、CrOなどの酸化物、CrN、FeN、MoNなどの窒化物がある。これらの材料の粉末をバインダーや溶剤と混合してペースト状またはスラリー状とし、それを鍛造金型の型彫り面に塗布した後に焼付け乾燥して固着することができる。また、その際には、型彫り面に微細な凹凸を形成しておき、アンカー効果によって固着強度を高めることもできる。
【0019】
上記した材料は、溶射によって型彫り面に吹き付けて固着することもできる。また、真空蒸着やイオンプレーティングなどの手段を用いることもできる。あるいは、上記材料をプレート状に形成し、複数のプレートを型彫り面に接着やボルト締結等の手段で被覆固着することもできる。あるいは、ニッケルなどのメッキ浴に上記材料の粒子を分散させ、その粒子をメッキ材とともに鍛造金型に固着することもできる。
【0020】
Cと炭化物を形成する他の材料としては、肉盛り用合金を用いることができ、例えば表2に示す成分を有する低合金鉄鋼、高合金鉄鋼、WC基肉盛り用合金などを用いることができる。
【0021】
【表2】
Figure 2004255429
【0022】
(2)鍛造金型の表層部に形成するもの
被覆層は、各種拡散浸透処理によって型彫り面の表層部に形成することができる。たとえば、Crを拡散させるクロマイジングがあり、このような拡散浸透処理により、上記した炭化物等の層を鍛造金型の表層部に形成することができる。この場合、被覆層では、例えばCrが鍛造金型の表層部に浸透し、表層部に固溶しているC、O、N等と反応する。そして、表層部にCと反応する炭化物等が分散するため、被鍛造材中のCが表層部で消費され、鍛造金型の深部へのCの浸透を阻止する。
【0023】
また、表層部の基地ではCの固溶量が少なくなっているから、被鍛造材中のCを固溶する容量が大きい。このため、表層部の基地中に固溶しているCが飽和して脆弱なセメンタイトを析出するまでに長時間を要するから、鍛造金型の寿命が延長される。なお、この場合には、被覆層がCと反応して摩滅した場合には修復することができない。
【0024】
3.その他
鍛造金型の材料としては、例えば炭素工具鋼(SK)、合金工具鋼(SKS、SKD)、高速度鋼(SKH)等の工具用鋼を用いることができる。これらの工具用鋼に型彫り等の加工を行った後に熱処理を行い、型彫り面に上記した方法で被覆層を被覆固着する。なお、拡散浸透処理を行う場合には、鍛造金型の全面に被覆層が形成されるが、これは何ら問題はない。
【0025】
被覆層の厚さは、真空蒸着およびメッキを用いる場合には1〜50μmが好ましい。被覆層の厚さが1μmを下回ると被覆層としての機能を発揮し得ず、また、厚さが50μmを超えてもそれ以上の機能の向上は期待できない。被覆層の厚さは、3〜30μmがより好ましく、5〜20μmであれば製品(金型)の寸法精度の維持を含めた鍛造操業の上でさらに好適である。
【0026】
拡散浸透処理を用いる場合の被覆層の厚さは、上記と同じ理由により0.1〜3mmが好ましく、0.1〜2mmであればより好ましく、0.2〜0.8mmであればさらに好適である。
【0027】
肉盛りは摩滅が激しい部位に用いられ、被覆層の厚さは、上記と同じ理由により0.1〜5mmが好ましく、0.2〜4mmであればより好ましく、0.5〜3mmであればさらに好適である。
【0028】
【発明の効果】
以上説明したように、本発明によれば、Cを1.5〜2.5重量%と、W、V等の硬質炭化物形成元素とを含む鉄基合金を鍛造金型によって熱間鍛造する高ヤング率高疲労強度鋼の加工方法において、鍛造金型の少なくとも型彫り面に、鉄基合金中のCと鍛造金型の材料との反応を阻害する被覆層を被覆固着しまたは鍛造金型の表層部に形成しているから、高ヤング率高疲労強度鋼の基地組織中のCと鍛造金型の材料との反応が抑制され、高ヤング率高疲労強度鋼の熱間加工性が良好なことと相俟って金型寿命を大幅に向上させることができるという効果が得られる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for processing high Young's modulus high fatigue strength steel, and more particularly to a technique for improving the life of a forging die when hot forging such a material.
[0002]
[Prior art]
The present applicant has previously proposed a high Young's modulus and high fatigue strength steel in which the rigidity is improved by exhibiting a high Young's modulus and the rigidity suitable for reducing the size and weight is improved (Patent Document 1). ). This iron-based alloy contains C: 1.5 to 2.5 wt%, Ni: 0.25 to 4.75 wt%, and appropriate amounts of W and V, and has a high Young's modulus by precipitating MC type carbide. High fatigue strength is achieved.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-3272524
[Problems to be solved by the invention]
However, when hot forging was performed using the high Young's modulus and high fatigue strength steel, it was found that the life of the forging die was shortened. Accordingly, an object of the present invention is to provide a method of processing a high Young's modulus high fatigue strength steel capable of improving the life of a forging die when performing hot forging using a high Young's modulus high fatigue strength steel. And
[0005]
[Means for Solving the Problems]
The present inventors have focused on the high carbon content of the iron-based alloy as a cause of the reduction in the mold life. Since iron-based alloys having a carbon content of 1.5 or more remain brittle even during hot working, they are generally unlikely to be hot forged. However, the above-mentioned high Young's modulus high fatigue strength steel uses solid solution precipitation type carbide in order to satisfy high Young's modulus and high fatigue strength. For this reason, at room temperature, most of carbon becomes carbide and the base structure becomes a hypoeutectoid structure. On the other hand, when hot, the carbide (W, V system) is dissolved in the base structure, and the base structure has a high carbon composition. Become.
[0006]
According to the study by the present inventors, as a result of the carbide being solid-dissolved in the base structure of the forged material during hot, the hot workability is improved, but the carbon of the base structure reacts with the material of the forging die. It was found that sedimentation of brittle cementite resulted in seizure of the die-sculpted surface of the forging die.
[0007]
The method of working a high Young's modulus high fatigue strength steel according to the present invention is based on the above findings, and includes iron containing 1.5 to 2.5% by weight of C and a hard carbide forming element such as W or V. In a method of processing a high Young's modulus and high fatigue strength steel in which a base alloy is hot-forged by a forging die, a reaction between C in the iron-based alloy and a material of the forging die is hindered on at least a die-cut surface of the forging die. A forging die is formed on the surface of the forging die.
[0008]
According to the present invention, since the coating layer is provided on the engraved surface of the forging die, the reaction between C in the base structure of the high Young's modulus and high fatigue strength steel and the material of the forging die is suppressed. Therefore, the life of the mold can be greatly improved in combination with the good hot workability of the high Young's modulus high fatigue strength steel.
[0009]
Conventionally, in hot forging, a mold release agent has been sprayed on a die-sinking surface of a forging die. However, in the case of the release agent, the film of the release agent is broken by sliding contact between the engraved surface and the material during forging. As a result, contact between the material and the engraved surface cannot be avoided, and C in the material cannot be avoided. The reaction between the material and the material of the forging die cannot be suppressed. The coating layer according to the present invention is different from a temporary coating such as a release agent, and is fixed to the die-sinking surface or is formed on the surface layer of the forging die, so that the coating layer is peeled off or early. It is the one that remains on the engraved surface for a long time without wear.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described mainly with respect to the configuration of a coating layer.
It is desirable that the coating layer is a material that does not form carbides or hardly forms carbides with C contained in the iron-based alloy at the hot forging temperature. According to this aspect, since the durability of the coating layer itself can be improved, the life of the forging die can be significantly improved.
[0011]
1. Materials that do not form carbides with C (1) Materials that do not form carbides with C as coatings that do not form carbides with C include carbides such as TiC, NbC, ZrC, TaC, and BC, and oxidations such as Al 2 O 3 , SiO 2 , and MgO. And nitrides such as TiN, BN, and ZrN. Powders of these materials are mixed with a binder or a solvent to form a paste or slurry, which is applied to the die-sculpted surface of a forging die and then baked and dried to be fixed. In this case, fine irregularities may be formed on the engraved surface, and the fixing strength may be increased by the anchor effect. Alternatively, particles of the above material can be dispersed in a plating bath of nickel or the like, and the particles can be fixed to a forging die together with a plating material.
[0012]
The above-described materials can be fixed by spraying onto the die-sinking surface by thermal spraying. In addition, means such as vacuum evaporation and ion plating can be used. Alternatively, the above-described material may be formed in a plate shape, and a plurality of plates may be covered and fixed to the die-sinking surface by means of adhesion, bolting, or the like.
[0013]
As another material that does not form carbide with C, a build-up alloy can be used. The overlaying alloy is used for overlaying and repairing a worn portion such as a mold, and a Co-based alloy and a Ni-based alloy are provided. As the Co-based alloy, there is a Co-Cr-Fe alloy, and as the Ni-based alloy, there is a Ni-Cr alloy, and their components are shown in Table 1.
[0014]
[Table 1]
Figure 2004255429
[0015]
Such an alloy is provided for overlaying by welding in the form of powder or wire. As a welding method, gas welding, laser welding, arc welding, electroslag welding, plasma arc welding, or the like can be used.
[0016]
(2) What is formed on the surface layer of the forging die The coating layer can be formed on the surface of the die-cut surface by various diffusion and infiltration treatments. For example, there are aluminizing, titanizing, siliconizing, and boriding for diffusing Al, Ti, Si, and B. By such a diffusion and infiltration treatment, for example, Al penetrates into a surface layer portion of a forging die, and a surface layer portion is formed. Reacts with C, O, N, etc., which are in solid solution. And the carbide etc. which do not react with C disperse | distribute to a surface layer part, and permeation of C to the deep part of a forging die is prevented.
[0017]
2. Material Forming C and Carbide (1) Fixing by Coating The coating layer of the present invention may be a material forming C and a carbide. Such a material can exhibit a function similar to, for example, a galvanized sacrificial anode to suppress the reaction between the material of the forging die and C. In this case, if the coating layer reacts with C and is worn away, the coating layer can be coated again and repaired.
[0018]
Examples of the material forming a carbide with C include carbides such as WC, MoC, Cr 7 C 3 and VC, oxides such as Fe 3 O 4 , MnO 2 and CrO 3 , and CrN, Fe 4 N and Mo 2 N. There are nitrides. Powders of these materials are mixed with a binder or a solvent to form a paste or slurry, which is applied to the die-sculpted surface of a forging die and then baked and dried to be fixed. In this case, fine irregularities may be formed on the engraved surface, and the fixing strength may be increased by the anchor effect.
[0019]
The above-described materials can be fixed by spraying onto the die-sinking surface by thermal spraying. In addition, means such as vacuum evaporation and ion plating can be used. Alternatively, the above-described material may be formed in a plate shape, and a plurality of plates may be covered and fixed to the die-sinking surface by means of adhesion, bolting, or the like. Alternatively, particles of the above material can be dispersed in a plating bath of nickel or the like, and the particles can be fixed to a forging die together with a plating material.
[0020]
As other materials forming carbides with C, a build-up alloy can be used. For example, a low alloy steel, a high alloy steel, a WC base build-up alloy having the components shown in Table 2 can be used. .
[0021]
[Table 2]
Figure 2004255429
[0022]
(2) What is formed on the surface layer of the forging die The coating layer can be formed on the surface of the die-cut surface by various diffusion and infiltration treatments. For example, there is chromizing for diffusing Cr, and such a layer of carbide or the like can be formed on the surface layer of the forging die by such a diffusion and infiltration treatment. In this case, in the coating layer, for example, Cr penetrates into the surface layer portion of the forging die and reacts with C, O, N, etc., which are dissolved in the surface layer portion. Then, since carbides and the like that react with C are dispersed in the surface layer, C in the forged material is consumed in the surface layer, and the penetration of C into the deep part of the forging die is prevented.
[0023]
In addition, since the amount of C dissolved in the base of the surface layer portion is small, the capacity of C to be dissolved in the forged material is large. For this reason, it takes a long time until the solid solution of C in the matrix of the surface layer is saturated to precipitate fragile cementite, so that the life of the forging die is extended. In this case, if the coating layer is worn out by reacting with C, it cannot be repaired.
[0024]
3. As other materials for the forging die, for example, tool steel such as carbon tool steel (SK), alloy tool steel (SKS, SKD), and high-speed steel (SKH) can be used. After performing processing such as engraving on these tool steels, heat treatment is performed, and a coating layer is coated and fixed on the engraved surface by the above-described method. When the diffusion and infiltration treatment is performed, a coating layer is formed on the entire surface of the forging die, but this does not pose any problem.
[0025]
When vacuum deposition and plating are used, the thickness of the coating layer is preferably 1 to 50 μm. If the thickness of the coating layer is less than 1 μm, the function as the coating layer cannot be exhibited, and if the thickness exceeds 50 μm, further improvement of the function cannot be expected. The thickness of the coating layer is more preferably 3 to 30 μm, and if it is 5 to 20 μm, it is more suitable for forging operation including maintenance of dimensional accuracy of a product (die).
[0026]
The thickness of the coating layer when using the diffusion and infiltration treatment is preferably 0.1 to 3 mm, more preferably 0.1 to 2 mm, and even more preferably 0.2 to 0.8 mm for the same reason as described above. It is.
[0027]
The build-up is used for a severely worn portion, and the thickness of the coating layer is preferably 0.1 to 5 mm, more preferably 0.2 to 4 mm, and more preferably 0.5 to 3 mm for the same reason as described above. More preferred.
[0028]
【The invention's effect】
As described above, according to the present invention, an iron-based alloy containing 1.5 to 2.5% by weight of C and a hard carbide forming element such as W or V is hot forged by a forging die. In a method of processing a Young's modulus high fatigue strength steel, a coating layer that inhibits a reaction between C in an iron-based alloy and a material of the forging die is fixedly applied to at least the die-sinking surface of the forging die, or Since it is formed on the surface layer, the reaction between C in the base structure of the high Young's modulus high fatigue strength steel and the material of the forging die is suppressed, and the hot workability of the high Young's modulus high fatigue strength steel is good. Together with this, the effect that the life of the mold can be greatly improved can be obtained.

Claims (2)

Cを1.5〜2.5重量%と、W、V等の硬質炭化物形成元素とを含む鉄基合金を鍛造金型によって熱間鍛造する高ヤング率高疲労強度鋼の加工方法において、上記鍛造金型の少なくとも型彫り面に、上記鉄基合金中のCと上記鍛造金型の材料との反応を阻害する被覆層を被覆固着しまたは上記鍛造金型の表層部に形成したことを特徴とする高ヤング率高疲労強度鋼の加工方法。The method for processing a high Young's modulus and high fatigue strength steel, wherein a ferrous alloy containing 1.5 to 2.5% by weight of C and a hard carbide forming element such as W or V is hot forged by a forging die. A coating layer that inhibits the reaction between C in the iron-based alloy and the material of the forging die is coated and fixed on at least the die-sinking surface of the forging die, or is formed on the surface layer of the forging die. Method of processing high Young's modulus high fatigue strength steel. 前記被覆層は、熱間鍛造温度で上記鉄基合金に含まれるCと炭化物を形成しないかまたは炭化物を形成し難い材料であることを特徴とする請求項1に記載の高ヤング率高疲労強度鋼の加工方法。The high Young's modulus and high fatigue strength according to claim 1, wherein the coating layer is a material that does not form carbide or hardly forms carbide with C contained in the iron-based alloy at a hot forging temperature. Steel processing method.
JP2003049904A 2003-02-26 2003-02-26 Processing method for steel with high young's modulus and high fatigue strength Pending JP2004255429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003049904A JP2004255429A (en) 2003-02-26 2003-02-26 Processing method for steel with high young's modulus and high fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003049904A JP2004255429A (en) 2003-02-26 2003-02-26 Processing method for steel with high young's modulus and high fatigue strength

Publications (1)

Publication Number Publication Date
JP2004255429A true JP2004255429A (en) 2004-09-16

Family

ID=33115490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003049904A Pending JP2004255429A (en) 2003-02-26 2003-02-26 Processing method for steel with high young's modulus and high fatigue strength

Country Status (1)

Country Link
JP (1) JP2004255429A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038250A (en) * 2005-08-02 2007-02-15 Honda Motor Co Ltd Die for forging and producing method therefor
JP2010532715A (en) * 2007-07-10 2010-10-14 ファウ・ウント・エム・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Forged mandrel for hot forging metal tubular workpieces
CN103014550A (en) * 2012-12-10 2013-04-03 马鞍山市恒达耐磨材料有限责任公司 High chromium multielement alloy wear resisting ball and manufacturing method thereof
CN103667867A (en) * 2013-11-20 2014-03-26 马鞍山市益丰实业集团有限公司 High-carbon alloy steel lining board material and preparation method thereof
CN104195420A (en) * 2014-08-08 2014-12-10 安徽昱工耐磨材料科技有限公司 High-chrome wear-resistant cast iron material and heat treatment method
CN105088080A (en) * 2015-08-10 2015-11-25 霍邱县忠振耐磨材料有限公司 High-wear-resistance high manganese steel jaw plate for jaw crusher and preparation method thereof
CN105112771A (en) * 2015-09-06 2015-12-02 常熟市精工模具制造有限公司 Preparation method for high-nodularity nodular cast iron glass mold material
CN105112809A (en) * 2015-08-10 2015-12-02 霍邱县忠振耐磨材料有限公司 High-carbon and low-chromium wear-resistant steel ball for ball mill and preparation method of steel ball
EP2787095A4 (en) * 2011-11-28 2016-01-20 Fukuda Metal Foil Powder Ni-fe-cr-based alloy and engine valve coated with same
CN106011650A (en) * 2016-08-03 2016-10-12 苏州市虎丘区浒墅关弹簧厂 Fatigue resistant spring material
CN106756496A (en) * 2016-12-20 2017-05-31 吴中区穹窿山师匠新材料技术咨询服务部 A kind of novel anti-corrosion wear-resistance High-temperature resistant alloy material and preparation method thereof
CN108531831A (en) * 2018-05-18 2018-09-14 山东泰山钢铁集团有限公司 The material and method of the multi-element alloyed cast steel with high chromium of fire grate bar
CN112011715A (en) * 2020-07-31 2020-12-01 丽水市正阳电力设计院有限公司 Preparation method of corrosion-resistant austenitic stainless steel
CN113136532A (en) * 2021-04-26 2021-07-20 矿冶科技集团有限公司 Iron-based alloy powder for laser cladding and preparation method thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007038250A (en) * 2005-08-02 2007-02-15 Honda Motor Co Ltd Die for forging and producing method therefor
JP2010532715A (en) * 2007-07-10 2010-10-14 ファウ・ウント・エム・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Forged mandrel for hot forging metal tubular workpieces
EP2787095A4 (en) * 2011-11-28 2016-01-20 Fukuda Metal Foil Powder Ni-fe-cr-based alloy and engine valve coated with same
US9340856B2 (en) 2011-11-28 2016-05-17 Fukuda Metal Foil & Powder Co., Ltd. Ni—Fe—Cr alloy and engine valve welded with the same alloy
CN103014550A (en) * 2012-12-10 2013-04-03 马鞍山市恒达耐磨材料有限责任公司 High chromium multielement alloy wear resisting ball and manufacturing method thereof
CN103667867A (en) * 2013-11-20 2014-03-26 马鞍山市益丰实业集团有限公司 High-carbon alloy steel lining board material and preparation method thereof
CN104195420A (en) * 2014-08-08 2014-12-10 安徽昱工耐磨材料科技有限公司 High-chrome wear-resistant cast iron material and heat treatment method
CN105112809A (en) * 2015-08-10 2015-12-02 霍邱县忠振耐磨材料有限公司 High-carbon and low-chromium wear-resistant steel ball for ball mill and preparation method of steel ball
CN105088080A (en) * 2015-08-10 2015-11-25 霍邱县忠振耐磨材料有限公司 High-wear-resistance high manganese steel jaw plate for jaw crusher and preparation method thereof
CN105112771A (en) * 2015-09-06 2015-12-02 常熟市精工模具制造有限公司 Preparation method for high-nodularity nodular cast iron glass mold material
CN106011650A (en) * 2016-08-03 2016-10-12 苏州市虎丘区浒墅关弹簧厂 Fatigue resistant spring material
CN106756496A (en) * 2016-12-20 2017-05-31 吴中区穹窿山师匠新材料技术咨询服务部 A kind of novel anti-corrosion wear-resistance High-temperature resistant alloy material and preparation method thereof
CN108531831A (en) * 2018-05-18 2018-09-14 山东泰山钢铁集团有限公司 The material and method of the multi-element alloyed cast steel with high chromium of fire grate bar
CN108531831B (en) * 2018-05-18 2020-01-21 山东泰山钢铁集团有限公司 Material and method of multicomponent alloying high chromium cast steel for grate bar
CN112011715A (en) * 2020-07-31 2020-12-01 丽水市正阳电力设计院有限公司 Preparation method of corrosion-resistant austenitic stainless steel
CN112011715B (en) * 2020-07-31 2021-11-09 丽水市正阳电力设计院有限公司 Preparation method of corrosion-resistant austenitic stainless steel
CN113136532A (en) * 2021-04-26 2021-07-20 矿冶科技集团有限公司 Iron-based alloy powder for laser cladding and preparation method thereof
CN113136532B (en) * 2021-04-26 2021-11-30 矿冶科技集团有限公司 Iron-based alloy powder for laser cladding and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2004255429A (en) Processing method for steel with high young&#39;s modulus and high fatigue strength
KR100836972B1 (en) Cobalt-based alloy for the coating of organs subject to erosion by liquid
KR20080063449A (en) Method for treating organs subject to erosion by liquids and anti-erosion coating alloy
JP2014531509A (en) Cermet powder
KR20080106124A (en) Fine grained cemented carbide for turning in heat resistant super alloys (hrsa) and stainless steels
JP4532343B2 (en) Carbide cermet sprayed coating member excellent in corrosion resistance and method for producing the same
JP2008069377A (en) Method for forming cermet coating film and cermet coated member obtained thereby
JP4656473B2 (en) Coated tool for hot working with excellent lubricant adhesion and wear resistance
KR100648070B1 (en) Tool for hot working
Cong et al. Sliding wear of low carbon steel modified by double-glow plasma surface alloying with nickel and chromium at various temperatures
EP2402474A1 (en) Piston ring
US20140370324A1 (en) Cermet Coating and Coated Metal Body Having the Cermet Coating, Method of Producing Cermet Coating, and Method of Producing Coated Metal Body
JP5303530B2 (en) Wear resistant device and method of processing the same
JP2003301278A (en) Method for manufacturing complex metal and complex metallic member
JP2002337006A (en) Coated cutting tool
JP2007321203A (en) HEARTH ROLL SUPERIOR IN Mn BUILD-UP RESISTANCE, THERMAL SHOCK RESISTANCE AND ABRASION RESISTANCE, AND THERMAL SPRAYING MATERIAL THEREFOR
WO2020184352A1 (en) Surface-coated cutting tool
JPH11131172A (en) Wear resistant alloy
JP2002194477A (en) Member for molten nonferrous metal
JP5871152B2 (en) Thermal spray material, thermal spray coating and structure
JP2015063752A (en) SPRAY COATING FILM OF Ni-BASED INTERMETALLIC COMPOUND ALLOY, SPRAY COATING FILM COATED MEMBER, AND METHOD OF FORMING SPRAY COATING FILM
JP2009034766A (en) Surface coated cutting tool with hard coat layer having improved chipping resistance and wear resistance
WO2019167149A1 (en) Member for equipment in baths, equipment in molten metal bath, and molten metal plating material production device
EP3141628B1 (en) Sliding member and piston ring
JPH09300008A (en) Roll for skin pass rolling of plate