JP2004255250A - Method and apparatus for removing virus - Google Patents

Method and apparatus for removing virus Download PDF

Info

Publication number
JP2004255250A
JP2004255250A JP2003046831A JP2003046831A JP2004255250A JP 2004255250 A JP2004255250 A JP 2004255250A JP 2003046831 A JP2003046831 A JP 2003046831A JP 2003046831 A JP2003046831 A JP 2003046831A JP 2004255250 A JP2004255250 A JP 2004255250A
Authority
JP
Japan
Prior art keywords
water
membrane
treated
virus
nominal pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003046831A
Other languages
Japanese (ja)
Other versions
JP4066348B2 (en
Inventor
Kiyokazu Takemura
清和 武村
Kazuhiko Noto
一彦 能登
Naoki Okuma
那夫紀 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2003046831A priority Critical patent/JP4066348B2/en
Priority to CNB2003101010534A priority patent/CN1323037C/en
Publication of JP2004255250A publication Critical patent/JP2004255250A/en
Application granted granted Critical
Publication of JP4066348B2 publication Critical patent/JP4066348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To completely remove viruses in water without deteriorating the permeation flux of a membrane. <P>SOLUTION: In a virus removal method, a membrane filter 26 is immersed in waste water in a nitrification tank 18 of an activated sludge treatment apparatus 10 to remove the viruses existing in the waste water. The nominal pore size of the membrane is set so as to be larger than the size of virus to be removed from the waste water, and the concentration of SS components in water to be treated is controlled according to the nominal pore size of the membrane used in the membrane filter 26. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ウイルス除去方法及び装置に係り、特に下水道、湖沼水、河川水、プール水等の水中に存在するウイルスを膜濾過によって濾過することで、水中からウイルスを除去するウイルスの除去方法及び装置に関する。
【0002】
【従来技術】
下水道、湖沼水、河川水、水槽等の水中には多数種のウイルスが存在することが分かってきたが、多数種のウイルスの中には人や家畜等に害を与えるものもあり、水中のウイルスを除去又は不活性化することが必要になってきている。
【0003】
水中に生息するウイルスを除去又は不活性化する従来の一般的な方法として、ウイルスが存在する水を塩素処理する方法、オゾン処理する方法、紫外線を照射する方法、加熱する方法等がある。
【0004】
これら以外にも、特許文献1には、膜口目の繊毛虫が存在する領域に繊毛虫を生息させるための直径50〜500μmの多孔性担体を備え、この領域にウイルスが存在する水を通過させることにより、ウイルスを繊毛虫に取り込ませて除去する方法が開示されている。更に、特許文献2には、材料表面にアミン化合物を固定化した有機材料を膜としたウイルスの選択的除去材料が開示されている。
【0005】
しかし、塩素処理は残留塩素の問題、オゾン処理や紫外線照射処理は処理コストの問題、加熱処理は耐熱ウイルスには適用できないと共に下水道等の大量の水の処理には不向きであるとの問題がある。また、特許文献1は膜口目の繊毛虫を必要とすると共に、繊毛虫へのウイルスの取り込みのバラツキにより完全なウイルスの除去は難しいという欠点がある。特許文献2は、血漿中や血液成分を含んだ蛋白溶液から選択的にウイルスを除去する医薬品業界等での使用を目的としたもので、下水道等の大量の水からウイルスを除去するには不向きである。
【0006】
【特許文献1】
特開平10−137783号公報
【0007】
【特許文献2】
特開平6−114250号公報
【0008】
【発明が解決しようとする課題】
ところで、下水道等の汚水からウイルスを除去する方法として、膜濾過法が着目されている。この膜濾過法は、薬品の残留、処理コストの問題、耐熱ウイルスの問題等がない上に、水の浄化も合わせて行えるので、下水道等の汚水からウイルスを除去するのに適している。
【0009】
しかしながら、この膜濾過法は、水中からウイルスを完全に除去するには、ウイルスの大きさよりも小さな孔径の膜を使用しなくてはならないため膜の透過流束が低下するので、下水道等の大量の水を処理する上で処理効率が悪いという欠点がある。
【0010】
本発明はかかる問題に鑑みて成されたもので、膜の透過流束を低下させることなく水中のウイルスを完全に除去することのできるウイルス除去方法及び装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の発明者は、水中に存在するウイルスはSS成分に吸着され易く、SS成分に吸着されることにより、見かけ上の径が大きくなるので、ウイルスよりも大きな公称孔径の膜であってもウイルスを膜濾過できるとの知見を得た。更には、ウイルスよりも大きな膜の公称孔径と処理槽内のSS成分濃度との相互の関係を適切にコントロールすることで、膜の透過流束を低下させることなく水中のウイルスを完全に除去できるとの知見も得た。本発明はかかる知見に基づいて成されたものである。
【0012】
本発明の請求項1は前記目的を達成するために、処理槽内の被処理水中に膜濾過器を浸漬させて、前記被処理水中に存在するウイルスを膜濾過により除去するウイルス除去方法において、前記膜の公称孔径を前記被処理水から除去したいウイルスの大きさよりも大きく設定すると共に、前記膜濾過器に使用する膜の公称孔径に応じて前記被処理水のSS成分濃度をコントロールすることを特徴とする。
【0013】
本発明の請求項1によれば、膜の公称孔径を被処理水から除去したいウイルスの大きさよりも大きく設定すると共に、膜濾過器に使用する膜の公称孔径に応じて被処理水のSS成分濃度をコントロールするようにしたので、膜の透過流束を低下させることなく被処理水中のウイルスを完全に除去することができる。
【0014】
本発明の請求項2は前記目的を達成するために、処理槽内の被処理水中に膜濾過器を浸漬させて、前記被処理水中に存在するウイルスを膜濾過により除去するウイルス除去方法において、前記膜の公称孔径を前記被処理水から除去したいウイルスの大きさよりも大きく設定すると共に、前記被処理水のSS成分濃度に応じて前記膜濾過器に使用する膜の公称孔径をコントロールすることを特徴とする。
【0015】
また、本発明の請求項2によれば、膜の公称孔径を被処理水から除去したいウイルスの大きさよりも大きく設定すると共に、被処理水のSS成分濃度に応じて前記膜濾過器に使用する膜の公称孔径をコントロール(管理)するようにしたので、膜の透過流束を低下させることなく被処理水中のウイルスを完全に除去することができる。
【0016】
ここで、本発明におけるSS成分とは、水中に浮遊する固形分全般を意味し、本発明を活性汚泥処理装置に適用した場合には、SS成分の主たる成分は活性汚泥になる。
【0017】
本発明の請求項3は、請求項1又は2において、前記膜の公称孔径が0.01μm以下のときに前記被処理水のSS成分濃度が0mg/Lを超えて、500mg/L未満である関係を満足させるようにコントロールすることを特徴とする。
【0018】
これは、請求項1での膜濾過器に使用する膜の公称孔径に応じて被処理水のSS成分濃度をコントロールする場合、又は請求項2での被処理水のSS成分濃度に応じて前記膜濾過器に使用する膜の公称孔径をコントロールする場合に、膜の透過流束を低下させることなく水中のウイルスを完全に除去するための膜の公称孔径とSS成分濃度との相互の関係を示したものである。この場合、膜の公称孔径が0.01μm以下のときに被処理水のSS成分濃度が500mg/Lを超える関係の場合、ウイルスの除去はできるが、膜の透過流束が急速に低下するので良くない。
【0019】
本発明の請求項4は、請求項1又は2において、前記膜の公称孔径が0.01μmを超えて0.1μm以下のときに前記被処理水のSS成分濃度が500mg/L以上、3000mg/L未満である関係を満足させるようにコントロールすることを特徴とする。
【0020】
これは、請求項1において、膜の公称孔径が0.01μmを超えて0.1μm以下の膜濾過器を使用する場合には、被処理水のSS成分濃度を500mg/L以上、3000mg/L未満にコントロールすることで、膜の透過流束を低下させることなく水中のウイルスを完全に除去することができる。一方、請求項2において、被処理水のSS成分濃度が500mg/L以上、3000mg/L未満の場合には、膜濾過器に使用する膜の公称孔径を0.01μmを超えて0.1μm以下にコントロール(管理)することで、膜の透過流束を低下させることなく水中のウイルスを完全に除去することができる。
【0021】
本発明の請求項5は、請求項1又は2において、前記膜の公称孔径が0.1μmを超えて0.8μm以下のときに前記被処理水のSS成分濃度が3000mg/L以上である関係を満足させるようにコントロールすることを特徴とする。
【0022】
これは、請求項1において、膜の公称孔径が0.1μmを超えて0.8μm以下の膜濾過器を使用する場合には、被処理水のSS成分濃度を3000mg/L以上にコントロールすることで、膜の透過流束を低下させることなく水中のウイルスを完全に除去することができる。尚、SS成分濃度を3000mg/Lを超えていたずらに大きくすると、膜が目詰まりし易くなり、目詰まりの観点からSS成分濃度の上限は20000mg/L程度が好ましい。また、請求項2において、被処理水のSS成分濃度が3000mg/L以上の場合には、膜濾過器に使用する膜の公称孔径を0.1μmを超えて0.8μm以下にコントロール(管理)することで、膜の透過流束を低下させることなく水中のウイルスを完全に除去することができる。
【0023】
本発明の請求項6は請求項1において、前記処理槽は活性汚泥処理槽であると共に、前記活性汚泥処理槽からの汚泥引き抜き量又は引き抜いた汚泥を濃縮して前記活性汚泥処理槽に返送する汚泥返送量を調整することにより、前記被処理水のSS成分濃度をコントロールすることを特徴とする。
【0024】
これは、本発明のウイルス除去方法は、下水道等の汚水処理に一般的に使用されている活性汚泥処理法に最適な方法であり、被処理水のSS成分濃度の制御に活性汚泥の引き抜きと濃縮汚泥の返送によって簡単に達成することが可能である。即ち、処理槽に設置した膜濾過器の膜の公称孔径に対して、被処理水のSS成分濃度が低すぎてウイルスの除去能力が低下する場合には、引き抜いた汚泥を脱水等により濃縮して処理槽に戻してやる。逆に、被処理水のSS成分濃度が高すぎて膜の透過流束が低下する場合には、汚泥の引き抜き量を多くする。
【0025】
本発明の請求項7は請求項1〜6の何れか1において、前記反応槽内に活性炭、ゼオライト、多孔性担体、凝集材の添加物のうちの少なくとも1つを添加することを特徴とする。
【0026】
これにより、SS成分同士の吸着や凝集を促進すると共に、SS成分の主成分である活性汚泥の可溶化を防止できるので、ウイルスの膜濾過性能を更に向上させることができる。
【0027】
本発明の請求項8は前記目的を達成するために、被処理水中に存在するウイルスを膜濾過により除去するウイルス除去装置において、前記被処理水から除去したいウイルスの大きさよりも大きな公称孔径の膜を備えた膜濾過器を前記被処理水中に浸漬させた処理槽と、前記被処理水のSS成分濃度を測定する測定手段と、前記測定手段の測定結果に基づいて前記被処理水のSS成分濃度を制御するSS濃度制御手段と、を備えたことを特徴とする。
【0028】
本発明の請求項8は、請求項1の本発明のウイルス除去方法を具体的な装置として構成したものである。
【0029】
本発明の請求項9は前記目的を達成するために、被処理水中に存在するウイルスを膜濾過により除去するウイルス除去装置において、前記被処理水から除去したいウイルスの大きさよりも大きな公称孔径の膜であって0.01μm以下の膜濾過器を前記被処理水中に浸漬させた第1の処理槽と、膜の公称孔径が0.01μmを超えて0.1μm以下の膜濾過器を前記被処理水中に浸漬させた第2の処理槽と、膜の公称孔径が0.1μmを超えて0.8μm以下の膜濾過器を前記被処理水中に浸漬させた第3の処理槽と、前記被処理水の流入を前記第1〜第3の処理槽の何れかに切り換える切り換え手段と、前記流入する被処理水のSS成分濃度を測定する測定手段と、前記測定手段の測定結果に基づいて前記切り換え手段を制御するコントローラと、を備えたことを特徴とする。
【0030】
本発明の請求項9は、請求項2の本発明のウイルス除去方法を具体的な装置として構成したものである。
【0031】
本発明の請求項10は請求項8又は9において、活性炭、ゼオライト、多孔性担体、凝集材のうちの添加物のうちの少なくとも1つを前記処理槽内に添加する添加手段を設けたことを特徴とする。
【0032】
【発明の実施の形態】以下添付図面に従って、本発明に係るウイルス除去方法及び装置の好ましい実施の形態について詳説する。
【0033】
本発明を説明する前に、表1により本発明の理論的な根拠を説明する。
【0034】
表1は、膜濾過器の膜の公称孔径と試験水のSS成分濃度によるウイルスの膜濾過効果との関係を示した実験結果であり、0.01μm未満の大きさのウイルスが存在する試験水のSS成分濃度を増加させていったときに、公称孔径が何μmの膜であれば、ウイルスを完全に除去でき且つ膜の透過流束を維持することができるかを調べたものである。SS成分としては本発明を活性汚泥処理装置に適用することを想定して活性汚泥を使用し、試験水中の活性汚泥濃度(MLSS)を変化させた。
【0035】
【表1】

Figure 2004255250
その結果、表1から分かるように、MLSSが0mg/Lを超えて500mg/L未満の範囲では、ウイルスの大きさと公称孔径が略同等の0.01μm以下の膜を使用することにより、ウイルスを完全に除去でき且つ膜の透過流束を維持することができた。MLSSを大きくしていって、MLSSが500mg/L以上、3000mg/L未満の範囲では、公称孔径が0.01μm以上、0.1μm未満の範囲の膜を使用することにより、ウイルスを完全に除去でき且つ膜の透過流束を維持することができた。MLSSを更に大きくして3000mg/L以上にすると、公称孔径が0.1μm以上、0.8μm未満の範囲の膜を使用することにより、ウイルスを完全に除去でき且つ膜の透過流束を維持することができた。このように、試験水中のSS成分濃度を大きくすることで、ウイルスの大きさよりも大きな公称孔径の膜でウイルスを濾過できる理由は、試験水中に存在するウイルスはSS成分に吸着され、SS成分に吸着されることにより、見かけ上の径が大きくなるためであると考察される。また、ウイルスの膜濾過において、被処理水に活性炭、ゼオライト、多孔性担体、凝集材等のSS成分同士の吸着や凝集を促進する添加物のうちの少なくとも1つを添加することが好ましい。これは、SS成分濃度が小さくても添加物により、ウイルスを吸着したSS成分の吸着性を良くするので、見かけ上の大きさを大きくすることができる。また、SS成分濃度が濃い場合には、SS成分の主成分である活性汚泥の可溶化現象が生じ易く、ウイルスが再分散し易いが、上記の添加物を添加することで活性汚泥の可溶化現象を抑制することができる。
【0036】
本発明はかかる知見に基づいてウイルス除去方法及び装置を構成したものである。
【0037】
図1は、本発明のウイルス除去装置を、アンモニア性廃水(以下「廃水」という)の窒素除去を行う活性汚泥処理装置10に適用した例であり、膜濾過器に使用する膜の公称孔径に応じて廃水のSS成分濃度をコントロールする第1の実施の形態である。
【0038】
活性汚泥処理装置10において、廃水は原水配管12から生物処理槽14に流入する。生物処理槽14は脱窒槽16と硝化槽18とに区画され、硝化槽18の液は循環配管20を介して脱窒槽16に循環される。硝化槽18では、ブロア22に接続された曝気配管24からエアが曝気され、廃水と活性汚泥とが好気性条件で接触して、廃水中のアンモニア性窒素が硝酸性窒素に硝化処理される。一方、脱窒槽16では、硝化槽18で硝化処理により生成されて循環配管20により循環された硝酸性窒素が嫌気性条件下で窒素ガスに脱窒処理される。
【0039】
また、硝化槽18内の廃水中には、膜濾過器26が浸漬され、膜濾過器26は処理水配管28に接続されると共に、処理水配管28には吸引ポンプ30が配設される。これにより、硝化槽18内の液が膜濾過器26の膜によって吸引濾過され、処理水と活性汚泥とに分離され、処理水は処理水配管28を介して系外に排出される。かかる膜濾過によって、廃水中に存在するウイルスも除去される。
【0040】
本発明では、膜濾過器26に使用する膜の公称孔径は除去したいウイルスの大きさよりも大きく設定される。更に、硝化槽18内には、硝化槽18内の廃水のSS成分濃度を測定する、例えば濁度計等のSS濃度センサ32が設けられると共に、SS濃度センサ32で測定された測定結果はコントローラ34に入力される。硝化槽18の底部からは汚泥ポンプ36を備えた汚泥排出管38が延設され切換器40に接続されると共に、排出された汚泥の流れが切換器40によって余剰汚泥管42と汚泥返送管44とに切り換えられる。この場合、汚泥返送管44による汚泥の返送先を硝化槽18にしても、脱窒槽16にしてもよい。そして、コントローラ34は、SS濃度センサ32で測定された測定結果に基づいて余剰汚泥管42と汚泥返送管44との何れかに切換器40で切り換える。汚泥返送管44の途中には汚泥濃度を濃縮する、例えば脱水器等の汚泥濃縮器46が設けられ、濃縮程度はコントローラ34によって制御される。
【0041】
また、硝化槽18の上方には、添加物タンク48が設けられ、添加物タンク48には、活性炭、ゼオライト、多孔性担体、凝集材の添加物のうちの少なくとも1つが貯留される。添加物タンク48から硝化槽18に添加配管50が延設されると共に、添加配管50には添加物の添加量を調整する調整バルブ52が設けられる。
【0042】
次に、上記の如く構成された第1の実施の形態の活性汚泥処理装置10で廃水中に存在するウイルスを除去するウイルスの除去方法を説明する。
【0043】
硝化槽18に浸漬された膜濾過器26に使用した膜の公称孔径が0.01μm以下の場合には、硝化槽18内の廃水のSS成分濃度が0mg/Lを超えて、500mg/L未満の範囲に維持されるようにコントロールする。即ち、コントローラ34は、SS濃度センサ32によって測定される廃水のSS成分濃度が500mg/Lを超えた場合には、汚泥ポンプ36を運転すると共に、切換器40を余剰汚泥管42側に切り換えて、硝化槽18内の廃水のSS成分濃度が500mg/L未満になるまで、活性汚泥を余剰汚泥として系外に排出する。
【0044】
また、硝化槽18に浸漬する膜濾過器26の膜の公称孔径が0.01μmを超えて0.1μm以下のものを使用する場合には、硝化槽18内の廃水のSS成分濃度が500mg/L以上、3000mg/L未満になるようにコントロールする。即ち、コントローラ34は、SS濃度センサ32によって測定される廃水のSS成分濃度が3000mg/Lを超えた場合には、汚泥ポンプ36を運転すると共に、切換器40を余剰汚泥管42側に切り換えて、硝化槽18内の廃水のSS成分濃度が3000mg/L未満になるまで、活性汚泥を余剰汚泥として系外に排出する。逆に、硝化槽18内の廃水のSS成分濃度が500mg/Lを下回った場合には、コントローラ34は、汚泥ポンプ36を運転すると共に、切換器40を汚泥返送管44側に切り換え、且つ汚泥濃縮器46を運転する。これにより、濃縮された汚泥が硝化槽18に返送されるので、コントローラ34は硝化槽18内の廃水のSS成分濃度が500mg/L以上になるまで行う。
【0045】
また、硝化槽18に浸漬する膜濾過器26の膜の公称孔径が0.1μmを超えて0.8μm以下のものを使用する場合には、硝化槽18内の廃水のSS成分濃度が3000mg/L以上になるようにコントロールする。即ち、コントローラ34は、SS濃度センサ32によって測定される硝化槽18内の廃水のSS成分濃度が3000mg/Lを下回った場合には、汚泥ポンプ36を運転すると共に、切換器40を汚泥返送管44側に切り換え、且つ汚泥濃縮器46を運転する。これにより、濃縮された汚泥が硝化槽18に返送されるので、コントローラ34は硝化槽18内の廃水のSS成分濃度が3000mg/L以上になるまで行う。尚、硝化槽18内の被処理水のSS成分濃度が3000mg/L以上であればよいが、余りSS成分濃度が大きくなりすぎると、膜の透過流束が低下する要因になるので、上限は20000mg/L程度が好ましい。
【0046】
かかるウイルスの除去において、添加物タンク48から硝化槽18内に、活性炭、ゼオライト、多孔性担体、凝集材の添加物のうちの少なくとも1つを添加することが好ましい。これにより、SS成分同士の吸着や凝集を促進すると共に、SS成分の主成分である活性汚泥の可溶化を防止できるので、ウイルスの膜濾過性能を更に向上させることができる。
【0047】
このように第1の実施の形態によれば、膜の公称孔径を廃水から除去したいウイルスの大きさよりも大きく設定すると共に、膜濾過器26に使用する膜の公称孔径に応じて廃水のSS成分濃度をコントロールするようにしたので、膜の透過流束を低下させることなく廃水中のウイルスを完全に除去することができる。
【0048】
尚、硝化槽18内の廃水のSS成分濃度が、上記した膜の各公称孔径との関係を満足している場合には、コントローラ34は廃水のSS成分濃度をコントロールする必要はない。
【0049】
図2は、本発明のウイルス除去装置を、アンモニア性廃水(以下「廃水」という)の窒素除去を行う活性汚泥処理装置10に適用した例であり、廃水のSS成分濃度に応じて膜濾過器の膜の公称孔径をコントロール(管理)する第2の実施の形態である。尚、第1の実施の形態と同じ部材や装置には同符号を付して説明する。
【0050】
活性汚泥処理装置10において、原水配管12を流れる廃水は、切換器40によって3本の枝管12(A、B、C)に分岐されて第1〜第3の生物処理槽14(A、B、C)の何れかに供給される。第1〜第3の生物処理槽14は脱窒槽16(A、B、C)と硝化槽18(A、B、C)とに区画され、第1の実施の形態と同様に硝化槽18ではアンモニア性窒素の硝化処理が成され、脱窒槽16では硝酸態窒素の脱窒処理が成される。
【0051】
第1〜第3の生物処理槽14の各硝化槽18には、第1の実施の形態と同様に膜濾過器26が浸漬されるが、第2の実施の形態では、各膜濾過器26に使用される膜の公称孔径が異なるように設定される。即ち、第1硝化槽18Aには公称孔径が0.01μm以下の膜が使用され、第2硝化槽18Bには公称孔径が0.01μmを超えて0.1μm以下の範囲の膜が使用され、第3硝化槽18Cには公称孔径が0.1μmを超えて0.8μm以下の範囲の膜が使用される。また、原水配管12には、流入廃水のSS成分濃度を測定するSS濃度センサ32が設けられると共に、SS濃度センサ32で測定された測定結果はコントローラ34に入力される。そして、コントローラ34は、SS濃度センサ32の測定結果に基づいて、第1〜第3の生物処理槽14の何れかに廃水が供給されるように切換器40を切り換える。
【0052】
上記の如く構成された第2の実施の形態の活性汚泥処理装置10で廃水中に存在するウイルスを除去するウイルスの除去方法を説明する。
【0053】
コントローラ34は、SS濃度センサ32で測定された廃水のSS成分濃度が0mg/L以上、500mg/L未満の場合には、第1の生物処理槽14Aに廃水が供給されるように切換器40を切り換える。また、SS濃度センサ32で測定された廃水のSS成分濃度が500mg/L以上、3000mg/L未満の場合には、第2の生物処理槽14Bに廃水が供給されるように切換器40を切り換える。更に、SS濃度センサ32で測定された廃水のSS成分濃度が3000mg/L以上の場合には、第3の生物処理槽14Cに廃水が供給されるように切換器40を切り換える。この場合、活性汚泥処理装置10の運転当初は、硝化槽18内のSS成分濃度はSS濃度センサ32で測定された流入廃水のSS成分濃度と同等にみることはできるが、運転経過時間と共に、膜濾過器26で処理水と活性汚泥の分離が進むと、硝化槽18内のSS成分濃度が流入廃水のSS成分濃度よりも大きくなる。従って、硝化槽18底部に汚泥ポンプ36を備えた汚泥排出管38を設けると共に、硝化槽18内に補助SS濃度センサ54を設けて、補助SS濃度センサ54での測定結果がコントローラ34に入力されるようにすると良い。コントローラ34は、補助SS濃度センサ54で測定された硝化槽18内の廃水のSS成分濃度が、各硝化槽18における上記した適正なSS成分濃度の上限を超えたら、汚泥ポンプ36を稼働して硝化槽18内の活性汚泥を余剰汚泥として系外に排出する。
【0054】
このように、第2の実施の形態によれば、硝化槽18の廃水に浸漬した膜濾過器26の膜の公称孔径を廃水から除去したいウイルスの大きさよりも大きく設定すると共に、廃水のSS成分濃度に応じて膜濾過器26に使用する膜の公称孔径をコントロール(管理)するようにしたので、膜の透過流束を低下させることなく水中のウイルスを完全に除去することができる。かかるウイルスの除去において、添加物タンク48から硝化槽18内に、活性炭、ゼオライト、多孔性担体、凝集材の添加物のうちの少なくとも1つを添加することが好ましい。
【0055】
尚、上記した活性汚泥処理装置10の第1、及び第2の実施の形態は、本発明のウイルス除去装置を組み込んだ構成の一例を示したものであり、この構成に限定されるものではない。例えば、第2の実施の形態では、流入廃水のSS成分濃度に応じて廃水の流入先を第1〜第3の生物処理槽14に切り換えるようにしたが、流入廃水のSS成分濃度が一定の場合には、1つの生物処理槽にして硝化槽に設置する膜濾過器の膜の公称孔径を一定のSS成分濃度に対応するように設定してもよい。
【0056】
【発明の効果】
以上説明したように、本発明のウイルス除去方法及び装置によれば、膜の透過流束を低下させることなく水中のウイルスを完全に除去することができる。
【図面の簡単な説明】
【図1】本発明のウイルス除去装置を活性汚泥処理装置に組み込んだ第1の実施の形態を説明する構成図
【図2】本発明のウイルス除去装置を活性汚泥処理装置に組み込んだ第2の実施の形態を説明する構成図
【符号の説明】
10…活性汚泥処理装置、12…原水配管、14…生物処理槽、16…脱窒槽、18…硝化槽、20…循環配管、22…ブロア、24…曝気配管、26…膜濾過器、28…処理水配管、30…吸引ポンプ、32…SS濃度センサ、34…コントローラ、36…汚泥ポンプ、38…汚泥排出管、40…切換器、42…余剰汚泥管、44…汚泥返送管、46…汚泥濃縮器、48…添加物タンク[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for removing viruses, and more particularly to a method for removing viruses from water by filtering viruses present in water such as sewers, lakes and marshes, river water, and pool water by membrane filtration, and Equipment related.
[0002]
[Prior art]
It has been found that many types of viruses exist in the water of sewers, lakes, marshes, river water, aquariums, etc.Some of the many types of viruses harm humans and livestock. It is becoming necessary to remove or inactivate the virus.
[0003]
As a conventional general method for removing or inactivating a virus that lives in water, there are a method of chlorinating water containing a virus, a method of ozone treatment, a method of irradiating ultraviolet rays, and a method of heating.
[0004]
In addition to the above, Patent Document 1 discloses a region in which a ciliate of the order of the membrane is present, which is provided with a porous carrier having a diameter of 50 to 500 μm for inhabiting the ciliate. A method for removing the virus by incorporating it into ciliates is disclosed. Further, Patent Literature 2 discloses a virus selective removal material using an organic material having an amine compound immobilized on the surface of the material as a membrane.
[0005]
However, chlorination has a problem of residual chlorine, ozone treatment and ultraviolet irradiation treatment have a problem of treatment cost, and heat treatment is not applicable to heat-resistant virus and is not suitable for treatment of large amounts of water such as sewers. . In addition, Patent Document 1 requires a ciliate of the order of the membrane, and has the disadvantage that it is difficult to completely remove the virus due to the variation in the uptake of the virus into the ciliate. Patent Document 2 is intended for use in the pharmaceutical industry and the like for selectively removing viruses from plasma or protein solutions containing blood components, and is not suitable for removing viruses from large amounts of water such as sewers. It is.
[0006]
[Patent Document 1]
JP-A-10-137783
[0007]
[Patent Document 2]
JP-A-6-114250
[0008]
[Problems to be solved by the invention]
As a method for removing viruses from wastewater such as sewers, a membrane filtration method has attracted attention. This membrane filtration method is suitable for removing viruses from wastewater such as sewage, because it does not have residual chemicals, problems with processing costs, problems with heat-resistant viruses, etc. and can also purify water.
[0009]
However, this membrane filtration method requires the use of a membrane having a pore size smaller than the size of the virus to completely remove the virus from the water, which reduces the permeation flux of the membrane. There is a drawback that the treatment efficiency is poor in treating the water.
[0010]
The present invention has been made in view of such a problem, and an object of the present invention is to provide a virus removal method and apparatus capable of completely removing viruses in water without reducing the permeation flux of the membrane.
[0011]
[Means for Solving the Problems]
The inventor of the present invention proposes that a virus present in water is easily adsorbed to the SS component, and the apparent diameter is increased by being adsorbed to the SS component. We have found that viruses can be membrane-filtered. Furthermore, by appropriately controlling the correlation between the nominal pore size of the membrane larger than the virus and the SS component concentration in the treatment tank, the virus in water can be completely removed without reducing the permeation flux of the membrane. The knowledge that was obtained. The present invention has been made based on such findings.
[0012]
Claim 1 of the present invention, in order to achieve the above object, in a virus removal method for immersing a membrane filter in the water to be treated in the treatment tank, and removing the virus present in the water to be treated by membrane filtration, Setting the nominal pore size of the membrane larger than the size of the virus to be removed from the water to be treated, and controlling the SS component concentration of the water to be treated according to the nominal pore size of the membrane used for the membrane filter. Features.
[0013]
According to claim 1 of the present invention, the nominal pore size of the membrane is set to be larger than the size of the virus to be removed from the water to be treated, and the SS component of the water to be treated depends on the nominal pore size of the membrane used in the membrane filter. Since the concentration is controlled, the virus in the water to be treated can be completely removed without reducing the permeation flux of the membrane.
[0014]
Claim 2 of the present invention, in order to achieve the above object, in a virus removal method for immersing a membrane filter in the water to be treated in the treatment tank, and removing the virus present in the water to be treated by membrane filtration, The nominal pore size of the membrane is set to be larger than the size of the virus to be removed from the water to be treated, and the nominal pore size of the membrane used in the membrane filter is controlled according to the SS component concentration of the water to be treated. Features.
[0015]
According to the second aspect of the present invention, the nominal pore size of the membrane is set to be larger than the size of the virus to be removed from the water to be treated, and the membrane is used for the membrane filter according to the SS component concentration of the water to be treated. Since the nominal pore size of the membrane is controlled (managed), the virus in the water to be treated can be completely removed without reducing the permeation flux of the membrane.
[0016]
Here, the SS component in the present invention means all solids suspended in water. When the present invention is applied to an activated sludge treatment device, the main component of the SS component is activated sludge.
[0017]
According to a third aspect of the present invention, in the first or second aspect, when the nominal pore size of the membrane is 0.01 μm or less, the SS component concentration of the water to be treated exceeds 0 mg / L and is less than 500 mg / L. It is characterized by controlling to satisfy the relationship.
[0018]
This is the case where the concentration of the SS component of the water to be treated is controlled in accordance with the nominal pore size of the membrane used in the membrane filter according to claim 1, or in accordance with the concentration of the SS component in the water to be treated according to claim 2. When controlling the nominal pore size of a membrane used in a membrane filter, the correlation between the nominal pore size of the membrane and the SS component concentration for completely removing virus in water without reducing the permeation flux of the membrane is considered. It is shown. In this case, if the SS concentration of the water to be treated exceeds 500 mg / L when the nominal pore size of the membrane is 0.01 μm or less, the virus can be removed, but the permeation flux of the membrane rapidly decreases. Not good.
[0019]
According to a fourth aspect of the present invention, in the first or second aspect, when the nominal pore diameter of the membrane is more than 0.01 μm and 0.1 μm or less, the SS component concentration of the water to be treated is 500 mg / L or more and 3000 mg / L. Control is performed so as to satisfy the relationship of being less than L.
[0020]
This means that when a membrane filter having a nominal pore diameter of more than 0.01 μm and not more than 0.1 μm is used in claim 1, the SS component concentration of the water to be treated is 500 mg / L or more and 3000 mg / L. By controlling the flow rate to less than 100%, the virus in the water can be completely removed without reducing the permeation flux of the membrane. On the other hand, in claim 2, when the concentration of the SS component in the water to be treated is 500 mg / L or more and less than 3000 mg / L, the nominal pore size of the membrane used for the membrane filter exceeds 0.01 μm and 0.1 μm or less. By controlling (managing) the virus in water, the virus in the water can be completely removed without reducing the permeation flux of the membrane.
[0021]
A fifth aspect of the present invention relates to the first or second aspect, wherein the SS component concentration of the water to be treated is 3000 mg / L or more when the nominal pore size of the membrane is more than 0.1 μm and 0.8 μm or less. Is controlled so as to satisfy the following.
[0022]
This means that when a membrane filter having a nominal pore size of more than 0.1 μm and 0.8 μm or less is used in claim 1, the SS component concentration of the water to be treated is controlled to 3000 mg / L or more. Thus, the virus in water can be completely removed without reducing the permeation flux of the membrane. Incidentally, if the SS component concentration is excessively increased beyond 3000 mg / L, the film is easily clogged, and the upper limit of the SS component concentration is preferably about 20,000 mg / L from the viewpoint of clogging. Further, when the concentration of the SS component in the water to be treated is 3000 mg / L or more, the nominal pore size of the membrane used for the membrane filter is controlled to be more than 0.1 μm and 0.8 μm or less (management). By doing so, the virus in the water can be completely removed without reducing the permeation flux of the membrane.
[0023]
According to claim 6 of the present invention, in claim 1, the treatment tank is an activated sludge treatment tank, and the sludge withdrawn amount from the activated sludge treatment tank or the extracted sludge is concentrated and returned to the activated sludge treatment tank. The SS component concentration is controlled by adjusting the sludge return amount.
[0024]
This is the method for removing virus of the present invention is the most suitable method for activated sludge treatment generally used for sewage treatment of sewage and the like. This can be easily achieved by returning the concentrated sludge. In other words, when the SS component concentration of the water to be treated is too low to reduce the virus removal ability with respect to the nominal pore size of the membrane of the membrane filter installed in the treatment tank, the extracted sludge is concentrated by dehydration or the like. And return it to the treatment tank. Conversely, if the SS concentration of the water to be treated is too high and the permeation flux of the membrane decreases, the sludge withdrawal amount is increased.
[0025]
A seventh aspect of the present invention is characterized in that, in any one of the first to sixth aspects, at least one of an additive of activated carbon, zeolite, a porous carrier, and a coagulant is added to the reaction vessel. .
[0026]
This promotes adsorption and aggregation of the SS components and prevents solubilization of the activated sludge, which is the main component of the SS components, so that the virus membrane filtration performance can be further improved.
[0027]
In order to achieve the above object, the present invention provides a virus removal apparatus for removing a virus present in water to be treated by membrane filtration, wherein the membrane having a nominal pore size larger than the size of the virus to be removed from the water to be treated. A treatment tank in which a membrane filter provided with a filter is immersed in the water to be treated, measuring means for measuring the SS component concentration of the water to be treated, and the SS component of the water to be treated based on the measurement result of the measuring means. SS concentration control means for controlling the concentration.
[0028]
An eighth aspect of the present invention is an embodiment wherein the virus removing method of the first aspect of the present invention is configured as a specific device.
[0029]
In order to achieve the above object, a ninth aspect of the present invention provides a virus removal apparatus for removing a virus present in water to be treated by membrane filtration, wherein the membrane having a nominal pore size larger than the size of the virus to be removed from the water to be treated. And a first treatment tank in which a 0.01 μm or less membrane filter is immersed in the water to be treated, and a membrane filter with a nominal pore diameter of the membrane exceeding 0.01 μm and 0.1 μm or less. A second treatment tank immersed in water, a third treatment tank in which a membrane filter having a nominal pore diameter of more than 0.1 μm and 0.8 μm or less is immersed in the water to be treated, and Switching means for switching the inflow of water to any of the first to third treatment tanks; measuring means for measuring the SS component concentration of the inflowing water to be treated; and the switching based on the measurement result of the measuring means. Controller controlling means And characterized in that:
[0030]
According to a ninth aspect of the present invention, the virus removing method of the second aspect of the present invention is configured as a specific device.
[0031]
According to a tenth aspect of the present invention, in the eighth or ninth aspect, there is provided an adding means for adding at least one of additives among activated carbon, zeolite, a porous carrier, and an aggregating material into the treatment tank. Features.
[0032]
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a virus removing method and apparatus according to the present invention will be described below in detail with reference to the accompanying drawings.
[0033]
Before describing the present invention, the theoretical basis of the present invention will be described with reference to Table 1.
[0034]
Table 1 shows the experimental results showing the relationship between the nominal pore size of the membrane of the membrane filter and the membrane filtration effect of the virus depending on the SS component concentration of the test water, and the test water containing a virus having a size of less than 0.01 μm. When the concentration of the SS component was increased, it was examined how many μm of the nominal pore size of the membrane could completely remove the virus and maintain the permeation flux of the membrane. As the SS component, activated sludge was used on the assumption that the present invention is applied to an activated sludge treatment apparatus, and the activated sludge concentration (MLSS) in the test water was changed.
[0035]
[Table 1]
Figure 2004255250
As a result, as can be seen from Table 1, when the MLSS is more than 0 mg / L and less than 500 mg / L, the virus is reduced by using a membrane of 0.01 μm or less having a virus size and a nominal pore size substantially equal to each other. It could be completely removed and the flux of the membrane could be maintained. When the MLSS is increased and the MLSS is in the range of 500 mg / L or more and less than 3000 mg / L, the virus is completely removed by using a membrane having a nominal pore size of 0.01 μm or more and less than 0.1 μm. And maintained the permeation flux of the membrane. When the MLSS is further increased to 3000 mg / L or more, by using a membrane having a nominal pore size of 0.1 μm or more and less than 0.8 μm, the virus can be completely removed and the permeation flux of the membrane is maintained. I was able to. Thus, by increasing the concentration of the SS component in the test water, the virus can be filtered through a membrane having a nominal pore size larger than the size of the virus because the virus present in the test water is adsorbed by the SS component, It is considered that the apparent diameter is increased by the adsorption. Further, in the membrane filtration of the virus, it is preferable to add at least one of additives for promoting adsorption and aggregation of SS components such as activated carbon, zeolite, porous carrier, and aggregating material to the water to be treated. This means that even if the SS component concentration is low, the adsorbability of the SS component adsorbing the virus is improved by the additive, so that the apparent size can be increased. When the concentration of the SS component is high, the activated sludge, which is the main component of the SS component, is likely to be solubilized and the virus is easily redispersed. The phenomenon can be suppressed.
[0036]
The present invention constitutes a virus removal method and apparatus based on such knowledge.
[0037]
FIG. 1 shows an example in which the virus removal device of the present invention is applied to an activated sludge treatment device 10 for removing nitrogen from ammoniacal wastewater (hereinafter referred to as “wastewater”). This is a first embodiment in which the SS component concentration of wastewater is controlled accordingly.
[0038]
In the activated sludge treatment apparatus 10, wastewater flows from a raw water pipe 12 into a biological treatment tank 14. The biological treatment tank 14 is divided into a denitrification tank 16 and a nitrification tank 18, and the liquid in the nitrification tank 18 is circulated to the denitrification tank 16 via a circulation pipe 20. In the nitrification tank 18, air is aerated from the aeration pipe 24 connected to the blower 22, and the wastewater and the activated sludge come into contact under aerobic conditions, so that the ammonia nitrogen in the wastewater is nitrified into nitrate nitrogen. On the other hand, in the denitrification tank 16, nitrate nitrogen generated by the nitrification treatment in the nitrification tank 18 and circulated through the circulation pipe 20 is denitrified into nitrogen gas under anaerobic conditions.
[0039]
Further, a membrane filter 26 is immersed in the wastewater in the nitrification tank 18, and the membrane filter 26 is connected to a treated water pipe 28, and a suction pump 30 is provided in the treated water pipe 28. Thereby, the liquid in the nitrification tank 18 is suction-filtered by the membrane of the membrane filter 26, separated into treated water and activated sludge, and the treated water is discharged out of the system via the treated water pipe 28. Such membrane filtration also removes viruses present in the wastewater.
[0040]
In the present invention, the nominal pore size of the membrane used for the membrane filter 26 is set to be larger than the size of the virus to be removed. Further, in the nitrification tank 18, an SS concentration sensor 32 such as a turbidimeter for measuring the SS component concentration of the wastewater in the nitrification tank 18 is provided, and a measurement result measured by the SS concentration sensor 32 is a controller. 34. A sludge discharge pipe 38 provided with a sludge pump 36 extends from the bottom of the nitrification tank 18 and is connected to a switch 40. The flow of the discharged sludge is changed by the switch 40 to an excess sludge pipe 42 and a sludge return pipe 44. Is switched to In this case, the return destination of the sludge by the sludge return pipe 44 may be the nitrification tank 18 or the denitrification tank 16. Then, the controller 34 switches to a surplus sludge pipe 42 or a sludge return pipe 44 by the switch 40 based on the measurement result measured by the SS concentration sensor 32. A sludge concentrator 46 such as a dehydrator for concentrating the sludge concentration is provided in the middle of the sludge return pipe 44, and the degree of concentration is controlled by the controller 34.
[0041]
Further, an additive tank 48 is provided above the nitrification tank 18, and the additive tank 48 stores at least one of activated carbon, zeolite, a porous carrier, and an additive of a coagulant. An addition pipe 50 extends from the additive tank 48 to the nitrification tank 18, and the addition pipe 50 is provided with an adjustment valve 52 for adjusting the amount of the additive to be added.
[0042]
Next, a virus removal method for removing a virus present in wastewater with the activated sludge treatment apparatus 10 according to the first embodiment configured as described above will be described.
[0043]
When the nominal pore size of the membrane used for the membrane filter 26 immersed in the nitrification tank 18 is 0.01 μm or less, the SS component concentration of the wastewater in the nitrification tank 18 exceeds 0 mg / L and less than 500 mg / L. Control to be maintained in the range of. That is, when the SS component concentration of the wastewater measured by the SS concentration sensor 32 exceeds 500 mg / L, the controller 34 operates the sludge pump 36 and switches the switch 40 to the excess sludge pipe 42 side. The activated sludge is discharged out of the system as excess sludge until the SS component concentration of the wastewater in the nitrification tank 18 becomes less than 500 mg / L.
[0044]
When the membrane filter 26 immersed in the nitrification tank 18 has a nominal pore diameter of more than 0.01 μm and not more than 0.1 μm, the SS component concentration of the wastewater in the nitrification tank 18 is 500 mg / Control to be not less than L and less than 3000 mg / L. That is, when the SS component concentration of the wastewater measured by the SS concentration sensor 32 exceeds 3000 mg / L, the controller 34 operates the sludge pump 36 and switches the switch 40 to the excess sludge pipe 42 side. Until the SS component concentration of the wastewater in the nitrification tank 18 becomes less than 3000 mg / L, the activated sludge is discharged out of the system as surplus sludge. Conversely, when the SS component concentration of the wastewater in the nitrification tank 18 falls below 500 mg / L, the controller 34 operates the sludge pump 36, switches the switch 40 to the sludge return pipe 44 side, and The concentrator 46 is operated. As a result, the concentrated sludge is returned to the nitrification tank 18, and the controller 34 continues until the concentration of the SS component in the wastewater in the nitrification tank 18 becomes 500 mg / L or more.
[0045]
When the membrane filter 26 to be immersed in the nitrification tank 18 has a nominal pore diameter of more than 0.1 μm and not more than 0.8 μm, the SS component concentration of the wastewater in the nitrification tank 18 is 3000 mg / Control to be L or more. That is, when the SS component concentration of the wastewater in the nitrification tank 18 measured by the SS concentration sensor 32 falls below 3000 mg / L, the controller 34 operates the sludge pump 36 and switches the switch 40 to the sludge return pipe. Switch to the 44 side and operate the sludge concentrator 46. As a result, the concentrated sludge is returned to the nitrification tank 18, and the controller 34 continues until the SS component concentration of the wastewater in the nitrification tank 18 becomes 3000 mg / L or more. Note that the concentration of the SS component in the water to be treated in the nitrification tank 18 may be 3000 mg / L or more. However, if the concentration of the SS component is too large, the flux of the membrane is reduced. About 20,000 mg / L is preferable.
[0046]
In removing the virus, it is preferable to add at least one of activated carbon, zeolite, a porous carrier, and a coagulant additive from the additive tank 48 into the nitrification tank 18. This promotes adsorption and aggregation of the SS components and prevents solubilization of the activated sludge, which is the main component of the SS components, so that the virus membrane filtration performance can be further improved.
[0047]
As described above, according to the first embodiment, the nominal pore size of the membrane is set to be larger than the size of the virus to be removed from the wastewater, and the SS component of the wastewater is set according to the nominal pore size of the membrane used for the membrane filter 26. Since the concentration is controlled, the virus in the wastewater can be completely removed without reducing the permeation flux of the membrane.
[0048]
When the concentration of the SS component of the wastewater in the nitrification tank 18 satisfies the relationship with the respective nominal pore diameters of the above-described membrane, the controller 34 does not need to control the concentration of the SS component of the wastewater.
[0049]
FIG. 2 is an example in which the virus removal device of the present invention is applied to an activated sludge treatment device 10 for removing nitrogen from ammoniacal wastewater (hereinafter referred to as “wastewater”). This is a second embodiment for controlling (managing) the nominal pore size of the membrane of FIG. The same members and devices as in the first embodiment will be described with the same reference numerals.
[0050]
In the activated sludge treatment apparatus 10, the wastewater flowing through the raw water pipe 12 is branched into three branch pipes 12 (A, B, C) by a switch 40, and the first to third biological treatment tanks 14 (A, B). , C). The first to third biological treatment tanks 14 are divided into a denitrification tank 16 (A, B, C) and a nitrification tank 18 (A, B, C), and the nitrification tank 18 is similar to the first embodiment. A nitrification treatment of ammonia nitrogen is performed, and a nitrification treatment of nitrate nitrogen is performed in the denitrification tank 16.
[0051]
A membrane filter 26 is immersed in each of the nitrification tanks 18 of the first to third biological treatment tanks 14 as in the first embodiment, but in the second embodiment, each of the membrane filters 26 is The nominal pore size of the membrane used for the above is set to be different. That is, a membrane having a nominal pore diameter of 0.01 μm or less is used for the first nitrification tank 18A, and a membrane having a nominal pore diameter of 0.1 μm or less exceeding 0.01 μm is used for the second nitrification tank 18B. For the third nitrification tank 18C, a membrane having a nominal pore diameter of more than 0.1 μm and not more than 0.8 μm is used. Further, the raw water pipe 12 is provided with an SS concentration sensor 32 for measuring the SS component concentration of the inflow wastewater, and the measurement result measured by the SS concentration sensor 32 is input to the controller 34. Then, the controller 34 switches the switch 40 based on the measurement result of the SS concentration sensor 32 so that the wastewater is supplied to any of the first to third biological treatment tanks 14.
[0052]
A virus removal method for removing viruses present in wastewater with the activated sludge treatment apparatus 10 according to the second embodiment configured as described above will be described.
[0053]
When the SS component concentration of the wastewater measured by the SS concentration sensor 32 is 0 mg / L or more and less than 500 mg / L, the controller 34 controls the switch 40 so that the wastewater is supplied to the first biological treatment tank 14A. Switch. When the SS component concentration of the wastewater measured by the SS concentration sensor 32 is 500 mg / L or more and less than 3000 mg / L, the switch 40 is switched so that the wastewater is supplied to the second biological treatment tank 14B. . Further, when the SS component concentration of the wastewater measured by the SS concentration sensor 32 is 3000 mg / L or more, the switch 40 is switched so that the wastewater is supplied to the third biological treatment tank 14C. In this case, at the beginning of the operation of the activated sludge treatment apparatus 10, the SS component concentration in the nitrification tank 18 can be seen to be equivalent to the SS component concentration of the inflow wastewater measured by the SS concentration sensor 32, but together with the operation elapsed time, As the separation of the treated water and the activated sludge proceeds in the membrane filter 26, the SS component concentration in the nitrification tank 18 becomes larger than the SS component concentration of the inflow wastewater. Accordingly, a sludge discharge pipe 38 provided with a sludge pump 36 is provided at the bottom of the nitrification tank 18, and an auxiliary SS concentration sensor 54 is provided in the nitrification tank 18, and the measurement result of the auxiliary SS concentration sensor 54 is input to the controller 34. It is good to do so. When the SS component concentration of the wastewater in the nitrification tank 18 measured by the auxiliary SS concentration sensor 54 exceeds the upper limit of the appropriate SS component concentration in each nitrification tank 18, the controller 34 operates the sludge pump 36. The activated sludge in the nitrification tank 18 is discharged out of the system as surplus sludge.
[0054]
As described above, according to the second embodiment, the nominal pore size of the membrane of the membrane filter 26 immersed in the wastewater of the nitrification tank 18 is set to be larger than the size of the virus to be removed from the wastewater, and the SS component of the wastewater is set. Since the nominal pore size of the membrane used in the membrane filter 26 is controlled (managed) according to the concentration, the virus in the water can be completely removed without reducing the permeation flux of the membrane. In removing the virus, it is preferable to add at least one of activated carbon, zeolite, a porous carrier, and a coagulant additive from the additive tank 48 into the nitrification tank 18.
[0055]
The first and second embodiments of the activated sludge treatment device 10 described above show an example of a configuration incorporating the virus removal device of the present invention, and the present invention is not limited to this configuration. . For example, in the second embodiment, the inflow destination of the wastewater is switched to the first to third biological treatment tanks 14 according to the SS component concentration of the inflow wastewater, but the SS component concentration of the inflow wastewater is constant. In this case, the nominal pore diameter of the membrane of the membrane filter installed in the nitrification tank as one biological treatment tank may be set so as to correspond to a constant SS component concentration.
[0056]
【The invention's effect】
As described above, according to the virus removal method and apparatus of the present invention, viruses in water can be completely removed without reducing the permeation flux of the membrane.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating a first embodiment in which a virus removal device of the present invention is incorporated in an activated sludge treatment device.
FIG. 2 is a configuration diagram illustrating a second embodiment in which the virus removal device of the present invention is incorporated in an activated sludge treatment device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Activated sludge treatment apparatus, 12 ... raw water piping, 14 ... biological treatment tank, 16 ... denitrification tank, 18 ... nitrification tank, 20 ... circulation piping, 22 ... blower, 24 ... aeration piping, 26 ... membrane filter, 28 ... Processed water piping, 30 suction pump, 32 SS concentration sensor, 34 controller, 36 sludge pump, 38 sludge discharge pipe, 40 switcher, 42 excess sludge pipe, 44 sludge return pipe, 46 sludge Concentrator, 48 ... additive tank

Claims (10)

処理槽内の被処理水中に膜濾過器を浸漬させて、前記被処理水中に存在するウイルスを膜濾過により除去するウイルス除去方法において、
前記膜の公称孔径を前記被処理水から除去したいウイルスの大きさよりも大きく設定すると共に、前記膜濾過器に使用する膜の公称孔径に応じて前記被処理水のSS成分濃度をコントロールすることを特徴とするウイルス除去方法。
In the virus removal method of immersing the membrane filter in the water to be treated in the treatment tank and removing the virus present in the water to be treated by membrane filtration,
Setting the nominal pore size of the membrane larger than the size of the virus to be removed from the water to be treated, and controlling the SS component concentration of the water to be treated according to the nominal pore size of the membrane used for the membrane filter. Characterized virus removal method.
処理槽内の被処理水中に膜濾過器を浸漬させて、前記被処理水中に存在するウイルスを膜濾過により除去するウイルス除去方法において、
前記膜の公称孔径を前記被処理水から除去したいウイルスの大きさよりも大きく設定すると共に、前記被処理水のSS成分濃度に応じて前記膜濾過器に使用する膜の公称孔径をコントロールすることを特徴とするウイルス除去方法。
In the virus removal method of immersing the membrane filter in the water to be treated in the treatment tank and removing the virus present in the water to be treated by membrane filtration,
The nominal pore size of the membrane is set to be larger than the size of the virus to be removed from the water to be treated, and the nominal pore size of the membrane used in the membrane filter is controlled according to the SS component concentration of the water to be treated. Characterized virus removal method.
前記膜の公称孔径が0.01μm以下のときに前記被処理水のSS成分濃度が0mg/Lを超えて、500mg/L未満である関係を満足させるようにコントロールすることを特徴とする請求項1又は2のウイルス除去方法。When the nominal pore size of the membrane is 0.01 μm or less, the concentration of the SS component in the water to be treated is controlled so as to satisfy a relationship of more than 0 mg / L and less than 500 mg / L. 1 or 2 virus removal method. 前記膜の公称孔径が0.01μmを超えて0.1μm以下のときに前記被処理水のSS成分濃度が500mg/L以上、3000mg/L未満である関係を満足させるようにコントロールすることを特徴とする請求項1又は2のウイルス除去方法。When the nominal pore diameter of the membrane is more than 0.01 μm and 0.1 μm or less, the concentration of the SS component in the water to be treated is controlled so as to satisfy the relationship of 500 mg / L or more and less than 3000 mg / L. The virus removal method according to claim 1 or 2, wherein 前記膜の公称孔径が0.1μmを超えて0.8μm以下のときに前記被処理水のSS成分濃度が3000mg/L以上である関係を満足させるようにコントロールすることを特徴とする請求項1又は2のウイルス除去方法。2. The method according to claim 1, wherein when the nominal pore diameter of the membrane is more than 0.1 μm and not more than 0.8 μm, the SS component concentration of the water to be treated is controlled so as to satisfy the relation of not less than 3000 mg / L. Or 2) the virus removal method. 前記処理槽は活性汚泥処理槽であると共に、前記活性汚泥処理槽からの汚泥引き抜き量又は引き抜いた汚泥を濃縮して前記活性汚泥処理槽に返送する汚泥返送量を調整することにより、前記被処理水のSS成分濃度をコントロールすることを特徴とする請求項1のウイルス除去方法。The treatment tank is an activated sludge treatment tank. The virus removal method according to claim 1, wherein the concentration of SS component in water is controlled. 前記処理槽内に活性炭、ゼオライト、多孔性担体、凝集材の添加物のうちの少なくとも1つを添加することを特徴とする請求項1〜6の何れか1のウイルス除去方法。The virus removal method according to any one of claims 1 to 6, wherein at least one of an additive of activated carbon, zeolite, a porous carrier, and a flocculant is added into the treatment tank. 被処理水中に存在するウイルスを膜濾過により除去するウイルス除去装置において、
前記被処理水から除去したいウイルスの大きさよりも大きな公称孔径の膜を備えた膜濾過器を前記被処理水中に浸漬させた処理槽と、
前記被処理水のSS成分濃度を測定する測定手段と、
前記測定手段の測定結果に基づいて前記被処理水のSS成分濃度を制御するSS濃度制御手段と、を備えたことを特徴とするウイルス除去装置。
In a virus removal device that removes the virus present in the water to be treated by membrane filtration,
A treatment tank in which a membrane filter having a membrane with a nominal pore size larger than the size of the virus to be removed from the treatment water is immersed in the treatment water,
Measuring means for measuring the SS component concentration of the water to be treated,
A virus removal apparatus comprising: an SS concentration control unit that controls an SS component concentration of the water to be treated based on a measurement result of the measurement unit.
被処理水中に存在するウイルスを膜濾過により除去するウイルス除去装置において、
前記被処理水から除去したいウイルスの大きさよりも大きな公称孔径の膜であって0.01μm以下の膜濾過器を前記被処理水中に浸漬させた第1の処理槽と、
膜の公称孔径が0.01μmを超えて0.1μm以下の膜濾過器を前記被処理水中に浸漬させた第2の処理槽と、
膜の公称孔径が0.1μmを超えて0.8μm以下の膜濾過器を前記被処理水中に浸漬させた第3の処理槽と、
前記被処理水の流入を前記第1〜第3の処理槽の何れかに切り換える切り換え手段と、
前記流入する被処理水のSS成分濃度を測定する測定手段と、
前記測定手段の測定結果に基づいて前記切り換え手段を制御するコントローラと、を備えたことを特徴とするウイルス除去装置。
In a virus removal device that removes the virus present in the water to be treated by membrane filtration,
A first treatment tank in which a membrane filter with a nominal pore size larger than the size of the virus to be removed from the treatment water and a membrane filter of 0.01 μm or less is immersed in the treatment water,
A second treatment tank in which a membrane filter having a nominal pore diameter of more than 0.01 μm and not more than 0.1 μm is immersed in the water to be treated;
A third treatment tank in which a membrane filter having a nominal pore diameter of more than 0.1 μm and not more than 0.8 μm is immersed in the water to be treated;
Switching means for switching the inflow of the water to be treated to any of the first to third treatment tanks;
Measuring means for measuring the SS component concentration of the incoming treated water,
A virus controller comprising: a controller that controls the switching unit based on a measurement result of the measurement unit.
活性炭、ゼオライト、多孔性担体、凝集材の添加物のうちの少なくとも1つを前記処理槽内に添加する添加手段を設けたことを特徴とする請求項8又は9のウイルス除去装置。The virus removal apparatus according to claim 8 or 9, further comprising an adding means for adding at least one of activated carbon, zeolite, a porous carrier, and an additive of an aggregating material into the treatment tank.
JP2003046831A 2003-02-25 2003-02-25 Virus removal method and apparatus Expired - Fee Related JP4066348B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003046831A JP4066348B2 (en) 2003-02-25 2003-02-25 Virus removal method and apparatus
CNB2003101010534A CN1323037C (en) 2003-02-25 2003-10-13 Method and apparatus for removing viruses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046831A JP4066348B2 (en) 2003-02-25 2003-02-25 Virus removal method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007207928A Division JP2007283304A (en) 2007-08-09 2007-08-09 Method and apparatus for removing virus

Publications (2)

Publication Number Publication Date
JP2004255250A true JP2004255250A (en) 2004-09-16
JP4066348B2 JP4066348B2 (en) 2008-03-26

Family

ID=33113234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046831A Expired - Fee Related JP4066348B2 (en) 2003-02-25 2003-02-25 Virus removal method and apparatus

Country Status (2)

Country Link
JP (1) JP4066348B2 (en)
CN (1) CN1323037C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160165A (en) * 2005-12-12 2007-06-28 Nippon Steel Corp Method for removing and decomposing virus in water

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013039538A (en) * 2011-08-18 2013-02-28 Hitachi Plant Technologies Ltd Wastewater treatment apparatus
CN110092433A (en) * 2019-04-24 2019-08-06 湖南大学 A method of it is leaked based on regulation activity charcoal medium with reducing pathogenic bacteria in drinking water

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2128296A1 (en) * 1993-12-22 1995-06-23 Peter John Degen Polyvinylidene fluoride membrane
DE29606929U1 (en) * 1996-04-17 1996-10-17 Kunze, Lutz, Dipl.-Ing. (FH), 88662 Überlingen Filter device for water purification
CN1168680C (en) * 2001-12-14 2004-09-29 清华大学 Process and equipment for filtering liquid mixture of bioreactor by dynamic membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160165A (en) * 2005-12-12 2007-06-28 Nippon Steel Corp Method for removing and decomposing virus in water

Also Published As

Publication number Publication date
JP4066348B2 (en) 2008-03-26
CN1524804A (en) 2004-09-01
CN1323037C (en) 2007-06-27

Similar Documents

Publication Publication Date Title
CA2614268C (en) Improved phosphorus removal system and process
JPWO2014034827A1 (en) Fresh water generation method
CN106946407A (en) A kind of process for reclaiming of crushed coal pressure gasifying wastewater biochemical water outlet
JP4413077B2 (en) Water treatment equipment
KR100278516B1 (en) Water Purifier
JP4129631B2 (en) Membrane treatment system for virus isolation
JP4066348B2 (en) Virus removal method and apparatus
JP2005058934A (en) Treatment method for biologically treated water-containing water
JP2007283304A (en) Method and apparatus for removing virus
KR101679603B1 (en) Water treatment apparatus using cleaning powder and submersed membranes module
JP2008307494A (en) Sewage treating method and sewage treatment apparatus
JP3552580B2 (en) Method and apparatus for treating human wastewater
JP2007203144A (en) Water treatment method and water treatment equipment
JP2007130567A (en) System for circulating to use water utilizing membrane
JP2001079561A (en) Method for cleaning river water
JP2001047089A (en) Method and apparatus for treating sewage
CN208234704U (en) A kind of assembled highly-effective waste water integrated equipment for wastewater treatment
JP3697938B2 (en) Wastewater treatment equipment
JP3565083B2 (en) Method and apparatus for treating human wastewater
JP2003170185A (en) Septic tank having filtration equipment and method of cleaning water to be treated by filter
JPH091187A (en) Waste water treating device and its operating method
RU2757589C1 (en) Method for purifying domestic waste water and station for implementation thereof
JP3229802B2 (en) Sewage treatment method and apparatus therefor
JP2000350988A (en) Method and apparatus for treating excretion sewage
JP6819878B2 (en) Treatment methods and equipment for organic sewage containing fibrous substances

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070508

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees