JP2004255031A - Control method of limb driving device - Google Patents

Control method of limb driving device Download PDF

Info

Publication number
JP2004255031A
JP2004255031A JP2003051152A JP2003051152A JP2004255031A JP 2004255031 A JP2004255031 A JP 2004255031A JP 2003051152 A JP2003051152 A JP 2003051152A JP 2003051152 A JP2003051152 A JP 2003051152A JP 2004255031 A JP2004255031 A JP 2004255031A
Authority
JP
Japan
Prior art keywords
limb
ankle
ankle joint
treatment pattern
driving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003051152A
Other languages
Japanese (ja)
Other versions
JP4455824B2 (en
Inventor
Shinji Murai
真二 村井
Shinji Okumura
信治 奥村
Toshiya Miyamura
俊哉 宮村
Akinori Zaitsu
昭憲 財津
Shinichiro Takasugi
紳一郎 高杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Yaskawa Electric Corp
Original Assignee
Kyushu University NUC
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Yaskawa Electric Corp filed Critical Kyushu University NUC
Priority to JP2003051152A priority Critical patent/JP4455824B2/en
Publication of JP2004255031A publication Critical patent/JP2004255031A/en
Application granted granted Critical
Publication of JP4455824B2 publication Critical patent/JP4455824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rehabilitation Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a limb driving device that realizes such rehabilitation therapy patterns as done in manipulation and can efficiently perform a rehabilitation. <P>SOLUTION: In a control method of a limb driving device having an arm having at least two degrees of freedom and an ankle shaft provided at the tip of the arm and operating the ankles of the limbs and driving the limbs, the left leg or the right leg to be driven is selected (S2), a therapeutic pattern of bending and extension of the groin and the knee of the limbs and dorsiflexion and plantar flexion of the ankle is selected (S3), at least one condition for the angle of the ankle shaft or torque of the ankle joint shaft is inputted (S4 and S5), track information for driving the limb in accordance with the therapeutic pattern and the condition is generated (S7) and ankle information driving the arm and the ankle shaft is generated from the track information (S8) and the limbs are driven on the basis of the ankle information. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、肢体の機能を回復するために用いられるリハビリテーション支援装置やトレーニング装置等の肢体駆動装置のうち、特に下肢を駆動するための下肢駆動装置に関するものであり、治療または訓練を効果的、かつ適切に行なえる肢体駆動装置の制御方法に関するものである。
【0002】
【従来の技術】
筋力の低下した肢体の機能を回復するために用いられるリハビリテーション支援装置やトレーニング装置には、下肢に無理な負荷をかけることなく、下肢を滑らかに動かすことができる下肢駆動装置がある。この従来例は、制御装置によって動作を制御され、大腿に力を加えて股関節を回転させる大腿用運動機構部と下腿に力を加えて膝関節を回転させる下腿用運動機構部とからなる下肢駆動装置であり、大腿用運動機構部は基台に据え付けられ、基台に内蔵するモータで駆動される第1の駆動軸と、該第1の駆動軸とリンク部材で連結され、第1の駆動軸の回転に従い同じ角度だけ機械的に逆回転する連動駆動軸と、該連動駆動軸とリンク部材で連結された回転自在のフリージョイントと、該フリージョイントに連結されたスライド機構と、該スライド機構に固定されて大腿を固定する大腿装着部と、からなり、下腿用運動機構部は基台に据え付けられ、基台に内蔵するモータで駆動される第2の駆動軸と、該第2の駆動軸とリンク部材で連結され、基台に内蔵するモータで前記第2の駆動軸とは独立して駆動される第3の駆動軸と、該第3の駆動軸とリンク部材で連結された回転自在のフリージョイントと、該フリージョイントに連結されたフリー回転部と、該フリー回転部に固定されて下腿を固定する下腿装着部と、から構成されている。
このような構成により、装着部で生じる位置ズレや下肢にかかる無理な負荷を吸収することができるため、滑らかに下肢を駆動することができ、膝関節および股関節の屈曲・伸展動作を実現している(例えば、特許文献1)。
【0003】
【特許文献1】
特開2001−162304号公報
【0004】
【発明が解決しようとする課題】
手技による下肢のリハビリ治療では、膝関節の屈曲を行う際、腓腹筋の緊張をゆるませた状態で、足関節の背屈を行い、その足関節の角度を保つと伴に、患者の足関節の負荷を監視しながら、患者への適切な負荷がかかるように、膝関節の伸展を行うことで、患者の下肢状態に応じた効率的な腓腹筋のストレッチが行われている。この治療の際、足関節の背屈を行う理由は、足関節の動作角度は、膝関節の角度などと関連し、腓腹筋の緊張がゆるんでいるときに背屈方向に大きくことができるからである。
ところが、これまでのリハビリ装置では、CPMのような直動的な軌道での動作であり、股・膝関節の屈曲・伸展動作や足関節の背屈・底屈動作に関する単独での動作は実現できていたが、股・膝関節の屈曲・伸展動作に連動した効果的な足関節の背屈・底屈動作が出来なかった。また、2自由度以上のアームを有するリハビリ装置においても、脚と足関節を同時に制御できるリハビリ装置はなかった。そのため、図7に示したような膝関節および股関節の単独動作(CPM)、足関節の単独動作や膝関節・股関節の連動動作(SLR)のレベルまでは、従来機器で実現していた。
【0005】
最近では、発症直後から早期リハビリテーションを行うことが患者の早期社会復帰に繋がると言った報告もなされており、集中治療室内などで治療または訓練が効果的、且つ適切に行える装置が、治療およびリハビリの現場では益々切望されている。
この発明は、上述のような従来技術が持つ問題点を解決するためになされたものであり、患者が治療または訓練を行う際、従来機器では実現できなかった効率的なリハビリ治療パターンである、脚と足関節を同時に角度制御を行いながら、予め設定された下肢の治療軌道で動作させるとともに、足関節における力制御を行うことで、股および膝関節の屈曲・伸展動作に同期しながら、予め設定された足関節の背屈・底屈動作の角度、またはトルクを制御することで、手技で行われているようなリハビリ治療パターンを実現し、効率的、且つ患者への適切な負荷を与えることができ、腓腹筋のストレッチが可能となる肢体駆動装置を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記問題点を解決するために、請求項1記載の肢体駆動装置の制御方法は、駆動する前記肢体の左脚または右脚を選択し、前記肢体の股及び膝の屈曲と伸展並びに前記肢体の足関節の背屈及び底屈の治療パターンを選択し、前記足関節軸の角度または前記足関節軸のトルクの少なくとも1つの条件を入力し、前記治療パターンと前記条件に応じた前記肢体を駆動する軌道情報を生成し、前記軌道情報から前記アームと前記足関節軸を駆動する足関節情報を生成し、前記足関節情報に基づいて前記肢体を駆動するものである。
請求項1記載の肢体駆動装置によれば、手技で行われているような下肢リハビリ治療パターンを実現し、効率的、且つ患者への適切な負荷を与えることができ、腓腹筋のストレッチが可能となる。
【0007】
請求項2記載の前記治療パターンは、前記足関軸の角度を制御するパターンと前記足関節軸のトルクを制御するパターンとを選択的に実行するパターンである。
請求項2記載の肢体駆動装置によれば、手技で行われているような下肢リハビリ治療パターンを実現し、効率的、且つ患者への適切な負荷を与えることができ、腓腹筋のストレッチが可能となり、さらに患者の下肢の状態に合った適切なリハビリ治療パターンが容易に選択でき、実行できる。
【0008】
請求項3記載の肢体駆動装置の制御方法は、少なくとも2自由度を有するアームと前記アーム先端に設けられ肢体の足関節を動作させる足関節軸とを備え、前記肢体を駆動する肢体駆動装置の制御方法において、駆動する前記肢体の左脚または右脚を選択し、前記肢体の股および膝の屈曲と伸展並びに前記肢体の足関節の背屈及び底屈の治療パターンAとし、前記肢体の膝を伸展位として維持しながら、前記肢体の股の屈曲と伸展並びに足関節の背屈及び底屈の治療パターンBとし、前記治療パターンAと前記治療パターンBの予め設定された実行サイクルを各々n、mとし、前記足関節軸の角度または前記足関節軸のトルクの少なくとも1つの条件を入力し、前記治療パターンA及び前記治療パターンBと前記条件に応じた前記肢体を駆動する軌道情報を生成し、前記軌道情報から前記アームと前記足関節軸を駆動する足関節情報を生成し、前記足関節情報に基づいて、前記治療パターンAを前記nサイクル実行し、前記治療パターンBを前記mサイクル実行し、前記治療パターンAと前記治療パターンBとを予め設定された回数繰り返し実行することを特徴とするものである。
請求項3記載の肢体駆動装置の制御方法によれば、手技で行われているような下肢リハビリ治療パターンを実現し、効率的、且つ患者への適切な負荷を与えることができ、腓腹筋のストレッチが可能となる。また、患者の下肢部の血流量の増加が期待できる。
【0009】
請求項4記載の前記実行サイクルの各々のn、mの比は、n:m=3:1である。
請求項4によれば、手技で行われているような下肢リハビリ治療パターンを実現し、効率的、且つ患者への適切な負荷を与えることができ、腓腹筋のストレッチが可能となる。また、患者の下肢部の血流量の更なる増加が期待できる。
【0010】
【発明の実施の形態】
この発明の実施の形態の肢体駆動装置の制御方法を説明する前に、肢体駆動装置の概略構成に関して、図1に基づいて説明する。図1は本発明の肢体駆動装置を示す図であり、図1(a)は概念図、図1(b)は一態様を示す斜視図である。図1(a)に示す肢体駆動装置100は、肢体駆動部10と台座部20とで構成されている。肢体駆動部10は治療または訓練を行う肢体101に装着する肢体装着部11と前記肢体装着部11を動作させる少なくとも2自由度を有するアーム13と足関節軸12を駆動する駆動部14により構成される肢体駆動機構部60と、肢体駆動機構部60を制御する肢体駆動制御部70からなる。肢体駆動制御部70は、治療を行う患者名や肢体101の左右いずれかの肢体を選択したり、予め準備された治療パターンを選択したり、選択された治療パターンに応じた肢体を駆動するための動作条件を入力する条件入力部17と、入力された動作条件に従い肢体の軌道情報を生成する軌道生成部16と、生成された軌道情報に基づき軌道指令を指令する動作制御部15とを有する。ここで説明する肢体駆動装置100は移動が可能であり、台座部20は、肢体駆動装置100自体を移動させるため移動手段30と、移動手段によって移動させた後、肢体駆動装置100自体を固定するための固定手段40と、肢体駆動部12を昇降するための昇降手段50で構成されている。
【0011】
また、肢体駆動機構部60において、動作制御部15にて生成されたアーム13の軌道情報、および足関節軸12の軌道情報をもとに、駆動部14にてアーム軸、および足関節軸12へのモータ駆動指令を指令することで動作している。その際、各軸は、位置・速度、及びインピーダンス制御されており、各軸のトルクも力センサやモータの電流値から実時間で検出できる構成になっている。足関節軸12の先端には、肢体装着部11が設けられている。
図1(b)では、ベッドに横たわった患者に対して、肢体駆動装置100を台座部20内にある移動手段30にてベッド脇まで移動させ、昇降手段50を用いて、患者の脚に合わせて高さを調整し、固定手段40にて固定する。その後、患者の脚を肢体装着部11に装着し、治療または訓練を行う一態様を斜視図として示している。
【0012】
このような肢体駆動装置において、この発明の第一の実施形態の動作について図2〜図5に基づいて説明する。
図2は、アーム及び足関節軸の動作にて、脚と足首の位置と姿勢を制御するためのフローチャートであり、図1の条件入力部17、軌道生成部16、動作制御部15、肢体駆動機構部60での処理内容を示している。まず、条件入力部17である操作部71から、患者名を入力し、治療または訓練を行いたい左右脚を選択する。その後、図5に示されているような治療パターンを選択する。患者名入力、左右脚選択、治療パターンが選択されると、予め設定されていた治療パターンに応じたパラメータが選択される。
【0013】
次に、足関節軸を動作させる治療パターンがある場合にのみ、各治療パターンに応じて、「足関節の角度を入力」、「足関節に掛かるトルク値を入力」、または「足関節の角度、および足関節に掛かるトルク値を入力」する。入力する際は、患者の足関節の拘縮状態に応じて、前記足関軸の角度を制御するパターンと前記足関節軸のトルクを制御するパターンとを選択的に実行できるようになっている。即ち、足関節の拘縮が進んでいる場合には、設定された足関節の角度を保持しながら、設定された足関節に掛かるトルク値以上を検出したら、動作を停止することが可能である。また、足関節の拘縮が比較的軽い場合は、設定された足関節の角度だけ動作しながら、設定された足関節に掛かるトルク値以上を検出したら、動作速度を減速したり、動作を停止することも可能である。
これらの入力値をもとに軌道生成部16では治療パターンに応じたアーム、及び足関節軸の軌道情報、及び足関節情報が生成させる。生成された軌道情報、および足関節情報をもとに、動作制御部15では、肢体駆動機構部60にアーム各軸、および足関節軸へ動作指令を行うことで、アーム各軸、および足関節軸への位置・速度・トルク制御が行われる。
【0014】
なお、肢体駆動機構部60では、前記動作指令中のアーム各軸、足関節軸モータの位置・速度、及びトルクが検出できるようになっているため、それらの状態量を実時間で動作制御部15にフィードバックすることで、選択された所望の治療パターンが実現可能となる。特に、脚と足関節を同時に角度制御を行いながら、予め設定された下肢の治療軌道で動作させるとともに、足関節における力制御を行うことができるので、股および膝関節の屈曲・伸展動作に同期しながら予め設定された足関節の背屈・底屈動作の角度、またはトルクを制御することができる。
ここで、軌道生成部16における軌道情報生成処理に関して、図3を用いて、さらに詳しく説明する。各治療パターンに応じて、「脚・足首の目標位置・姿勢を算出」し、「脚の制御位置を算出」し、「その制御位置での足首の角度を算出」し、「肢体位置計算」を行い、「アーム制御座標へ変換」し、「アーム各軸、および足関節軸の角度計算」を行っている。
【0015】
また、動作制御部15におけるアーム各軸、および足関節軸への動作指令処理に関して、図4を用いて、さらに詳しく説明する。軌道生成部16にて生成された軌道情報に基づいて、動作制御部15では、各軸へトルク指令を指令する実施例で説明を行う。尚、ここでは、アーム、および足関節軸へはトルク指令での制御を説明するが、アーム軸のモータへの指令の方法としては、位置指令でも構わない。まず、各軸目標角度を算出し、肢体駆動機構部60から送られてきた各軸の実時間での負荷トルク値を取得する。ここで、予め治療パターンに応じた足首負荷トルク設定値と実時間負荷トルク値を比較することで、各軸の必要な出力トルクを算出し、足関節軸トルク指令を肢体駆動機構部60内の駆動部14に出力するとともに、アーム各軸への動作指令が出力することで、各軸の動作制御が行われる。特に、足関節軸に関しては、一般的に用いられるインピーダンス制御で行っている。
【0016】
具体的な肢体の治療パターンを2種類について、図5に示した。前述した「足関節に掛かるトルク値を入力」、または「足関節の角度、および足関節に掛かるトルク値を入力」して行う治療パターンが『3関節1(尖足)』に該当する。また、前述した「足関節の角度を入力」して行う治療パターンが『3関節2(股関節)』に該当する。『3関節1(尖足)』パターンでのパラメータは、股・膝が伸展位での股関節の角度、足関節の角度およびトルク値、この姿勢での保持時間であり、股・膝が屈曲時での股関節の角度、足関節の角度およびトルク値、この姿勢での保持時間であり、股・膝が屈曲・伸展動作時に、「足関節に負荷を与えたり、または、足関節を底屈・背屈の動作を加えたり」することが可能となる。また、『3関節2(股関節)』パターンでのパラメータは、股・膝が伸展位での股関節の角度、足関節の角度、およびこの姿勢での保持時間であり、股・膝が屈曲時での股関節の角度、およびこの姿勢での保持時間であり、股・膝が屈曲・伸展動作時に、「足関節を底屈・背屈の動作を加えたり」することが可能となる。
【0017】
次に、請求項3記載の第二の実施形態の動作について図6に基づいて説明する。尚、肢体駆動装置の概略構成については、この発明の第一の実施形態で図1を用いて説明した内容と同じであり、またアーム及び足関節軸の動作に関する脚と足首の位置と姿勢を制御するためのフローチャート(図2)、軌道生成部における軌道情報生成処理に関する処理フロー(図3)、動作制御部におけるアーム各軸、および足関節軸への動作指令処理部に関する処理フロー(図4)、2種類の治療パターンを示す図(図5)に関しても同じである。
図6には、図5の下部に記載されている股・膝が屈曲・伸展動作時に、足関節を底屈・背屈の動作を加えたりすることが可能となる『3関節2(股関節)』:治療パターンAと、図6に示したような従来機器で実現していた足関節の単独動作や膝関節・股関節の連動動作が可能となる『SLR(ハムスト)』:治療パターンBを記述している。これらの2つの治療パターンA,Bを組み合わせて、即ち『3関節2(股関節)』:治療パターンAを予め設定されたnサイクル実行し、次に『SLR(ハムスト)』:治療パターンBを予め設定されたmサイクル実行し、更にこの組み合わせた治療パターンAと治療パターンBの繰り返しを予め設定された回数だけ、動作を行う治療パターンを『ブレンド モード』と称し、各治療パターンを模式的に表現したのが▲1▼から▲6▼の状態図である。
【0018】
例えば、治療パターンA:『3関節2(股関節)』では、▲1▼開始時(終了時)の下肢状態であり、予め設定された膝・股角度、膝・股角速度、足角度、足角速度で、▲2▼膝・股を屈曲及び足背屈動作を行う。その際、膝・股屈曲及び足背屈の状態で保持したまま動作を予め設定された時間休止する。その後予め設定された膝・股角度、膝・股角速度、足角度、足角速度で、▲3▼膝・股を伸展及び足底屈動作を行う。その際、▲2▼と同様に膝・股伸展及び足底屈の状態で保持したまま動作を予め設定された時間休止する。以上のように、治療パターンA:『3関節2(股関節)』は、
▲1▼→▲2▼→▲3▼→(▲2▼→▲3▼の繰返し)→▲1▼(または、▲3▼でも可)
の動作パターンとなる。
【0019】
また、治療パターンB:『SLR(ハムスト)』では、▲6▼開始時(終了時)の下肢状態であり、予め設定された股角度、股角速度、足角度、足角速度で、▲4▼膝伸展位のまま、股を屈曲及び足背屈動作を行う。その際、股屈曲及び足背屈の状態で保持したまま動作を予め設定された時間休止する。その後予め設定された股角度、股角速度、足角度、足角速度で、▲5▼膝伸展位のまま、股を伸展及び足底屈動作を行う。その際、▲4▼と同様に膝・股伸展及び足底屈の状態で保持したまま動作を予め設定された時間休止する。以上のように、治療パターンB:『SLR(ハムスト)』は、
▲6▼→▲4▼→▲5▼→(▲4▼→▲5▼の繰返し)→▲6▼(または、▲4▼でも可)
の動作パターンとなる。
以上のような治療パターンA、Bを組み合わせた『ブレンド モード』は、図6に記述しているように、1〜8の一連の治療動作パターンである。
【0020】
1.治療パターンA、Bの最初の状態である下肢を本装置に装着した状態が▲1▼また▲6▼から開始する。
2.▲2▼の動作である、予め設定された膝・股角度、膝・股角速度、足角度、足角速度で、膝・股を屈曲及び足背屈動作を行う。その際、膝・股屈曲及び足背屈の状態(図6記載の実線での下肢の姿勢)で保持したまま動作を予め設定された時間休止する。
3.▲3▼の動作である予め設定された膝・股角度、膝・股角速度、足角度、足角速度で、膝・股を伸展及び足底屈動作を行う。その際、膝・股伸展及び足底屈の状態(図6記載の実線での下肢の姿勢)で保持したまま動作を予め設定された時間休止する。
4.▲2▼と▲3▼の動作を予め設定された回数(nサイクル)、繰返し実行する。
5.▲4▼の動作である予め設定された股角度、股角速度、足角度、足角速度で、膝伸展位のまま、股を屈曲及び足背屈動作を行う。その際、股屈曲及び足背屈の状態(図6記載の実線での下肢の姿勢)で保持したまま動作を予め設定された時間休止する。
6.▲5▼の動作である予め設定された股角度、股角速度、足角度、足角速度で、膝伸展位のまま、股を伸展及び足底屈動作を行う。その際、膝・股伸展及び足底屈の状態(図6記載の実線での下肢の姿勢)で保持したまま動作を予め設定された時間休止する。
7.▲4▼と▲5▼の動作を予め設定された回数(mサイクル)、繰返し実行する。
8.予め設定された回数p回、前記4.及び前記7.を実行し、動作を終了する。
以上のような治療動作パターンが『ブレンド モード』である。
【0021】
このような『ブレンド モード』で、治療することで、他の治療パターンに比べて、患者の下肢の血流量が顕著に増大することが実験によって、確かめられている。この血流量とは、患者の外腸骨静脈の血流速度を測定している。他にも、足先の血流量(具体的には、ヘモグロビンの量にて測定)・皮膚温度の変化も同時に測定して、各種治療パターンに対する評価実験を行った。
また、『ブレンド モード』においても、前述の治療パターンAとBのサイクル比である前述のn:mが、3:1の際が、患者の下肢の血流量が顕著に増大し、更に患者の足先の皮膚温低下も比較的抑えられることができることも評価実験で確かめられた。但し、前述のn:mが、1:1、2:1、4:1、5:1、6:1と前述のn:mでも、患者の下肢の血流量が増加することも評価実験にて確かめられている。
【0022】
従って、請求項3記載の発明は、治療パターンA:『3関節2(股関節)』と、治療パターンB:『SLR(ハムスト)』を予め設定された各々の実行サイクルで交互に繰り返す治療パターンが本質であり、患者の下肢の血流量が顕著に増大し、更に患者の足先の皮膚温低下も比較的抑えられることができる作用があることも評価実験にて確かめられた。
【発明の効果】
請求項1記載の肢体駆動装置によれば、手技で行われているような下肢リハビリ治療パターンを実現し、効率的、且つ患者への適切な負荷を与えることができ、腓腹筋のストレッチが可能となる。
請求項2記載の肢体駆動装置によれば、手技で行われているような下肢リハビリ治療パターンを実現し、効率的、且つ患者への適切な負荷を与えることができ、腓腹筋のストレッチが可能となり、さらに患者の下肢の状態に合った適切なリハビリ治療パターンが容易に選択でき、実行できる。
請求項3記載の肢体駆動装置の制御方法によれば、手技で行われているような下肢リハビリ治療パターンを実現し、効率的、且つ患者への適切な負荷を与えることができ、腓腹筋のストレッチが可能となる。また、患者の下肢部の血流量の増加が期待できる。
請求項4によれば、手技で行われているような下肢リハビリ治療パターンを実現し、効率的、且つ患者への適切な負荷を与えることができ、腓腹筋のストレッチが可能となる。また、患者の下肢部の血流量の更なる増加が期待できる。
【図面の簡単な説明】
【図1】本発明の実施形態の肢体駆動装置を示す図であり、(a)が概念図、(b)が一態様を示す斜視図である。
【図2】本発明の実施形態の肢体駆動制御方法における処理フロー図を示す図である。
【図3】本発明の実施形態の肢体駆動制御方法であり、軌道生成部における軌道情報生成処理に関する処理フローを示す図である。
【図4】本発明の実施形態の肢体駆動制御方法であり、動作制御部におけるアーム各軸、および足関節軸への動作指令処理に関する処理フローを示す図である。
【図5】本発明の実施形態の肢体駆動装置で行われる2種類の治療パターンを示す図である。
【図6】本発明の実施形態の肢体駆動装置で行われる2種類の治療パターンを組み合わせて行う治療パターンを示す図である。
【図7】従来の肢体駆動装置で行われている3種類の治療パターンを示す図である。
【符号の説明】
100 肢体駆動装置
101 肢体
10 肢体駆動部
11 肢体装着部
12 足関節軸
13 アーム部
14 駆動部
15 動作制御部
16 軌道生成部
17 条件入力部
20 台座部
30 移動手段
40 固定手段
50 昇降手段
60 肢体駆動機構部
70 肢体駆動制御部
71 操作部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is a limb driving device such as a rehabilitation support device or a training device used for restoring the function of the limb, particularly to a lower limb driving device for driving the lower limb, effectively treating or training, The present invention relates to a method of controlling a limb driving device that can be appropriately performed.
[0002]
[Prior art]
A rehabilitation support device and a training device used for restoring the function of a limb with reduced muscular strength include a lower limb driving device that can smoothly move the lower limb without imposing an excessive load on the lower limb. In this conventional example, the operation of the lower limb is controlled by a control device and includes a motion mechanism for the thigh that applies force to the thigh to rotate the hip joint and a motion mechanism for the lower leg that applies force to the lower leg to rotate the knee joint. A first drive shaft mounted on a base, driven by a motor built in the base, connected to the first drive shaft by a link member, and a first drive An interlocking drive shaft mechanically reversely rotated by the same angle as the shaft rotates, a rotatable free joint connected to the interlocking drive shaft by a link member, a slide mechanism connected to the free joint, and the slide mechanism A thigh mounting portion fixed to the thigh and fixing the thigh, the lower leg exercise mechanism is mounted on the base, and a second drive shaft driven by a motor built in the base, the second drive shaft; Connected with shaft and link member A third drive shaft driven independently of the second drive shaft by a motor built in the base, a rotatable free joint connected to the third drive shaft by a link member, It is composed of a free rotation part connected to a free joint, and a lower leg mounting part fixed to the free rotation part and fixing the lower leg.
With such a configuration, it is possible to absorb a position shift occurring in the mounting portion and an unreasonable load on the lower limb, so that the lower limb can be smoothly driven, and the knee joint and the hip joint can be bent and extended. (For example, Patent Document 1).
[0003]
[Patent Document 1]
JP 2001-162304 A
[Problems to be solved by the invention]
In the rehabilitation treatment of the lower limbs by the procedure, when flexing the knee joint, the ankle joint is dorsiflexed with the tension of the gastrocnemius muscle relaxed, and the angle of the ankle joint is maintained, and the patient's ankle joint is maintained. While monitoring the load, the knee joint is extended so that an appropriate load is applied to the patient, whereby efficient stretching of the gastrocnemius muscle according to the patient's lower limb condition is performed. The reason for performing ankle dorsiflexion during this treatment is that the ankle movement angle is related to the knee joint angle, etc., and can be increased in the dorsiflexion direction when the gastrocnemius muscle is loosened. is there.
However, conventional rehabilitation devices operate on a linear motion track such as a CPM, and are capable of independently operating flexion and extension of the hip and knee joints and dorsiflexion and plantar flexion of the ankle joint. Although she could, she could not effectively perform the dorsiflexion and plantarflexion of the ankle joint in conjunction with the flexion and extension of the hip and knee joints. Further, even in a rehabilitation device having an arm having two or more degrees of freedom, there is no rehabilitation device capable of simultaneously controlling the leg and the ankle joint. Therefore, up to the level of the independent motion of the knee joint and the hip joint (CPM), the independent motion of the ankle joint, and the linked operation of the knee joint and the hip joint (SLR) as shown in FIG.
[0005]
Recently, it has been reported that early rehabilitation immediately after onset leads to early rehabilitation of patients, and a device that can perform treatment or training effectively and appropriately in an intensive care unit or the like has been developed. There is a growing need in the field.
The present invention has been made in order to solve the problems of the prior art as described above, and when the patient performs treatment or training, it is an efficient rehabilitation treatment pattern that could not be realized with conventional devices. While simultaneously controlling the angle of the leg and the ankle joint, it is operated at a preset therapeutic trajectory of the lower limb, and by controlling the force at the ankle joint, it is synchronized with the flexion / extension operation of the hip and the knee joint in advance. By controlling the set dorsiflexion / plantar flexion angle or torque of the ankle joint, a rehabilitation treatment pattern as performed by a procedure is realized, and an efficient and appropriate load is applied to the patient. It is an object of the present invention to provide a limb driving device capable of stretching a gastrocnemius muscle.
[0006]
[Means for Solving the Problems]
In order to solve the above problem, the control method of the limb driving device according to claim 1 selects the left leg or the right leg of the limb to be driven, and flexes and extends the crotch and the knee of the limb and the limb. Select a treatment pattern for dorsiflexion and plantar flexion of the ankle joint, input at least one condition of the angle of the ankle joint axis or the torque of the ankle joint axis, and drive the limb according to the treatment pattern and the condition Trajectory information to be generated, ankle joint information for driving the arm and the ankle joint axis to be generated from the trajectory information, and the limb to be driven based on the ankle joint information.
According to the limb driving device according to claim 1, a lower limb rehabilitation treatment pattern as performed by a technique is realized, an efficient and appropriate load can be applied to the patient, and the gastrocnemius muscle can be stretched. Become.
[0007]
The treatment pattern according to claim 2 is a pattern for selectively executing a pattern for controlling the angle of the foot-related axis and a pattern for controlling the torque of the ankle joint axis.
According to the limb driving device according to claim 2, a lower limb rehabilitation treatment pattern as performed by a technique is realized, an efficient and appropriate load can be applied to the patient, and the gastrocnemius muscle can be stretched. Further, an appropriate rehabilitation treatment pattern suitable for the patient's lower limb condition can be easily selected and executed.
[0008]
The control method of a limb driving device according to claim 3, comprising: an arm having at least two degrees of freedom; and an ankle joint shaft provided at a tip of the arm and operating an ankle joint of the limb, and driving the limb. In the control method, the left leg or the right leg of the limb to be driven is selected, and a treatment pattern A for flexion and extension of the crotch and the knee of the limb and dorsiflexion and plantar flexion of the ankle joint of the limb is set. Is maintained as the extension position, the treatment pattern B for the flexion and extension of the hips of the limb and the dorsiflexion and plantar flexion of the ankle joint is set, and the preset execution cycles of the treatment pattern A and the treatment pattern B are each set to n. , M, and input at least one condition of the angle of the ankle joint axis or the torque of the ankle joint axis, and drive the limb according to the treatment pattern A and the treatment pattern B and the condition. And generating ankle information for driving the arm and the ankle axis from the trajectory information, executing the n-th cycle of the treatment pattern A based on the ankle information, B is executed for the m cycles, and the treatment pattern A and the treatment pattern B are repeatedly executed a preset number of times.
According to the control method of the limb driving device according to the third aspect, it is possible to realize a lower limb rehabilitation treatment pattern as performed by a procedure, efficiently and appropriately apply a load to the patient, and stretch the gastrocnemius muscle. Becomes possible. In addition, an increase in blood flow in the lower limbs of the patient can be expected.
[0009]
The ratio of n and m in each of the execution cycles according to claim 4 is n: m = 3: 1.
According to the fourth aspect, a lower limb rehabilitation treatment pattern as performed by a procedure is realized, an efficient and appropriate load can be applied to a patient, and stretching of the gastrocnemius muscle becomes possible. Further, a further increase in blood flow in the lower limbs of the patient can be expected.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Before describing a control method of a limb driving device according to an embodiment of the present invention, a schematic configuration of the limb driving device will be described with reference to FIG. FIG. 1 is a diagram showing a limb driving device according to the present invention. FIG. 1A is a conceptual diagram, and FIG. 1B is a perspective view showing one embodiment. The limb driving device 100 shown in FIG. 1A includes a limb driving unit 10 and a pedestal unit 20. The limb driving unit 10 includes a limb mounting unit 11 mounted on a limb 101 for performing treatment or training, an arm 13 having at least two degrees of freedom for operating the limb mounting unit 11, and a driving unit 14 for driving an ankle joint shaft 12. And a limb drive control unit 70 for controlling the limb drive mechanism 60. The limb drive control unit 70 selects a patient name to be treated or one of the right and left limbs of the limb 101, selects a previously prepared treatment pattern, and drives a limb according to the selected treatment pattern. A condition input unit 17 for inputting the operation condition of the above, a trajectory generation unit 16 for generating trajectory information of the limb according to the input operation condition, and an operation control unit 15 for instructing a trajectory command based on the generated trajectory information. . The limb driving device 100 described here is movable, and the pedestal portion 20 fixes the limb driving device 100 itself after being moved by the moving means 30 for moving the limb driving device 100 itself and the moving means. And a lifting means 50 for lifting and lowering the limb driving unit 12.
[0011]
Further, in the limb driving mechanism 60, the arm 14 and the ankle joint 12 are driven by the driving unit 14 based on the trajectory information of the arm 13 and the trajectory information of the ankle joint 12 generated by the motion control unit 15. It operates by instructing the motor drive command. At this time, the position and speed of each axis and the impedance are controlled, and the torque of each axis can be detected in real time from the force sensor and the current value of the motor. A limb attachment part 11 is provided at a tip of the ankle joint shaft 12.
In FIG. 1B, for a patient lying on the bed, the limb driving device 100 is moved to the side of the bed by the moving means 30 in the pedestal portion 20, and is adjusted to the patient's leg by using the elevating means 50. The height is adjusted and fixed by fixing means 40. Thereafter, one aspect in which a patient's leg is attached to the limb attachment unit 11 to perform treatment or training is shown as a perspective view.
[0012]
In such a limb driving device, the operation of the first embodiment of the present invention will be described with reference to FIGS.
FIG. 2 is a flowchart for controlling the positions and postures of the legs and ankles by the operation of the arm and the ankle joint. The condition input unit 17, the trajectory generation unit 16, the operation control unit 15, and the limb drive shown in FIG. 3 shows the processing contents in the mechanism section 60. First, the patient's name is input from the operation unit 71, which is the condition input unit 17, and the left and right legs on which treatment or training is desired are selected. After that, a treatment pattern as shown in FIG. 5 is selected. When a patient name input, left and right leg selection, and a treatment pattern are selected, parameters corresponding to a preset treatment pattern are selected.
[0013]
Next, only when there is a treatment pattern for operating the ankle joint axis, according to each treatment pattern, “input an ankle joint angle”, “input a torque value applied to the ankle joint”, or “input an ankle joint angle”. , And the torque value applied to the ankle joint ”. When inputting, a pattern for controlling the angle of the ankle joint axis and a pattern for controlling the torque of the ankle joint axis can be selectively executed according to the contracted state of the ankle joint of the patient. . In other words, when the contraction of the ankle is advanced, it is possible to stop the operation when the set angle of the ankle is detected and the torque applied to the set ankle or more is detected while maintaining the set angle of the ankle. . If the contraction of the ankle is relatively light, the operation speed is reduced or the operation is stopped if the torque value applied to the set ankle is detected while operating at the set angle of the ankle. It is also possible.
Based on these input values, the trajectory generation unit 16 generates trajectory information of the arm and ankle joint axis and ankle joint information according to the treatment pattern. Based on the generated trajectory information and ankle joint information, the operation control unit 15 issues an operation command to the limb drive mechanism unit 60 to each axis of the arm and the axis of the ankle joint, so that each axis of the arm and the ankle joint Position / speed / torque control for the shaft is performed.
[0014]
The limb drive mechanism 60 can detect the position, speed, and torque of each axis of the arm and the ankle axis motor during the operation command. The feedback to 15 makes it possible to realize the selected desired treatment pattern. In particular, since the leg and ankle joints can be operated at the preset therapeutic trajectory of the lower limb while controlling the angle at the same time, and the force control at the ankle joint can be performed, it is synchronized with the flexion and extension of the hip and knee joints In this way, it is possible to control a preset angle of the dorsiflexion / plantar flexion operation or torque of the ankle joint.
Here, the trajectory information generation processing in the trajectory generation unit 16 will be described in more detail with reference to FIG. According to each treatment pattern, "calculate the target position / posture of the leg / ankle", "calculate the control position of the leg", "calculate the angle of the ankle at the control position", and "calculate the limb position". Is performed, and “conversion to arm control coordinates” is performed, and “calculation of angles of each arm axis and ankle joint axis” is performed.
[0015]
Further, the operation command processing for each axis of the arm and the axis of the ankle joint in the operation control unit 15 will be described in more detail with reference to FIG. An example will be described in which the operation control unit 15 issues a torque command to each axis based on the trajectory information generated by the trajectory generation unit 16. Here, the control of the arm and the ankle joint axis by a torque command will be described, but the command of the arm axis motor may be a position command. First, each axis target angle is calculated, and the real-time load torque value of each axis sent from the limb drive mechanism unit 60 is obtained. Here, the required output torque of each axis is calculated by comparing the ankle load torque set value according to the treatment pattern and the real-time load torque value in advance, and the ankle axis torque command is output from the limb drive mechanism unit 60. By outputting to the drive unit 14 and outputting an operation command to each axis of the arm, the operation of each axis is controlled. In particular, the ankle axis is controlled by generally used impedance control.
[0016]
FIG. 5 shows two types of specific limb treatment patterns. The above-described treatment pattern performed by “inputting the torque value applied to the ankle joint” or “inputting the angle of the ankle joint and the torque value applied to the ankle joint” corresponds to “three joints 1 (cusp)”. The treatment pattern performed by “inputting the angle of the ankle joint” described above corresponds to “3 joints 2 (hip joint)”. The parameters for the “3 joints 1 (tip foot)” pattern are the angle of the hip joint, the angle and torque value of the ankle joint when the hip and knee are in the extended position, and the holding time in this posture. The angle of the hip joint, the angle and torque value of the ankle joint, and the holding time in this position.When the hip / knee flexes / extends, `` loads the ankle joint, Or add dorsiflexion movements. The parameters in the “3 joint 2 (hip joint)” pattern are the angle of the hip joint and the angle of the ankle joint when the hip / knee is in the extended position, and the holding time in this posture. Angle of the hip joint and the holding time in this posture, and it becomes possible to "add a plantar flexion / dorsiflexion motion to the ankle joint" when the hip / knee flexes / extends.
[0017]
Next, the operation of the second embodiment will be described with reference to FIG. Note that the schematic configuration of the limb driving device is the same as the content described with reference to FIG. 1 in the first embodiment of the present invention, and the positions and postures of the legs and ankles regarding the movement of the arm and the ankle joint axis are described. Flow chart for control (FIG. 2), processing flow relating to trajectory information generation processing in the trajectory generation unit (FIG. 3), processing flow relating to an operation command processing unit for each arm axis and ankle joint axis in the operation control unit (FIG. 4) The same applies to the figure (FIG. 5) showing two types of treatment patterns.
FIG. 6 shows that "3 joint 2 (hip joint)" enables the ankle to perform plantar flexion and dorsiflexion when the hip and knee shown in the lower part of FIG. 5 bend and extend. ": Treatment pattern A and" SLR (Hamst) ": Treatment pattern B that enables independent motion of the ankle joint and interlocking motion of the knee and hip joints realized by the conventional device as shown in FIG. are doing. These two treatment patterns A and B are combined, that is, "3 joints 2 (hip joint)": The treatment pattern A is executed for a predetermined n cycles, and then "SLR (hamst)": The treatment pattern B is previously determined. The set m-cycles are executed, and the treatment pattern in which the combination of the treatment pattern A and the treatment pattern B is repeated a preset number of times is referred to as a “blend mode”, and each treatment pattern is schematically represented. This is the state diagram from (1) to (6).
[0018]
For example, in treatment pattern A: “3 joints 2 (hip joint)”, the lower limb state at the time of (1) start (at the end) is a preset knee / hip angle, knee / hip angular velocity, foot angle, foot angular velocity. (2) The knee and crotch are bent and the dorsiflexion of the foot is performed. At this time, the operation is paused for a preset time while maintaining the knee / hip flexion and dorsiflexion. Thereafter, (3) the knee and the crotch are extended and the plantar flexion is performed at the preset knee and crotch angle, knee and crotch angular velocity, foot angle, and foot angular velocity. At this time, the operation is paused for a preset time while maintaining the knee / hip extension and plantar flexion as in (2). As described above, treatment pattern A: “3 joints 2 (hip joint)”
(1) → (2) → (3) → (Repeat (2) → (3)) → (1) (or (3) is acceptable)
Operation pattern.
[0019]
In the treatment pattern B: “SLR (Hamst)”, the lower limb state at the time of (6) start (at the end), and the pre-set crotch angle, crotch angle speed, foot angle, foot angle speed, and (4) knee The crotch is flexed and the dorsiflexion is performed in the extended position. At that time, the operation is paused for a preset time while maintaining the hip flexion and dorsiflexion. Thereafter, at the previously set crotch angle, crotch angle speed, foot angle, and foot angle speed, (5) the crotch is extended and the plantar flexion is performed while the knee is in the extended position. At this time, the operation is paused for a preset time while maintaining the knee / hip extension and plantar flexion as in (4). As described above, treatment pattern B: “SLR (Hamst)”
(6) → (4) → (5) → (Repeat (4) → (5)) → (6) (or (4) is acceptable)
Operation pattern.
The “blend mode” in which the above-described treatment patterns A and B are combined is a series of treatment operation patterns 1 to 8 as described in FIG.
[0020]
1. The state in which the lower limbs, which are the first states of the treatment patterns A and B, are attached to the apparatus starts from (1) and (6).
2. The knee and crotch and leg dorsiflexion motions are performed at the preset knee and crotch angle, knee and crotch angle speed, foot angle, and foot angle speed, which are the operations of (2). At this time, the operation is paused for a preset time while maintaining the knee / hip flexion and leg dorsiflexion (the posture of the lower limb indicated by the solid line in FIG. 6).
3. The knee and crotch are extended and the plantar flexion is performed at the preset knee and crotch angle, knee and crotch angle speed, foot angle and foot angle speed, which are the operations of (3). At this time, the operation is paused for a preset time while maintaining the knee / hip extension and plantar flexion state (the posture of the lower limb indicated by the solid line in FIG. 6).
4. The operations of (2) and (3) are repeatedly executed a preset number of times (n cycles).
5. With the preset crotch angle, crotch angular velocity, foot angle, and foot angular velocity, which is the operation of (4), the crotch is bent and the dorsiflexion is performed while the knee is in the extended position. At that time, the operation is paused for a preset time while maintaining the hip flexion and the dorsiflexion of the legs (the posture of the lower limb in the solid line in FIG. 6).
6. At the preset crotch angle, crotch angular velocity, foot angle, and foot angular velocity, which is the operation (5), the crotch is extended and the plantar flexion is performed while the knee is in the extended position. At this time, the operation is paused for a preset time while maintaining the knee / hip extension and plantar flexion state (the posture of the lower limb indicated by the solid line in FIG. 6).
7. The operations (4) and (5) are repeatedly executed a predetermined number of times (m cycles).
8. 3. The preset number of times p, 4. And 7. And terminate the operation.
The treatment operation pattern as described above is the “blend mode”.
[0021]
Experiments have shown that treatment in such a “blend mode” significantly increases the blood flow of the patient's lower limbs as compared to other treatment patterns. The blood flow rate is a measurement of the blood flow velocity in the external iliac vein of the patient. In addition, the blood flow volume at the toes (specifically, measured by the amount of hemoglobin) and the change in skin temperature were measured at the same time, and evaluation experiments for various treatment patterns were performed.
Also, in the “blend mode”, when the above-mentioned n: m, which is the cycle ratio between the treatment patterns A and B, is 3: 1, the blood flow to the lower limb of the patient significantly increases, and Evaluation experiments also confirmed that the skin temperature at the toes could be relatively suppressed. However, even when the above-mentioned n: m is 1: 1, 2: 1, 4: 1, 5: 1, and 6: 1, the blood flow of the lower leg of the patient is also increased. Has been confirmed.
[0022]
Therefore, according to the third aspect of the present invention, the treatment pattern A: “3 joints 2 (hip joint)” and the treatment pattern B: “SLR (hamst)” are alternately repeated in each of the preset execution cycles. It was confirmed in the evaluation experiment that the essential effect was that blood flow to the lower limb of the patient was significantly increased, and that the skin temperature at the toes of the patient was relatively suppressed from decreasing.
【The invention's effect】
According to the limb driving device according to claim 1, a lower limb rehabilitation treatment pattern as performed by a technique is realized, an efficient and appropriate load can be applied to the patient, and the gastrocnemius muscle can be stretched. Become.
According to the limb driving device according to claim 2, a lower limb rehabilitation treatment pattern as performed by a technique is realized, an efficient and appropriate load can be applied to the patient, and the gastrocnemius muscle can be stretched. Further, an appropriate rehabilitation treatment pattern suitable for the patient's lower limb condition can be easily selected and executed.
According to the control method of the limb driving device according to the third aspect, it is possible to realize a lower limb rehabilitation treatment pattern as performed by a procedure, efficiently and appropriately apply a load to the patient, and stretch the gastrocnemius muscle. Becomes possible. In addition, an increase in blood flow in the lower limbs of the patient can be expected.
According to the fourth aspect, a lower limb rehabilitation treatment pattern as performed by a procedure is realized, an efficient and appropriate load can be applied to a patient, and stretching of the gastrocnemius muscle becomes possible. Further, a further increase in blood flow in the lower limbs of the patient can be expected.
[Brief description of the drawings]
FIG. 1 is a view showing a limb driving device according to an embodiment of the present invention, wherein (a) is a conceptual diagram and (b) is a perspective view showing one embodiment.
FIG. 2 is a diagram showing a processing flow diagram in a limb drive control method according to an embodiment of the present invention.
FIG. 3 is a diagram illustrating a processing flow regarding a trajectory information generation process in a trajectory generation unit, which is the limb drive control method according to the embodiment of the present invention.
FIG. 4 is a diagram illustrating a processing flow relating to an operation command processing for each axis of the arm and an axis of the ankle joint in the operation control unit, which is the limb drive control method according to the embodiment of the present invention.
FIG. 5 is a diagram showing two types of treatment patterns performed by the limb driving device according to the embodiment of the present invention.
FIG. 6 is a diagram illustrating a treatment pattern performed by combining two types of treatment patterns performed by the limb driving device according to the embodiment of the present invention.
FIG. 7 is a diagram showing three types of treatment patterns performed by a conventional limb driving device.
[Explanation of symbols]
REFERENCE SIGNS LIST 100 limb driving device 101 limb 10 limb driving section 11 limb mounting section 12 ankle joint axis 13 arm section 14 driving section 15 motion control section 16 trajectory generation section 17 condition input section 20 pedestal section 30 moving means 40 fixing means 50 elevating means 60 limbs Drive mechanism 70 Limb drive controller 71 Operation unit

Claims (4)

少なくとも2自由度を有するアームと前記アーム先端に設けられ肢体の足関節を動作させる足関節軸とを備え、前記肢体を駆動する肢体駆動装置の制御方法において、
駆動する前記肢体の左脚または右脚を選択し、
前記肢体の股及び膝の屈曲と伸展並びに前記肢体の足関節の背屈及び底屈の治療パターンを選択し、
前記足関節軸の角度または前記足関節軸のトルクの少なくとも1つの条件を入力し、
前記治療パターンと前記条件に応じた前記肢体を駆動する軌道情報を生成し、
前記軌道情報から前記アームと前記足関節軸を駆動する足関節情報を生成し、
前記足関節情報に基づいて前記肢体を駆動することを特徴とする肢体駆動装置の制御方法。
A control method of a limb driving device that includes an arm having at least two degrees of freedom and an ankle joint axis provided at a tip of the arm to operate an ankle joint of a limb, and that drives the limb,
Select the left or right leg of the limb to be driven,
Select the treatment pattern of flexion and extension of the hips and knees of the limb and dorsiflexion and plantar flexion of the ankle joint of the limb,
Inputting at least one condition of the angle of the ankle joint axis or the torque of the ankle joint axis;
Generate trajectory information for driving the limb according to the treatment pattern and the condition,
Generating ankle information for driving the arm and the ankle axis from the trajectory information,
A method of controlling a limb driving device, wherein the limb is driven based on the ankle joint information.
前記治療パターンは、前記足関節軸の角度を制御するパターンと前記足関節軸のトルクを制御するパターンとを選択的に実行するパターンであることを特徴とする請求項1記載の肢体駆動装置の制御方法。The limb driving device according to claim 1, wherein the treatment pattern is a pattern that selectively executes a pattern that controls an angle of the ankle joint axis and a pattern that controls a torque of the ankle joint axis. Control method. 少なくとも2自由度を有するアームと前記アーム先端に設けられ肢体の足関節を動作させる足関節軸とを備え、前記肢体を駆動する肢体駆動装置の制御方法において、
駆動する前記肢体の左脚または右脚を選択し、
前記肢体の股および膝の屈曲と伸展並びに前記肢体の足関節の背屈及び底屈の治療パターンAとし、前記肢体の膝を伸展位として維持しながら、前記肢体の股の屈曲と伸展並びに足関節の背屈及び底屈の治療パターンBとし、前記治療パターンAと前記治療パターンBの予め設定された実行サイクルを各々n、mとし、前記足関節軸の角度または前記足関節軸のトルクの少なくとも1つの条件を入力し、
前記治療パターンA及び前記治療パターンBと前記条件に応じた前記肢体を駆動する軌道情報を生成し、
前記軌道情報から前記アームと前記足関節軸を駆動する足関節情報を生成し、
前記足関節情報に基づいて、前記治療パターンAを前記nサイクル実行し、
前記治療パターンBを前記mサイクル実行し、
前記治療パターンAと前記治療パターンBとを予め設定された回数繰り返し実行することを特徴とする肢体駆動装置の制御方法。
A control method of a limb driving device that includes an arm having at least two degrees of freedom and an ankle joint axis provided at a tip of the arm to operate an ankle joint of a limb, and that drives the limb,
Select the left or right leg of the limb to be driven,
The treatment pattern A for flexion and extension of the hips and knees of the limb and dorsiflexion and plantar flexion of the ankle joints of the limb, and while maintaining the knee of the limb in the extension position, flexion and extension of the hips of the limb and foot A treatment pattern B for dorsiflexion and plantarflexion of a joint, and a predetermined execution cycle of the treatment pattern A and the treatment pattern B are n and m, respectively, and an angle of the ankle joint axis or a torque of the ankle joint axis. Enter at least one condition,
Generating trajectory information for driving the limb according to the treatment pattern A and the treatment pattern B and the condition,
Generating ankle information for driving the arm and the ankle axis from the trajectory information,
Executing the treatment pattern A for the n cycles based on the ankle joint information;
Executing the treatment pattern B for the m cycles;
A method for controlling a limb driving device, wherein the treatment pattern A and the treatment pattern B are repeatedly executed a preset number of times.
前記実行サイクルの各々のn、mの比は、n:m=3:1であることを特徴とする請求項3記載の肢体駆動装置の制御方法。4. The control method for a limb driving device according to claim 3, wherein the ratio of n and m in each of the execution cycles is n: m = 3: 1.
JP2003051152A 2003-02-27 2003-02-27 Control method for limb body drive device Expired - Lifetime JP4455824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003051152A JP4455824B2 (en) 2003-02-27 2003-02-27 Control method for limb body drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003051152A JP4455824B2 (en) 2003-02-27 2003-02-27 Control method for limb body drive device

Publications (2)

Publication Number Publication Date
JP2004255031A true JP2004255031A (en) 2004-09-16
JP4455824B2 JP4455824B2 (en) 2010-04-21

Family

ID=33116368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003051152A Expired - Lifetime JP4455824B2 (en) 2003-02-27 2003-02-27 Control method for limb body drive device

Country Status (1)

Country Link
JP (1) JP4455824B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109172281A (en) * 2018-10-17 2019-01-11 苏州帝维达生物科技有限公司 A kind of lower limb rehabilitation robot of seven freedom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109172281A (en) * 2018-10-17 2019-01-11 苏州帝维达生物科技有限公司 A kind of lower limb rehabilitation robot of seven freedom
CN109172281B (en) * 2018-10-17 2024-03-19 苏州帝维达生物科技有限公司 Seven-degree-of-freedom lower limb rehabilitation robot

Also Published As

Publication number Publication date
JP4455824B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
KR100841177B1 (en) A walking training robot system having upper limbs linking device
Pietrusinski et al. Robotic gait rehabilitation trainer
Hesse et al. Machines to support motor rehabilitation after stroke: 10 years of experience in Berlin.
JP4168242B2 (en) Rehabilitation support device
WO2003018140A1 (en) Mechanism for manipulating and measuring legs during stepping
KR20140124260A (en) Training device for legs
JP4085422B2 (en) Joint drive device
Homma et al. Study of a wire-driven leg rehabilitation system
CN113397914A (en) Lower limb rehabilitation training and treating device
Kagawa et al. Gait pattern generation for a power-assist device of paraplegic gait
Munawar et al. AssistOn-Gait: An overground gait trainer with an active pelvis-hip exoskeleton
CN106344332B (en) A kind of robot
JP2005211328A (en) Walking training apparatus
JP2009225810A (en) Electrical muscle stimulation method and muscle training device
JP4737707B2 (en) Articulation device
JP2003062020A (en) Body driving device for recovering walking function
JP2003199799A (en) Limb driving device for recovering function of walking
JP2017012502A (en) Hemiplegia exercise function recovery training device and program
Sasanuma et al. Socks type actuator that provides exercise for ankle and toes from the medical point of view
JP7287661B2 (en) Passive motion device
WO2009150854A1 (en) Device for training range of joint motion
JP2003225264A (en) Limb driving apparatus
JP5494011B2 (en) Operation support system
KR101555999B1 (en) Control method of Training robot for leg rehabilitation
JP4455824B2 (en) Control method for limb body drive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4455824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term