JP2004254668A - Method for producing pha - Google Patents

Method for producing pha Download PDF

Info

Publication number
JP2004254668A
JP2004254668A JP2003052226A JP2003052226A JP2004254668A JP 2004254668 A JP2004254668 A JP 2004254668A JP 2003052226 A JP2003052226 A JP 2003052226A JP 2003052226 A JP2003052226 A JP 2003052226A JP 2004254668 A JP2004254668 A JP 2004254668A
Authority
JP
Japan
Prior art keywords
pha
cells
oil
producing
carbon source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003052226A
Other languages
Japanese (ja)
Inventor
Yoshiharu Kimura
良晴 木村
Ikuo Taniguchi
育雄 谷口
Kenji Kimura
顕治 木村
Yasumi Nishikawa
康己 西河
Sadanobu Kunimatsu
貞伸 国松
Hiroshi Sato
宏 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TENMATES KK
Original Assignee
TENMATES KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TENMATES KK filed Critical TENMATES KK
Priority to JP2003052226A priority Critical patent/JP2004254668A/en
Publication of JP2004254668A publication Critical patent/JP2004254668A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a PHA (polyhydroxyalkanoate), capable of reducing a plant construction cost and running cost. <P>SOLUTION: This method for producing the PHA is provided by mixing hydrogen bacteria with waste edible oil as a carbon source and producing the PHA in the cellular bodies of the hydrogen bacteria, then collecting the cells, performing the lysis of the cells by mixing the collected cells with an aqueous solution of hypochloric acid and then isolating the PHA. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、PHAの製造方法に関する。
【0002】
【従来の技術】
現在、一般家庭で年間約42万トンの食用油が消費されているが、食品産業や外食産業と異なり、そのほとんどが回収されることなく可燃ゴミとして廃棄されている。そして、ゴミ焼却の際に大量の熱量と二酸化炭素(CO )を発生するため、地球温暖化や酸性雨の原因として、また、廃食用油の一部は下水に流れて河川や湖沼・海洋汚染の原因になるなど、地球規模での環境問題となっている。
【0003】
植物油廃液からの生分解性プラスチックの製造方法として、植物油廃液を嫌気処理し、酸発酵により植物油廃液中の有機物を有機酸に変換し、次いで固液分離手段により嫌気処理液からスラッジを分離除去し、固形物を除去した有機酸液を濃縮し、この濃縮有機酸液から水素細菌によりPHAを生成する方法が公知である(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2000−189183号公報
【0005】
【発明が解決しようとする課題】
しかし、上記発明では、その工程が多段階にわたっており、手間がかかっていた。また、プラント建設コスト及びランニングコストが高いという欠点があった。また、上記特許文献1には、PHAの単離および精製について明確に記載されていない。
【0006】
そこで、本発明は、簡便にPHAを製造することができるPHAの製造方法を提供することを目的とする。また、プラント建設コスト及びランニングコストを低減することができるPHAの製造方法を提供することを他の目的とする。さらに、菌体を凍結乾燥することなく、エーテルやヘキサン等の有機溶媒を使用せず、簡易にかつ低コストにてPHAを単離・精製することができるPHAの製造方法を提供することを別の目的とする。
【0007】
【課題を解決するための手段】
上述の目的を達成するために、本発明に係るPHAの製造方法は、廃食用油を炭素源として、水素細菌と混ぜ、該水素細菌の菌体内にPHAを産生させる方法である。
【0008】
また、廃食用油を炭素源として、水素細菌と混ぜ、該水素細菌の菌体内にPHAを産生させ、次に、上記菌体を回収し、回収した該菌体と次亜塩素酸水溶液とを混合して溶菌し、その後、PHAを単離する方法である。
【0009】
【発明の実施の形態】
以下、実施の形態を示す図面に基づき、本発明を詳説する。
【0010】
図1は、本発明の実施の一形態を示したフローチャート図であって、このPHAの製造方法は、廃食用油───大豆油、ごま油、オリーブ油、ヤシ油、パーム油、こめ油、綿実油、ひまわり油、コーン油、べにばな油、なたね油、椿油等から成る植物油の廃油───を原料として、生分解性プラスチックの一種であるPHA(すなわち、ポリヒドロキシアルカノエート)を製造する方法である。PHAの化学構造式を、化学式(1) に示す。
【0011】
【化1】

Figure 2004254668
Figure 2004254668
(ただし、式中Rは任意のアルキル基を示す。)
【0012】
このPHAの製造方法は、廃食用油を唯一の炭素源として、水素細菌と混ぜ、水素細菌の菌体内にPHAを産生させ、次に、菌体を回収し、回収した菌体と次亜塩素酸水溶液とを混合して溶菌し、その後、PHAを単離する方法である。
【0013】
具体的には、まず、水素細菌を定法により培養し、炭素源及び窒素源を制限した培地に交換する。次に、廃食用油を添加し、30℃で所定時間好気性条件化で培養する。水素細菌は、汎用培地(例えば、LB培地)で容易に培養することができる。また、単糖類(例えば、果糖)やアルキル鎖長の短い有機酸を炭素源として、窒素源を欠乏させた飢餓状態で培養したとき、生分解性プラスチックのPHAを産生することは公知である。培養中、酸性度(PH)の上昇が観測されるが、特に制御装置(例えば、PHセンサー)を使用することなく通常の回分式でPHAは効率よく産生することができる。
【0014】
培養終了後、自然沈降、濾過、あるいは遠心分離により菌体を分離する。濾過方法については重力濾過、減圧濾過、加圧濾過等の濾過方式が挙げられる。次に、分離した菌体に次亜塩素酸水溶液を滴下し、菌体を溶菌させる。この際、次亜塩素酸水溶液に不溶のPHAのみが沈殿し、他の菌体由来成分は水溶液中で可溶状態にある。
【0015】
PHAは、自然沈降、濾過、あるいは遠心分離により単離する。このようにして得られたPHAは、水(蒸留水)やエタノールで洗浄することにより精製することができる。
【0016】
なお、本発明は、設計変更可能であって、例えば、廃食用油に、水素細菌を添加するも良い。
【0017】
【実施例】
LB培地で前培養した水素細菌(Ralstonia eutropha)を遠心分離により集菌し、 500mlのさかぐちフラスコに 300mgの菌体と炭素源及び窒素源を欠いた培地を加え、微量塩類を添加する。ここへ、唯一の炭素源として、ごま油の廃油を1ml加えて、30℃で3日間振とう培養を行なう。培養終了後、遠心分離によって菌体を分離し、10mlの30%次亜塩素酸水溶液を滴下した。30℃で90分溶菌させた後、重力濾過によりPHAを分離した。このようにして得られたPHAを蒸留水とエタノールで洗浄し、減圧乾燥により精製した。
【0018】
分析は、以下の通りに行なった。
1)核磁気共鳴( H−NMR);Varian Gemini−200(200MHz) を用い、溶媒は重水素化クロロホルムであり、内部基準にテトラメチルシランを用いて化学シフトを求めた。
2)フーリエ変換赤外吸収スペクトル(FT−IR);島津製作所社製 FTIR−8200を用い、岩塩板を用いたキャスト法で行なった。
【0019】
3)熱示差走査測定(DSC);島津製作所社製DSC−50を用い、窒素雰囲気下、昇温速度10℃/minで行なった。
4)サイズ排除クロマトグラフィー(GPC);本体は島津製作所社製LC−10AD 型ポンプ、同 CR−7A型データ処理器、同RID−6A型示差屈折率検出器を用い、カラムは東ソー社製 TSKgelG4000H8と G2500H8(いずれも内径 7.5mm、長さ 300mm)とを直列連結して用いた。溶離液はエタノールを 0.5%含有クロロホルム、カラム温度35℃、流速0.7 ml/minの条件で測定した。検量線は、定法通りに標準ポリスチレンを用いて作成した。
【0020】
測定結果を、図2〜図8に示す。
これらの測定結果より、次の各値を得た。
▲1▼ H−NMR(重水素化クロロホルム);デルタ値/ppm;1.30(d、3H、−CH )、2.55(m、2H、−CH −)、5.27(m、1H、−CH−)
▲2▼ C−NMR(重水素化クロロホルム);デルタ値/ppm;19.8(−CH )、40.8(−CH −)、67.6(−CH−)、169.2 (>C=O)
▲3▼FT−IR;カルボニル基の伸縮振動1727cm−1
▲4▼DSC;融点 170.0℃
▲5▼GPC;重量平均分子量 228kD
すなわち、本発明のPHAの製造方法によって、上述のようなPHAが得られたことが分かる。具体的には、ポリヒドロキシブチレート(PHB)が得られた。
【0021】
【発明の効果】
本発明は、上述の如く構成されるので、次に記載する効果を奏する。
【0022】
(請求項1,2によれば)廃食用油からPHAが簡便にかつ非常に安価で製造することが可能となる。例えば、製造コストを従来の製造方法の約60分の1に低減することができる。また、地球温暖化の原因となる二酸化炭素の削減はもとより、ゴミ減量、河川・湖沼・海洋の汚染防止などの環境問題を克服できる有力な解決策の一つとなる。また、これまでPHAの問題であったコスト面でも解決可能であり、石油代替材料としての用途や利用分野が拡大される。さらに、資源循環型社会への転換に大きく寄与することができる。また、廃食用油の種類によって、種々のPHAを製造することができる。
【0023】
(請求項2によれば)菌体を凍結乾燥することなく、かつ、エーテルやヘキサン等の有機溶媒を使用せず、簡易にかつ低コストにてPHAを単離・精製することができる。そして、環境への負荷を低くすることができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態を示すフローチャート図である。
【図2】水素細菌と生分解性プラスチックの重量変化の関係を示すグラフである。
【図3】図2における生分解性プラスチックの菌体中の割合を示すグラフである。
【図4】廃食用油濃度と水素細菌及び生分解性プラスチックの重量変化の関係を示すグラフである。
【図5】図4における生分解性プラスチックの菌体中の割合を示すグラフである。
【図6】実施例で得られたPHAの1H−NMRスペクトルを示すグラフである。
【図7】実施例で得られたPHAのFT−IRスペクトルを示すグラフである。
【図8】実施例で得られたPHAのDSC曲線を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a PHA.
[0002]
[Prior art]
At present, about 420,000 tons of edible oil is consumed annually in ordinary households, but unlike the food and restaurant industries, most of them are discarded as combustible waste without being collected. In addition, since a large amount of heat and carbon dioxide (CO 2 ) are generated during garbage incineration, it causes global warming and acid rain, and a part of waste cooking oil flows into sewage and flows into rivers, lakes and oceans. It is an environmental problem on a global scale, such as causing pollution.
[0003]
As a method for producing a biodegradable plastic from a vegetable oil waste liquid, the vegetable oil waste liquid is subjected to anaerobic treatment, the organic matter in the vegetable oil waste liquid is converted into an organic acid by acid fermentation, and then sludge is separated and removed from the anaerobic treatment liquid by solid-liquid separation means. A method of concentrating an organic acid solution from which solid matter has been removed and producing PHA from the concentrated organic acid solution by hydrogen bacteria is known (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP 2000-189183 A
[Problems to be solved by the invention]
However, in the above-mentioned invention, the process is multi-step, and it is troublesome. Further, there is a disadvantage that the plant construction cost and the running cost are high. Further, Patent Document 1 does not clearly describe isolation and purification of PHA.
[0006]
Therefore, an object of the present invention is to provide a method of manufacturing a PHA that can easily manufacture a PHA. Another object of the present invention is to provide a method of manufacturing a PHA that can reduce plant construction costs and running costs. Furthermore, it is another object of the present invention to provide a method for producing PHA that can easily and inexpensively isolate and purify PHA without freeze-drying the cells and without using an organic solvent such as ether or hexane. The purpose of.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing PHA according to the present invention is a method in which waste edible oil is used as a carbon source, mixed with hydrogen bacteria, and PHA is produced in the cells of the hydrogen bacteria.
[0008]
In addition, waste edible oil is used as a carbon source, mixed with a hydrogen bacterium to produce PHA in the cells of the hydrogen bacterium, then the cells are collected, and the collected cells and an aqueous solution of hypochlorous acid are added. This is a method of mixing and lysing, and then isolating the PHA.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings showing the embodiments.
[0010]
FIG. 1 is a flow chart showing an embodiment of the present invention. The method for producing PHA uses waste cooking oil───soybean oil, sesame oil, olive oil, coconut oil, palm oil, rice oil, cottonseed oil. For producing PHA (ie, polyhydroxyalkanoate), which is a kind of biodegradable plastic, from waste oil of vegetable oil consisting of sunflower oil, corn oil, rapeseed oil, rapeseed oil, camellia oil, etc. It is. The chemical structural formula of PHA is shown in chemical formula (1).
[0011]
Embedded image
Figure 2004254668
Figure 2004254668
(However, R represents an arbitrary alkyl group.)
[0012]
In this method of producing PHA, waste edible oil is used as a sole carbon source, mixed with hydrogen bacteria, PHA is produced in the cells of the hydrogen bacteria, and then the cells are collected. This is a method of lysing bacteria by mixing with an aqueous acid solution, and then isolating the PHA.
[0013]
Specifically, first, a hydrogen bacterium is cultured by a standard method, and is replaced with a medium in which the carbon source and the nitrogen source are restricted. Next, waste cooking oil is added, and the cells are cultured at 30 ° C. for a predetermined time under aerobic conditions. Hydrogen bacteria can be easily cultured in a general-purpose medium (for example, LB medium). It is known that when a monosaccharide (for example, fructose) or an organic acid having a short alkyl chain length is used as a carbon source and cultured in a starvation state deficient in a nitrogen source, PHA as a biodegradable plastic is produced. During the cultivation, an increase in the acidity (PH) is observed, but PHA can be efficiently produced by a usual batch system without using a control device (for example, a PH sensor).
[0014]
After completion of the culture, the cells are separated by natural sedimentation, filtration, or centrifugation. Examples of the filtration method include a filtration method such as gravity filtration, reduced pressure filtration, and pressure filtration. Next, an aqueous solution of hypochlorous acid is added dropwise to the separated cells to lyse the cells. At this time, only the PHA insoluble in the hypochlorous acid aqueous solution precipitates, and the other bacterial components are in a soluble state in the aqueous solution.
[0015]
PHA is isolated by gravity sedimentation, filtration, or centrifugation. The PHA thus obtained can be purified by washing with water (distilled water) or ethanol.
[0016]
In the present invention, the design can be changed. For example, hydrogen bacteria may be added to waste cooking oil.
[0017]
【Example】
Hydrogen bacteria (Ralstonia eutropha) pre-cultured in LB medium are collected by centrifugation, and 300 mg of cells and a medium lacking a carbon source and a nitrogen source are added to a 500 ml flank flask, and trace salts are added. Here, 1 ml of sesame oil waste oil is added as a sole carbon source, and shaking culture is performed at 30 ° C. for 3 days. After completion of the culture, the cells were separated by centrifugation, and 10 ml of a 30% aqueous solution of hypochlorous acid was added dropwise. After lysing at 30 ° C. for 90 minutes, PHA was separated by gravity filtration. The PHA thus obtained was washed with distilled water and ethanol and purified by drying under reduced pressure.
[0018]
The analysis was performed as follows.
1) Nuclear magnetic resonance ( 1 H-NMR); Varian Gemini-200 (200 MHz) was used, the solvent was deuterated chloroform, and the chemical shift was determined using tetramethylsilane as an internal standard.
2) Fourier transform infrared absorption spectrum (FT-IR): FTIR-8200 manufactured by Shimadzu Corporation was used and cast by using a rock salt plate.
[0019]
3) Thermal Differential Scanning Measurement (DSC): Using DSC-50 manufactured by Shimadzu Corporation under nitrogen atmosphere at a heating rate of 10 ° C./min.
4) Size Exclusion Chromatography (GPC): The main unit used was an LC-10AD pump manufactured by Shimadzu Corporation, a CR-7A data processor, and a RID-6A differential refractive index detector manufactured by Shimadzu Corporation, and the column was TSKgelG4000H8 manufactured by Tosoh Corporation. And G2500H8 (both inner diameter 7.5 mm, length 300 mm) were used in series. The eluent was measured under the conditions of chloroform containing 0.5% ethanol, a column temperature of 35 ° C., and a flow rate of 0.7 ml / min. The calibration curve was prepared using standard polystyrene as usual.
[0020]
The measurement results are shown in FIGS.
The following values were obtained from these measurement results.
1 ▼ 1 H-NMR (deuterated chloroform); delta value /ppm;1.30(d,3H,-CH 3), 2.55 (m, 2H, -CH 2 -), 5.27 ( m, 1H, -CH-)
{Circle around ( 2 )} 1 C-NMR (deuterated chloroform); delta value / ppm; 19.8 (—CH 3 ), 40.8 (—CH 2 —), 67.6 (—CH—), 169.2 (> C = O)
(3) FT-IR; stretching vibration of carbonyl group at 1727 cm -1
(4) DSC; melting point 170.0 ° C
(5) GPC; weight average molecular weight 228 kD
That is, it can be seen that the PHA as described above was obtained by the method for producing a PHA of the present invention. Specifically, polyhydroxybutyrate (PHB) was obtained.
[0021]
【The invention's effect】
The present invention is configured as described above, and has the following effects.
[0022]
(According to claims 1 and 2) PHA can be easily and very inexpensively produced from waste cooking oil. For example, the manufacturing cost can be reduced to about 1/60 of the conventional manufacturing method. In addition to reducing carbon dioxide, which causes global warming, it will be one of the leading solutions that can overcome environmental problems such as reducing garbage and preventing pollution of rivers, lakes, marshes and oceans. In addition, it is possible to solve the problem of PHA, which has been a problem in the past. Furthermore, it can greatly contribute to the transition to a resource recycling society. In addition, various types of PHA can be produced depending on the type of waste cooking oil.
[0023]
According to claim 2, PHA can be easily isolated and purified at low cost without freeze-drying the cells and without using an organic solvent such as ether or hexane. And the load on the environment can be reduced.
[Brief description of the drawings]
FIG. 1 is a flowchart illustrating an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between the weight change of hydrogen bacteria and biodegradable plastic.
FIG. 3 is a graph showing the ratio of biodegradable plastic in cells in FIG.
FIG. 4 is a graph showing the relationship between waste cooking oil concentration and changes in weight of hydrogen bacteria and biodegradable plastics.
FIG. 5 is a graph showing the ratio of the biodegradable plastic in the cells in FIG. 4;
FIG. 6 is a graph showing a 1H-NMR spectrum of PHA obtained in an example.
FIG. 7 is a graph showing an FT-IR spectrum of PHA obtained in an example.
FIG. 8 is a graph showing a DSC curve of PHA obtained in the example.

Claims (2)

廃食用油を炭素源として、水素細菌と混ぜ、該水素細菌の菌体内にPHAを産生させることを特徴とするPHAの製造方法。A method for producing PHA, comprising mixing waste edible oil with a hydrogen bacterium as a carbon source to produce PHA in the cells of the hydrogen bacterium. 廃食用油を炭素源として、水素細菌と混ぜ、該水素細菌の菌体内にPHAを産生させ、次に、上記菌体を回収し、回収した該菌体と次亜塩素酸水溶液とを混合して溶菌し、その後、PHAを単離することを特徴とするPHAの製造方法。The waste edible oil is used as a carbon source and mixed with a hydrogen bacterium to produce PHA in the cells of the hydrogen bacterium. Next, the cells are collected, and the collected cells and an aqueous solution of hypochlorous acid are mixed. Lysing the cells, and then isolating the PHA.
JP2003052226A 2003-02-28 2003-02-28 Method for producing pha Pending JP2004254668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003052226A JP2004254668A (en) 2003-02-28 2003-02-28 Method for producing pha

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003052226A JP2004254668A (en) 2003-02-28 2003-02-28 Method for producing pha

Publications (1)

Publication Number Publication Date
JP2004254668A true JP2004254668A (en) 2004-09-16

Family

ID=33117147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003052226A Pending JP2004254668A (en) 2003-02-28 2003-02-28 Method for producing pha

Country Status (1)

Country Link
JP (1) JP2004254668A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014032633A1 (en) 2012-08-27 2014-03-06 Vysoke Uceni Technicke V Brne Method of producing polyhydroxyalkanoates (pha) from oil substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014032633A1 (en) 2012-08-27 2014-03-06 Vysoke Uceni Technicke V Brne Method of producing polyhydroxyalkanoates (pha) from oil substrate

Similar Documents

Publication Publication Date Title
Alloul et al. Capture–ferment–upgrade: a three-step approach for the valorization of sewage organics as commodities
Valentino et al. Organic fraction of municipal solid waste recovery by conversion into added-value polyhydroxyalkanoates and biogas
Valentino et al. Feed frequency in a Sequencing Batch Reactor strongly affects the production of polyhydroxyalkanoates (PHAs) from volatile fatty acids
Yan et al. Coupling of the hydrogen and polyhydroxyalkanoates (PHA) production through anaerobic digestion from Taihu blue algae
Jia et al. Production of polyhydroxyalkanoates (PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales
Campos et al. The influence of crude glycerin and nitrogen concentrations on the production of PHA by Cupriavidus necator using a response surface methodology and its characterizations
Bera et al. Microbial synthesis of polyhydroxyalkanoate using seaweed-derived crude levulinic acid as co-nutrient
Martinez et al. Production of polyhydroxyalkanoates from dephenolised and fermented olive mill wastewaters by employing a pure culture of Cupriavidus necator
Hao et al. Overall process of using a valerate-dominant sludge hydrolysate to produce high-quality polyhydroxyalkanoates (PHA) in a mixed culture
Samorì et al. Polyhydroxyalkanoates and crotonic acid from anaerobically digested sewage sludge
Sabapathy et al. Bioprocess optimization of PHB homopolymer and copolymer P3 (HB-co-HV) by Acinetobacter junii BP25 utilizing rice mill effluent as sustainable substrate
Zhang et al. Coupling of polyhydroxyalkanoate production with volatile fatty acid from food wastes and excess sludge
Trzcinski et al. Identification of recalcitrant compounds in a pilot-scale AB system: An adsorption (A) stage followed by a biological (B) stage to treat municipal wastewater
Elhami et al. Extraction of low molecular weight polyhydroxyalkanoates from mixed microbial cultures using bio-based solvents
Gameiro et al. Olive oil mill wastewater to volatile fatty acids: statistical study of the acidogenic process
Szacherska et al. Polyhydroxyalkanoates production from short and medium chain carboxylic acids by Paracoccus homiensis
TWI399345B (en) Method for extracting polyhydroxyalkyl acid esters from waste sludge (1)
Wang et al. Production of polyhydroxyalkanoates by halotolerant bacteria with volatile fatty acids from food waste as carbon source
Palmeiro-Sánchez et al. High-yield synthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymers in a mixed microbial culture: effect of substrate switching and F/M ratio
CN103201311B (en) Method for recovery of stabilized polyhydroxyalkanoates from biomass that has been used to treat organic waste
Mullai et al. Substrate removal kinetics of hydrogen production in an anaerobic sludge blanket filter
Ramachandran et al. Bioconversion of glycerine pitch into a novel yellow-pigmented P (3HB-co-4HB) copolymer: synergistic effect of ammonium acetate and polymer characteristics
Fra‐Vázquez et al. Feasible microbial accumulation of triacylglycerides from crude glycerol
JP2004254668A (en) Method for producing pha
TW201202151A (en) Method of extracting polyhydroxyl alkyl acid ester from waste sludge

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061220

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070209

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100324