JP2004254545A - Method for producing yeast extract - Google Patents

Method for producing yeast extract Download PDF

Info

Publication number
JP2004254545A
JP2004254545A JP2003047198A JP2003047198A JP2004254545A JP 2004254545 A JP2004254545 A JP 2004254545A JP 2003047198 A JP2003047198 A JP 2003047198A JP 2003047198 A JP2003047198 A JP 2003047198A JP 2004254545 A JP2004254545 A JP 2004254545A
Authority
JP
Japan
Prior art keywords
concentration
yeast extract
yeast
extract
concentrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003047198A
Other languages
Japanese (ja)
Inventor
Yoshihisa Yamamoto
芳久 山本
Kunihiro Ito
邦広 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kirin Food Tech Co Ltd
Original Assignee
Kirin Food Tech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Food Tech Co Ltd filed Critical Kirin Food Tech Co Ltd
Priority to JP2003047198A priority Critical patent/JP2004254545A/en
Publication of JP2004254545A publication Critical patent/JP2004254545A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing yeast extract, preventing browning or coloring to the most when concentrated, and suitable for industrial production of yeast extract. <P>SOLUTION: The method for producing yeast extract comprises conducting concentration of yeast extract by a circulating-system liquid film flow-down-type vacuum concentration method when producing the yeast extract from autolysate of the yeast or enzymic hydrolyzate. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、酵母エキスの工業的規模の製造において、液状の酵母エキスを濃縮する際の褐変や着色を極力防止した、風味、外観の良好な酵母エキスを提供する酵母エキスの製造方法に関する。
【0002】
【従来の技術】
酵母エキスは、酵母の自己消化物や様々な酵素分解物中のエキスと酵母等の不溶物を分離して製造される。不溶物を分離して得られた酵母エキス中の固形分は通常2〜10%(重量%、以下、特に断らない限り同様)程度であり、この状態では保存性や運搬経費等から市販に供するには適当でなく、通常、得られた酵母エキスを濃縮し、この濃縮物をそのまま、あるいは、さらに濃縮後、噴霧乾燥等で乾燥させ、粉末化して市販に供している。
一方、酵母エキスは、原料となる酵母から由来する特有の色調を有している。また、酵母中の旨味成分(遊離アミノ酸、核酸等)を有効に抽出するためのタンパク分解酵素や多糖類分解酵素、核酸生成酵素等を作用させる反応条件によって得られる酵母エキスに着色が伴う。また、得られたエキスを濃縮する際にも、濃縮方法、濃縮条件等によって褐変や着色が起こる。
食品の褐変、着色等には種々の要因があるが、酵母エキスの場合、遊離アミノ酸とブドウ糖、果糖等の還元糖を含んでいることから、遊離アミノ酸と還元糖類との反応、すなわち、アミノカルボニル反応による影響が大きく関与している。一般に、アミノカルボニル反応での褐変や着色は、遊離アミノ酸量とブドウ糖、果糖のような還元糖量およびその比率、空気(酸素)量、温度、時間が大きく影響すると言われており、特に、酵母エキス製造における濃縮は、酵母エキスの褐変や着色に及ぼす影響が大きい。
例えば、冷凍真空濃縮法であれば、温度、空気(酸素)の影響を抑制した方法であるから着色性が最も少なく風味的にも優れた製品ができるが、工業生産的には時間当たりの生産性、製造エネルギーコストが高い。
近年、常温で行う膜濃縮法が開発され活用されているが、膜濃縮は濃縮の進行につれ浸透圧や粘度の増加が生ずるため、蒸発法に比べ濃縮率を高くできない。さらに、常温操作に伴う雑菌汚染を防止し、膜やモジュールの衛生管理に細心の注意を払う必要性があり、洗浄に時間と経費を要する等の問題がある。
このような事情から、一般には熱を加えて水を除くという蒸発濃縮が最も簡便な濃縮法として古くから採用されている。例えば、釜やタンク内に蒸気管を通して加熱する方法、外側に蒸気等のジャケットから加熱しながら撹拌機を備え、撹拌しながら常圧加熱する方法や釜やタンクに真空装置を備え、減圧加熱濃縮等を行い濃縮する方法が多く用いられている。
しかし、例えば、酵素反応直後の固形分3%の酵母エキスを固形分60%にするには、20倍量の水を、6%のものを固形分60%にするには10倍量の水を除去する必要がある。したがって、少量であれば、短時間で濃縮は可能であるが、工業生産的には相当の時間を要し、酵母エキス中のアミノ酸や糖類量や加熱温度、時間にもよるが、これらの方法で酵母エキスを大量濃縮する場合、加熱部と内容物の接触部が絶えず接触されており、着色性が大きい。そのため、製造の過程において空気の存在を少なくしたり、濃縮や殺菌の加熱温度を低くしたり、加熱時間を短くしたり、脱色用活性炭で脱色したり等の種々の対策が行われているが、十分とは言い得ない。
それにもかかわらず、酵母エキスの製造工程における褐変または着色を検討した先行技術としては、加熱してアミノカルボニル反応を積極的に進行させた後、イオン交換樹脂により着色物質を除去する方法(特許文献1)が提案されている程度である。
【0003】
【特許文献1】
国際公開第98/46089号パンフレット
【0004】
【発明が解決しようとする課題】
本発明は、濃縮の際の褐変や着色を極力防止した酵母エキスの工業的生産に適した製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、上記目的を達成するため、工業的生産レベルにおける褐変や、着色に最も関与すると考えられる濃縮工程に注目し、濃縮の方法に着目し濃縮酵母エキスの着色性について鋭意検討した。その結果、薄膜減圧濃縮法の1方法である液膜流下型真空濃縮法、特にある条件下での液膜流下型真空濃縮法が、その目的に適していることを見出し、本発明を完成するに至った。
【0006】
すなわち、本発明は、
(1)酵母の自己消化物または酵素分解物から酵母エキスを製造するに際し、酵母エキスの濃縮を循環式液膜流下型真空濃縮法で行うことを特徴とする酵母エキスの製造方法、
(2)自己消化物または酵素分解物から抽出された酵母エキスを循環式液膜流下型真空濃縮法で一次濃縮し、ついで精製工程に付した後、さらに、循環式液膜流下型真空濃縮法で二次濃縮する上記(1)記載の製造方法、
(3)循環式液膜流下型真空濃縮法による濃縮を、濃縮温度30〜80℃、真空度30〜200トール、濃縮する酵母エキスの粘度1000cps/20℃以下の条件で行う上記(2)記載の製造方法、
(4)一次濃縮を固形分濃度15〜35重量%まで行う上記(2)記載の製造方法、
(5)精製工程が、殺菌、おり下げ、ついで脱臭を行う工程である上記(2)記載の製造方法等を提供するものである。
【0007】
【発明の実施の形態】
用いる酵母の自己消化物、酵素分解物または水抽出物は特に限定するものではなく、自体公知の方法により食用酵母より得られるものいずれでもよい。
食用酵母も特に限定するものではなく、生酵母、自体公知の方法で適宜乾燥した乾燥酵母いずれでもよく、例えば、ワイン酵母、パン酵母、清酒酵母、ビール酵母等が使用できる。
酵母は、前処理なしにそのまま使用してもよく、また、前処理を行なった後に使用してもよい。例えば、水洗後に使用しても、酸、アルカリ、低級アルコール等での洗浄後、水洗して使用してもよい。さらに、例えば、800kg/cm〜5000kg/cmの高圧ホモジナイザーで処理した後に使用してもよい。
【0008】
本発明における循環式液膜流下型真空濃縮法は、薄膜減圧濃縮法の一種で、減圧下、加温ないしは加熱しつつ、濃縮すべき液体の、適宜な壁面を伝わる薄膜状の流下と、気液分離を循環的に行う濃縮法であり、例えば、図1に模式的に示す循環式液膜流下型真空濃縮装置を使用して行うことができる。
図1に示すごとく、この装置は、加熱缶1と、蒸発缶2と、循環ポンプ3と、それらに付属する配管部分等から構成されており、加熱缶1はその底部で蒸発缶2と連結している。加熱缶1内は、縦方向に伸長する複数の中空細管4が設けられており、加熱缶1の底部には酵母エキス供給口5、頂部には循環エキス供給口6が設けられている。また、加熱缶1の上部には、蒸気インゼクター7に連結した加熱用の蒸気供給口8、下部には蒸気エゼクター(図示せず)に連結した減圧用の吸引口9と、蒸気ドレイン排水口10が設けられている。蒸発缶の頂部11は上記の蒸気インジェクター7と、また、気液分離器12を介して蒸気ブースター13と連結しており、また、下部は気液分離された液相を溜める液相溜14となっており、液相溜14は循環ポンプ3を介して、循環エキス供給口6と接続されている。また、循環ポンプ3と循環エキス供給口6との間には、濃縮エキス取出パイプ15が接続されている。
この装置を用いて酵母エキスを濃縮するには、酵母エキスを供給口5から、蒸発量に見合う量で、装置内に定量的に供給する。装置内は、蒸気供給口8から供給される蒸気、および吸引口9からの排気により、所定の温度、減圧に維持されている。供給された酵母エキスは、蒸発缶2内の液相溜14、循環ポンプ3および循環エキス供給口6を経て、加熱缶1の頂部に達し、そこから各細管4に分配され、細管4の内壁を伝わって薄膜状で流下する。この管に酵母エキスは加熱され、水分の蒸発が起こり、気相と液相の混合物が生成する。加熱缶1の底部に達した気相と液相の混合物は、ついで、蒸発缶2内に移行し、気液分離が起こり、分離した気相は蒸発缶2の頂部11へ上昇し、液相は液相溜14に集められる。気相は気液分離器(ドレイン分離器)12、蒸気ブースターを経て装置外へ排出される。一方、集められた液相は、循環ポンプ3、循環エキス供給口6介を経て加熱缶1の頂部に達する。このようにして、液相が装置内を循環し、濃縮される。所定の濃度になった濃縮液は濃縮エキス取出パイプ15から取り出される。
【0009】
濃縮条件は、濃縮すべき酵母エキスの処理量等に応じて、加熱温度や真空度を適宜調節して、良好な生産効率で、褐変や着色が極力防止できる範囲から選択する。例えば、酵母エキス5〜15トンを処理する場合、図1に示すごとき装置を使用し、通常、温度40〜80℃、好ましくは45〜60℃、真空度30〜200トール、好ましくは、30〜150トール、濃縮する酵母エキスの粘度1000cps/20℃以下、好ましくは800cps/20℃以下の条件で行うことにより、良好な生産効率で、褐変や着色を極力防止した濃縮が可能となる。温度が40℃以下であれば着色は少ないが、真空度等の条件によっては、水分蒸発が遅れ、濃縮に長時間を要し、逆に80℃以上であれば、濃縮時間は短縮されるが、減圧下でも着色が進行するので適当ではない。真空度は、生産レベルで長期に渡り30トール以下にすることは困難であり、また、200トール以上では、着色度が進行し、好ましくない。また、酵母エキスの成分組成や加熱温度により異なるが、濃縮するにつれて粘度が増加し、固形分濃度が60%で温度が40℃以下では極端に高粘性となり、循環ポンプ能力にもよるが、細管の内壁面を流下するエキスの速度が非常に遅くなり、効率面でも適性でなくなるので、粘度は約1000cps以下好ましくは800cps以下で濃縮を行うことが好ましい。
【0010】
本発明は、限定するものではないが、原料酵母から放線菌産生酵素類と担子菌産生酵素類を用いて得られた酵母の酵素分解物に好適に適用できる。この際、まず、放線菌産生酵素類で分解し、ついで担子菌産生酵素類で分解することが好ましい。さらに詳しくは、原料酵母を、まず、放線菌産生酵素類と接触させ、反応温度およびpHを変化させた2段階で反応させたることにより、5’−ヌクレオチド類の生成量を高めた後、さらに担子菌産生酵素類を反応させると、風味や匂いの良好な酵母エキスが得られる。以下、このようにして得られる酵素分解物を用いる場合を例として、本発明の酵母エキスの製造方法を説明するが、他の酵素分解物や、自己消化物、水抽出物(含熱水抽出物)を使用する場合も同様に実施できる。
原料酵母は、工業的生産性を考慮し、例えば、乾燥酵母の場合、通常、5〜30重量%、好ましくは、10〜25重量%の濃度で、水(例えば、イオン交換水等)に懸濁し、酵素類と接触させる。懸濁液の濃度が低すぎる場合は生産性の低下を招き、また、濃度が高すぎる場合は、粘度が高くなりすぎ、撹拌等が困難となる。
用いる放線菌産生酵素類としては、例えば、ストレプトミセス属に属する菌株を自体公知の方法により培養し、5’−リン酸生成型ヌクレアーゼ、デアミナーゼおよびプロテアーゼを含有する培養物をそのまま、または培養濾液、菌体、菌体破砕物、これらの抽出液、その乾燥物等を使用することができ、あるいは自体公知の方法により5’−リン酸生成型ヌクレアーゼ、デアミナーゼおよびプロテアーゼを必須構成酵素とする酵素類を採取し、粗製のまま、または精製酵素として用いることができる。
培養液は、工業的生産に適した乾燥酵素(水分10%以下)、特に、酵素力価を落とさず粉末化した酵素として用いることが望ましい。乾燥方法としては、自体公知の方法が挙げられるが、酵素を失活させない方法として、例えば、凍結乾燥方法等がある。
放線菌産生酵素類として、例えば、培養液の水溶性部分を乾燥した乾燥物を使用する場合、通常、酵母に対して、0.3〜1.5重量%程度使用する。この乾燥物換算の力価を基準として、培養液の水溶性部分を乾燥したものを適宜、水で記載して使用することもでき、また、培養液そのものとして使用する場合は、通常、酵母に対して7.5〜37.5重量%程度の割合で使用できる。
また、例えば、力価の異なる2種以上の培養物や精製酵素を混合したり、水等での希釈や、要すれば、商業的に入手しうる酵素類を使用して力価を調整することもできる。
【0011】
担子菌産生酵素類としては、例えば、ホウロクタケ属に属する担子菌、好ましくはヒイロタケを自体公知の方法により培養し、プロテアーゼ、セルラーゼおよびグルカナーゼ含有する培養濾液、その抽出物等を使用することができ、あるいは自体公知の方法により、プロテアーゼ、セルラーゼおよびグルカナーゼを必須構成酵素とする酵素類を採取し、粗製のまま、または精製酵素として用いることができる。
放線菌産生酵素類と同様、担子菌産生酵素類も酵素力価を落とさず粉末化して使用することが望ましい。
担子菌産生酵素類として、例えば、培養液の水溶性部分を乾燥した乾燥物を使用する場合、通常、酵母に対して、0.3〜1.5重量%程度使用する。この乾燥物換算の力価を基準として、培養液の水溶性部分を乾燥したものを適宜、水で記載して使用することもでき、また、培養液そのものとして使用する場合は、通常、酵母に対して7.5〜37.5重量%程度の割合で使用できる。
また、例えば、力価の異なる2種以上の培養物や精製酵素を混合したり、水等での希釈や、要すれば、商業的に入手しうる酵素類を使用して力価を調整することもできる。
【0012】
本発明の製造方法を実施するには、例えば、食用乾燥酵母(ワイン酵母、パン酵母、清酒酵母、ビール酵母等)の5〜25重量%水懸濁(pH6.5〜8.0)に放線菌産生酵素類の乾燥物を40℃〜60℃で0.3〜1.5重量%(対固形分)の割合で3〜8時間接触させ、ついで同液を62〜68℃で2〜6時間保持した後、pHを2.0〜5.5に調整する。これに担子菌産生酵素類の乾燥物を45〜55℃で0.3〜1.5重量%(対固形分)の割合で8〜15時間接触させる。
pHの調整は、常法に従い、必要に応じて酸(例、塩酸等)またはアルカリ(例、水酸化ナトリウム等)を用いて行う。
得られた酵母の酵素分解物のスラリーを平均孔径0.05〜0.5μmのセラミック膜を通過させて精密濾過して酵母等の不溶物と酵母エキス部とを分離する。精密濾過は、自体公知の方法に従って行なうことができ、かかるアルミナセラミック膜は、例えば、日本ガイシ(株)や、ノリタケカンパニーリミテドから商業的に入手できる。また、濾過温度は特に限定するものではない。
【0013】
ついで、上記した循環式液膜流下型真空濃縮装置を用いて、酵母エキス部の固形分濃度を10〜50重量%、好ましくは15〜35重量%に一次濃縮する。
この一次濃縮の濃縮条件は、特に限定するものではないが、上記した条件から適宜選択できる。
【0014】
本発明においては、得られた濃縮液を、さらに、精製工程に付した後、二次濃縮を行うことが好ましい。
精製工程は酵母エキス製造において通常採用される精製工程でよく、例えば、殺菌、おり下げ、ついで脱臭工程が挙げられる。
殺菌は、限定するものではないが、加熱殺菌が採用でき、例えば、90℃まで急速に加熱した後、5〜15分保持することにより行える。ついで、60℃以下に急冷することにより、おり下げし、活性炭処理に付して脱臭する。活性炭処理は、濃縮液の固形分に対して0.5〜10.0重量%、好ましくは1.0〜5.0重量%の活性炭を濃縮液に添加、分散した後、自体公知の方法により濾過する。濾過温度は特に限定するものではない。
活性炭として、木材炭化品を原料とし、水蒸気賦活法にて950〜1100℃で賦活した、細孔容積0.2〜0.6ml/g、細孔直径1〜30mmのものを、固形分に対して1〜5重量%添加して、使用することが好ましい。
二次濃縮は、上記した循環式液膜流下型真空濃縮装置を用い、上記した濃縮条件下で、酵母エキス部の固形分濃度が50重量%以上、好ましくは60重量%以上になるまで行うことが望ましい。
【0015】
本発明の製造方法で得られた酵母エキスは、公知の酵母エキスと同様に使用することができ、例えば、得られた酵母エキスを農産加工食品(野菜、果実、穀物等の加工品を含む)、水産加工食品(魚介類、海藻等の加工品を含む)畜産加工食品(卵・乳製品等の加工品を含む)、だし・つゆ・ソース・醤油・みそ、合わせ調味料等に使用することができる。
特に、ホワイトソースやクリームスープなど白色度を重視する加工食品に最適である。
【0016】
【実施例】
以下の参考例および実施例により、本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
【0017】
参考例1
放線菌産生酵素類の調製
(1)ストレプトミセス・アウレウス(Streptomyces aureus IFO 3175)の胞子懸濁液(10個/ml以上)1白金耳を種培地(可溶性コーンスターチ30g/l、コーン・スティープ・リカー30g/l、硫酸アンモニウム1g/l、硫酸マグネシウム0.5g/l、炭酸カルシウム3g/l、pH7.0)20mlに接種し、28℃、200rpmで24時間培養し、種培養終了液を得た。
(2)得られた種培養終了液1mlを主培地(可溶性コーンスターチ30g/l、コーン・スティープ・リカー15g/l、硫酸アンモニウム1g/l、硫酸マグネシウム0.5g/l、炭酸カルシウム3g/l、pH7.0)20mlに移植し、28℃、200rpmで40時間培養し、主培養終了液を得た。
(3)得られた主培養終了液20mlを28℃、200rpmで3時間撹拌し、ついでイソブタノール1.2mlを加え、さらに28℃、200rpmで3時間撹拌して溶菌し、酵素処理液を得た。これを品温が80℃以下で乾燥し、放線菌産生酵素類の乾燥粉末を得た。
【0018】
ヒイロタケ産生酵素類の調製
(1)ヒイロタケ(Trametes sanguinea)の胞子懸濁液(10個/ml以上)2mlを種培地(塩化カルシウム1g/l、硫酸マグネシウム1g/l、硫酸アンモニウム2g/ml、リン酸一カリウム2g/l、ショ糖50g/l、コーン・スティープ・リカー30g/l、pH7.0)20mlに接種し、28℃、200rpmで48時間培養し、種培養終了液を得た。
(2)得られた種培養終了液2mlを主培地(塩化カルシウム1g/l、硫酸マグネシウム1g/l、硫酸アンモニウム2g/l、リン酸一カリウム2g/l、ショ糖80g/l、脱脂大豆粉35g/l、pH6.0)20mlに移植し、28℃、200rpmで96時間培養し、主培養終了液を得た。
主培養終了液を、濾紙で濾過し、得られた酵素液を真空乾燥してヒイロタケ産生酵素類の乾燥粉末を得た。
【0019】
実施例1
ビール酵母を純水に懸濁して11%懸濁液を調製し、30%水酸化ナトリウム溶液でpH7.7に調整した。これに、酵母固形分に対して0.62%の割合で、上記で得られた放線菌産生酵素類液を加え、40〜60℃で5時間、ついで65℃で3時間保持した。このときのpHは6.7〜6.8であった。
ついで、50℃に冷却し、35%塩酸でpH4.0に調整し、酵母固形分に対して0.6%の割合で、上記で得られた担子菌産生酵素を加え、50℃で12時間反応させた。
反応終了後、90℃で10分間加熱殺菌し、60℃に冷却した。反応液を0.1〜0.2μmの平均孔径を有するセラミック膜で濾過した。このときの上澄液のエキス濃度はBx11.5であった。残渣を約3倍量の純水と共に撹拌し、再度濾過して、濾液を上記の濾液と合した。この液のpHは4.0、エキス濃度はBx5〜6であった。
このエキスを(1)常圧加熱濃縮法、すなわち、50℃恒温水槽内常圧下で開放下に撹拌(20rpm)しながらの濃縮(仕込量:10リットル)、(2)バッチ式真空濃縮法、すなわち、温度50℃で減圧(100トール)、撹拌(20rpm)下に、(株)ヤエス半球型真空式サンニーダーでの濃縮(仕込量:300リットル)または(3)循環式液膜流下型真空濃縮法、すなわち、図1に示す構造を有する日南機械(株)製循環式液膜流下型真空濃縮装置で、温度50℃、真空度100トール、仕込量1000リットルでの濃縮に付した。いずれの濃縮方法においても固形分濃度(Bx)62まで濃縮した。
得られた濃縮エキス液の着色度(褐変度合)を測定した。すなわち、濃縮エキス液を測定可能範囲まで適宜純水で希釈して試料を調製し、分光光度計(日立製作所製)でこの試料の440μmの吸光値を測定し、固形分1%換算した数値を着色度とした。
結果を表1に示す。
【0020】
【表1】

Figure 2004254545
【0021】
実施例2
実施例1の循環式液膜流下型真空濃縮法と同様にしてエキスの濃縮を行なった。すなわち、図1に示す構造を有する日南機械(株)製循環式液膜流下型真空濃縮装置を使用し、固形分濃度Bx5.5のエキスを、温度30〜70℃、真空度100〜500トールの範囲で、仕込量1000リットルにて濃縮した。いずれの濃縮においても、固形分濃度(Bx)が62まで濃縮し、実施例1と同様にして着色度を測定した。
結果を表2に示す。
【0022】
【表2】
Figure 2004254545
【0023】
実施例3
市販酵母エキス濃縮品と、実施例1の循環式液膜流下型真空濃縮法で得られた酵母エキス濃縮品の着色度を実施例1の測定法に従って測定し、比較した。
結果を表3に示す。
【0024】
【表3】
Figure 2004254545
【0025】
以上の結果、表1(実施例1)から明らかなごとく、温度50℃、144時間の常圧加熱濃縮では固形分Bx60に至るまでに腐敗を生じ、バッチ式真空濃縮法、すなわち、温度50℃で減圧(100トール)、撹拌(20rpm)の条件下では、循環式液膜流下型真空濃縮法の3倍の濃縮時間を要し、かつ着色度が高かった。
また、表2(実施例2)に示すごとく、循環式液膜流下型真空濃縮法で濃縮温度を変え、着色度合を測定した結果、温度が低いほど着色は少なかった。
さらに、着色は糖分と遊離アミノ酸量に大きく影響されることがよく知られているが、表3(実施例3)に示すごとく、本発明品は市販品と同等またはそれ以上の糖分および遊離アミノ酸が存在するにもかかわらず、いずれの市販濃縮品よりも着色度が低かった。
【0026】
【発明の効果】
以上記載したごとく、本発明によれば、濃縮の際の褐変や着色を極力防止した酵母エキスの工業的生産に適した製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明で用いる循環式液膜流下型真空濃縮装置の概略を示す模式図である。
【符号の説明】
1・・・加熱缶、2・・・蒸発缶、3・・・循環ポンプ、
4・・・中空細管、5・・・酵母エキス供給口、
6・・・循環エキス供給口、7・・・蒸気インゼクター、
8・・・蒸気供給口、9・・・吸引口、10・・・蒸気ドレイン排水口、
11・・・蒸発缶の頂部、12・・・気液分離器(ドレイン分離器)、
13・・・蒸気ブースター、14・・・液相溜、
15・・・濃縮エキス取出パイプ[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for producing a yeast extract having a good taste and appearance, which minimizes browning and coloring when concentrating a liquid yeast extract in industrial scale production of the yeast extract.
[0002]
[Prior art]
The yeast extract is produced by separating an extract from an autolysate of yeast or various enzyme digests and an insoluble matter such as yeast. The solid content in the yeast extract obtained by separating the insoluble matter is usually about 2 to 10% (% by weight, hereinafter the same unless otherwise specified). In this state, the yeast extract is provided on the market from the viewpoint of storage stability and transportation costs. In general, the obtained yeast extract is concentrated, and the resulting concentrate is used as it is, or after further concentration, dried by spray drying or the like, and powdered for commercial use.
On the other hand, the yeast extract has a unique color tone derived from yeast as a raw material. In addition, the yeast extract obtained is colored by reaction conditions in which a proteolytic enzyme, a polysaccharide degrading enzyme, a nucleic acid-forming enzyme, etc., for effectively extracting umami components (free amino acids, nucleic acids, etc.) in yeast are applied. Also, when the obtained extract is concentrated, browning or coloring occurs depending on the concentration method, concentration conditions, and the like.
There are various factors in the browning and coloring of foods, but yeast extract contains free amino acids and reducing sugars such as glucose and fructose, so the reaction between free amino acids and reducing sugars, that is, aminocarbonyl The influence of the reaction is greatly involved. In general, it is said that browning and coloring in the aminocarbonyl reaction greatly affect the amount of free amino acids and the amount and ratio of reducing sugars such as glucose and fructose, the amount of air (oxygen), temperature, and time. Concentration in the production of the extract has a large effect on the browning and coloring of the yeast extract.
For example, in the case of the freezing vacuum concentration method, since the influence of temperature and air (oxygen) is suppressed, a product having the least coloring property and excellent flavor can be obtained. Cost and production energy cost are high.
In recent years, a membrane concentration method performed at room temperature has been developed and used. However, since the osmotic pressure and viscosity increase as the concentration proceeds, the concentration ratio cannot be increased as compared with the evaporation method. Furthermore, there is a problem that it is necessary to prevent germ contamination due to the normal temperature operation, to pay close attention to hygiene control of the membrane and the module, and to require time and expense for cleaning.
Under such circumstances, evaporation concentration, in which heat is applied to remove water, has been generally used as the simplest concentration method for a long time. For example, a method of heating through a steam pipe in a kettle or tank, a method of heating with a stirrer while heating from a jacket of steam or the like on the outside, and a method of heating at normal pressure while stirring, or a method of providing a vacuum device in a kettle or tank, and heating under reduced pressure And the like, and concentrated.
However, for example, to increase the solid content to 60% of the yeast extract having a solid content of 3% immediately after the enzymatic reaction, 20 times the amount of water is used. Need to be removed. Therefore, if the amount is small, it is possible to concentrate in a short time, but it takes a considerable amount of time in industrial production, depending on the amount of amino acids and sugars in the yeast extract, the heating temperature, and the time. When the yeast extract is concentrated in a large amount, the contact portion between the heating section and the contents is constantly in contact, and the coloring property is large. For this reason, various measures such as reducing the presence of air in the manufacturing process, reducing the heating temperature for concentration and sterilization, shortening the heating time, and decolorizing with decolorizing activated carbon have been taken. I can't say enough.
Nevertheless, as a prior art technique for examining browning or coloring in the production process of yeast extract, a method of removing the coloring substance with an ion exchange resin after heating the aminocarbonyl reaction positively (Patent Document 1) 1) is the degree that has been proposed.
[0003]
[Patent Document 1]
International Publication No. 98/46089 pamphlet [0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a production method suitable for industrial production of a yeast extract which minimizes browning and coloring during concentration.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have focused on browning at an industrial production level and a concentration step which is considered to be most involved in coloring, and focused on a concentration method, and have intensively studied the coloring property of a concentrated yeast extract. . As a result, they found that a liquid film falling vacuum concentration method, which is one of the thin film vacuum concentration methods, and in particular, a liquid film falling vacuum concentration method under certain conditions is suitable for the purpose, and completed the present invention. Reached.
[0006]
That is, the present invention
(1) a method for producing a yeast extract, which comprises producing a yeast extract from a self-digested product or an enzymatically decomposed product of the yeast by a circulating liquid membrane falling vacuum concentration method;
(2) The yeast extract extracted from the autolysate or enzymatic degradation product is primarily concentrated by a circulating liquid membrane falling-type vacuum concentration method, and then subjected to a purification step. The production method according to the above (1), wherein the secondary concentration is performed by:
(3) The above (2), wherein the concentration by the circulating liquid film falling-type vacuum concentration method is performed under the conditions of a concentration temperature of 30 to 80 ° C, a degree of vacuum of 30 to 200 Torr, and a viscosity of 1,000 cps / 20 ° C or less of the yeast extract to be concentrated. Manufacturing method,
(4) The production method according to the above (2), wherein the primary concentration is performed up to a solid content concentration of 15 to 35% by weight,
(5) The present invention provides the production method and the like described in (2) above, wherein the purification step is a step of sterilizing, lowering, and then deodorizing.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The autolysate, enzymatic decomposition product or water extract of yeast used is not particularly limited, and may be any obtained from edible yeast by a method known per se.
The edible yeast is also not particularly limited, and may be any of a live yeast and a dried yeast appropriately dried by a method known per se. For example, a wine yeast, a baker's yeast, a sake yeast, a beer yeast, or the like can be used.
The yeast may be used without any pretreatment, or may be used after performing the pretreatment. For example, it may be used after washing with water, or after washing with an acid, an alkali, a lower alcohol or the like, followed by washing with water. Furthermore, for example, it may be used after treatment with a high-pressure homogenizer of 800kg / cm 2 ~5000kg / cm 2 .
[0008]
The circulating liquid film falling-type vacuum concentration method in the present invention is a kind of thin film vacuum concentration method, in which a liquid to be concentrated is heated under a reduced pressure while heating or heating, and a thin film flowing down an appropriate wall surface is vaporized. This is a concentration method in which liquid separation is circulated, and can be performed using, for example, a circulating liquid film falling vacuum concentrator schematically shown in FIG.
As shown in FIG. 1, this apparatus comprises a heating can 1, an evaporating can 2, a circulation pump 3, and a piping section attached thereto, and the heating can 1 is connected to the evaporating can 2 at the bottom thereof. are doing. A plurality of hollow thin tubes 4 extending in the vertical direction are provided in the heating can 1, and a yeast extract supply port 5 is provided at the bottom of the heating can 1 and a circulating extract supply port 6 is provided at the top. A heating steam supply port 8 connected to a steam injector 7 is connected to the upper portion of the heating can 1, a suction port 9 for reducing pressure connected to a steam ejector (not shown), and a steam drain outlet port. 10 are provided. The top 11 of the evaporator is connected to the above-mentioned steam injector 7 and also to a steam booster 13 via a gas-liquid separator 12, and the lower part is provided with a liquid phase reservoir 14 for storing a gas-liquid separated liquid phase. The liquid phase reservoir 14 is connected to the circulation extract supply port 6 via the circulation pump 3. A concentrated extract extraction pipe 15 is connected between the circulation pump 3 and the circulation extract supply port 6.
To concentrate the yeast extract using this device, the yeast extract is supplied quantitatively into the device from the supply port 5 in an amount commensurate with the amount of evaporation. The inside of the apparatus is maintained at a predetermined temperature and reduced pressure by the steam supplied from the steam supply port 8 and the exhaust from the suction port 9. The supplied yeast extract reaches the top of the heating can 1 via the liquid phase reservoir 14 in the evaporator 2, the circulating pump 3 and the circulating extract supply port 6, and is distributed therefrom to each capillary 4, and the inner wall of the capillary 4. And flows down in the form of a thin film. The yeast extract is heated in this tube, the water evaporates and a mixture of gas and liquid phases is formed. The mixture of the gas phase and the liquid phase that has reached the bottom of the heating can 1 then moves into the evaporator 2 where gas-liquid separation occurs, and the separated gas phase rises to the top 11 of the evaporator 2 and Are collected in a liquid phase reservoir 14. The gas phase is discharged out of the apparatus through a gas-liquid separator (drain separator) 12 and a steam booster. On the other hand, the collected liquid phase reaches the top of the heating can 1 via the circulation pump 3 and the circulation extract supply port 6. In this way, the liquid phase circulates in the apparatus and is concentrated. The concentrated liquid having a predetermined concentration is taken out from the concentrated extract take-out pipe 15.
[0009]
The concentration condition is selected from a range in which browning and coloring can be prevented as much as possible with good production efficiency by appropriately adjusting the heating temperature and the degree of vacuum according to the throughput of the yeast extract to be concentrated. For example, when treating 5 to 15 tons of yeast extract, using an apparatus as shown in FIG. 1, usually at a temperature of 40 to 80 ° C., preferably 45 to 60 ° C., and a degree of vacuum of 30 to 200 Torr, preferably 30 to 200 torr By conducting the process at 150 Torr and at a viscosity of 1,000 cps / 20 ° C. or less, preferably 800 cps / 20 ° C. or less, for the yeast extract to be concentrated, it is possible to perform the concentration with good production efficiency while minimizing browning and coloring. If the temperature is 40 ° C. or less, the coloring is small, but depending on the conditions such as the degree of vacuum, the evaporation of water is delayed and a long time is required for concentration. Conversely, if the temperature is 80 ° C. or more, the concentration time is shortened. It is not suitable because coloring proceeds even under reduced pressure. It is difficult to reduce the degree of vacuum to 30 Torr or less over a long period of time at the production level. Also, although it depends on the component composition of the yeast extract and the heating temperature, the viscosity increases as it is concentrated, and becomes extremely viscous at a solid concentration of 60% and a temperature of 40 ° C. or less, depending on the capacity of the circulating pump. Since the speed of the extract flowing down the inner wall surface becomes very slow and the efficiency is not suitable, the concentration is preferably performed at a viscosity of about 1000 cps or less, preferably 800 cps or less.
[0010]
The present invention can be suitably applied to, but is not limited to, enzyme digests of yeast obtained from raw yeast using actinomycete-producing enzymes and basidiomycete-producing enzymes. At this time, it is preferable to decompose first with actinomycete-producing enzymes and then with basidiomycete-producing enzymes. More specifically, the raw yeast is first brought into contact with actinomycetes-producing enzymes and reacted in two stages at different reaction temperatures and pHs to increase the amount of 5′-nucleotides produced. When the basidiomycete-producing enzymes are reacted, a yeast extract having good flavor and smell can be obtained. Hereinafter, the method for producing the yeast extract of the present invention will be described with reference to the case of using the enzyme hydrolyzate obtained as described above as an example. ) Can be similarly performed.
In consideration of industrial productivity, for example, in the case of dry yeast, the raw yeast is usually suspended in water (for example, ion-exchanged water) at a concentration of 5 to 30% by weight, preferably 10 to 25% by weight. Turn cloudy and contact with enzymes. If the concentration of the suspension is too low, the productivity will be reduced. If the concentration is too high, the viscosity will be too high and stirring will be difficult.
As actinomycete-producing enzymes to be used, for example, a strain belonging to the genus Streptomyces is cultured by a method known per se, and a culture containing 5′-phosphate-forming nuclease, deaminase and protease is used as is, or a culture filtrate, Cells, crushed cells, extracts thereof, dried products thereof and the like can be used, or enzymes containing 5'-phosphate-forming nuclease, deaminase and protease as essential constituent enzymes by a method known per se. Can be collected and used crude or as a purified enzyme.
The culture solution is desirably used as a dry enzyme (water content of 10% or less) suitable for industrial production, particularly as a powdered enzyme without reducing the enzyme titer. Examples of the drying method include a method known per se. Examples of a method that does not inactivate the enzyme include a freeze-drying method.
For example, when a dried product obtained by drying a water-soluble portion of a culture solution is used as actinomycete-producing enzymes, it is usually used in an amount of about 0.3 to 1.5% by weight based on yeast. On the basis of this dry matter-converted titer, a dried solution of the water-soluble portion of the culture solution can be appropriately used by describing with water, and when used as the culture solution itself, it is usually used for yeast. It can be used at a ratio of about 7.5 to 37.5% by weight.
In addition, for example, two or more cultures having different titers or purified enzymes are mixed, or diluted with water or the like, and if necessary, the titer is adjusted using commercially available enzymes. You can also.
[0011]
As the basidiomycetes-producing enzymes, for example, basidiomycetes belonging to the genus Pleurotus, preferably cultivating Hilotake by a method known per se, a culture filtrate containing protease, cellulase and glucanase, an extract thereof and the like can be used. Alternatively, an enzyme containing protease, cellulase and glucanase as essential constituent enzymes can be collected by a method known per se and used as a crude enzyme or as a purified enzyme.
Like the actinomycetes-producing enzymes, the basidiomycetes-producing enzymes are desirably used in powder form without decreasing the enzyme titer.
When a dried product obtained by drying a water-soluble portion of a culture solution is used as the basidiomycete-producing enzymes, for example, it is usually used in an amount of about 0.3 to 1.5% by weight based on yeast. On the basis of this dry matter-converted titer, a dried solution of the water-soluble portion of the culture solution can be appropriately used by describing with water, and when used as the culture solution itself, it is usually used for yeast. It can be used at a ratio of about 7.5 to 37.5% by weight.
In addition, for example, two or more cultures having different titers or purified enzymes are mixed, or diluted with water or the like, and if necessary, the titer is adjusted using commercially available enzymes. You can also.
[0012]
In order to carry out the production method of the present invention, for example, radiation is applied to a 5 to 25% by weight aqueous suspension (pH 6.5 to 8.0) of edible dry yeast (eg, wine yeast, baker's yeast, sake yeast, brewer's yeast). The dried product of the bacteria-producing enzymes is brought into contact at 40 to 60 ° C at a rate of 0.3 to 1.5% by weight (based on solid content) for 3 to 8 hours, and the solution is then brought to 62 to 68 ° C for After holding for a time, the pH is adjusted to 2.0-5.5. This is contacted with a dried product of basidiomycete-producing enzymes at 45 to 55 ° C. at a rate of 0.3 to 1.5% by weight (based on solid content) for 8 to 15 hours.
The pH is adjusted according to a conventional method using an acid (eg, hydrochloric acid, etc.) or an alkali (eg, sodium hydroxide, etc.) as necessary.
The obtained slurry of the enzyme decomposition product of yeast is passed through a ceramic membrane having an average pore size of 0.05 to 0.5 μm and subjected to microfiltration to separate the insoluble matter such as yeast from the yeast extract part. The microfiltration can be performed according to a method known per se, and such an alumina ceramic membrane can be commercially obtained from, for example, NGK Insulators, Ltd. or Noritake Company Limited. Further, the filtration temperature is not particularly limited.
[0013]
Then, the yeast extract is primarily concentrated to a solid concentration of 10 to 50% by weight, preferably 15 to 35% by weight, using the above-mentioned circulating liquid film falling vacuum concentrator.
The conditions for the primary concentration are not particularly limited, but can be appropriately selected from the above-mentioned conditions.
[0014]
In the present invention, it is preferable that the obtained concentrated liquid is further subjected to a purification step and then subjected to secondary concentration.
The purification step may be a purification step usually employed in the production of yeast extract, and includes, for example, a sterilization step, a lowering step, and a deodorization step.
The sterilization is not limited, but heat sterilization can be adopted. For example, it can be performed by rapidly heating to 90 ° C. and holding for 5 to 15 minutes. Then, it is cooled down to 60 ° C. or lower to lower it, and is subjected to activated carbon treatment to deodorize. In the activated carbon treatment, 0.5 to 10.0% by weight, preferably 1.0 to 5.0% by weight, of activated carbon with respect to the solid content of the concentrated liquid is added to the concentrated liquid, dispersed, and then subjected to a method known per se. Filter. The filtration temperature is not particularly limited.
As activated carbon, a wood carbonized product was used as a raw material, activated at 950 to 1100 ° C by a steam activation method, having a pore volume of 0.2 to 0.6 ml / g and a pore diameter of 1 to 30 mm, based on the solid content. It is preferable to use it after adding 1 to 5% by weight.
The secondary concentration is performed using the above-mentioned circulating liquid film falling vacuum concentrator under the above-described concentration conditions until the solid concentration of the yeast extract part becomes 50% by weight or more, preferably 60% by weight or more. Is desirable.
[0015]
The yeast extract obtained by the production method of the present invention can be used in the same manner as a known yeast extract. For example, the obtained yeast extract is processed into agricultural processed foods (including processed products such as vegetables, fruits, and grains). Processed marine products (including processed products such as seafood and seaweed), processed livestock products (including processed products such as eggs and dairy products), dashi, soup, sauce, soy sauce, miso, and seasonings Can be.
In particular, it is most suitable for processed foods that emphasize whiteness, such as white sauce and cream soup.
[0016]
【Example】
The present invention will be described in more detail with reference to the following Reference Examples and Examples, but the present invention is not limited thereto.
[0017]
Reference Example 1
Preparation of Actinomycete-producing Enzymes (1) One platinum loop of a spore suspension (10 7 cells / ml or more) of Streptomyces aureus IFO 3175 was used as a seed medium (soluble corn starch 30 g / l, corn steep. Liquor 30 g / l, ammonium sulfate 1 g / l, magnesium sulfate 0.5 g / l, calcium carbonate 3 g / l, pH 7.0) were inoculated into 20 ml, and cultured at 28 ° C. and 200 rpm for 24 hours to obtain a seed culture end solution. .
(2) 1 ml of the obtained seed culture-finished liquid was used as a main medium (soluble starch 30 g / l, corn steep liquor 15 g / l, ammonium sulfate 1 g / l, magnesium sulfate 0.5 g / l, calcium carbonate 3 g / l, pH 7) .0), transplanted into 20 ml, and cultured at 28 ° C. and 200 rpm for 40 hours to obtain a main culture termination solution.
(3) The obtained main culture termination solution (20 ml) was stirred at 28 ° C. and 200 rpm for 3 hours, then 1.2 ml of isobutanol was added, and the mixture was further stirred at 28 ° C. and 200 rpm for 3 hours to lyse the cells to obtain an enzyme-treated solution. Was. This was dried at a temperature of 80 ° C. or lower to obtain a dry powder of actinomycetes-producing enzymes.
[0018]
Preparation of Hiitake Mushroom-producing Enzymes (1) 2 ml of a spore suspension (10 7 cells / ml or more) of Hiitake mushroom (Trametes sanguinea) was added to a seed medium (calcium chloride 1 g / l, magnesium sulfate 1 g / l, ammonium sulfate 2 g / ml, phosphorus sulfate). 2 g / l of monopotassium acid, 50 g / l of sucrose, 30 g / l of corn steep liquor, pH 7.0) were inoculated into 20 ml, and cultured at 28 ° C. and 200 rpm for 48 hours to obtain a seed culture completed solution.
(2) 2 ml of the obtained seed culture end solution was used as a main medium (calcium chloride 1 g / l, magnesium sulfate 1 g / l, ammonium sulfate 2 g / l, monopotassium phosphate 2 g / l, sucrose 80 g / l, defatted soy flour 35 g) / L, pH 6.0), and cultured at 28 ° C and 200 rpm for 96 hours to obtain a main culture termination solution.
The main culture completion solution was filtered with filter paper, and the obtained enzyme solution was vacuum-dried to obtain a dried powder of Hiitake mushroom producing enzymes.
[0019]
Example 1
Beer yeast was suspended in pure water to prepare an 11% suspension, and the pH was adjusted to 7.7 with a 30% sodium hydroxide solution. To this, the actinomycete-producing enzyme solution obtained above was added at a rate of 0.62% based on the yeast solid content, and the mixture was kept at 40 to 60 ° C for 5 hours and then at 65 ° C for 3 hours. The pH at this time was 6.7 to 6.8.
Then, the mixture is cooled to 50 ° C., adjusted to pH 4.0 with 35% hydrochloric acid, and the basidiomycete-producing enzyme obtained above is added at a ratio of 0.6% with respect to the yeast solid content. Reacted.
After completion of the reaction, the mixture was sterilized by heating at 90 ° C. for 10 minutes and cooled to 60 ° C. The reaction solution was filtered through a ceramic membrane having an average pore size of 0.1 to 0.2 µm. At this time, the extract concentration of the supernatant was Bx11.5. The residue was stirred with about three times the amount of pure water, filtered again, and the filtrate was combined with the above filtrate. The pH of this solution was 4.0 and the extract concentration was Bx5 to 6.
This extract is concentrated by heating under normal pressure (1), that is, while stirring (20 rpm) under normal pressure in a 50 ° C. constant temperature water bath (20 rpm) (charged amount: 10 liters), (2) batch-type vacuum concentration method, That is, at a temperature of 50 ° C., under reduced pressure (100 torr) and stirring (20 rpm), concentration by a yas hemisphere type vacuum type sand kneader (preparation amount: 300 liters) or (3) circulation type liquid film falling type vacuum The enrichment method, that is, enrichment at a temperature of 50 ° C., a degree of vacuum of 100 Torr, and a charged amount of 1000 liters, using a circulating liquid film falling vacuum concentrator manufactured by Nichinan Kikai Co., Ltd. having the structure shown in FIG. In each of the concentration methods, the concentration was reduced to a solid content concentration (Bx) of 62.
The coloring degree (degree of browning) of the obtained concentrated extract solution was measured. That is, a sample is prepared by appropriately diluting the concentrated extract solution with pure water to a measurable range, and the absorbance value of this sample at 440 μm is measured with a spectrophotometer (manufactured by Hitachi, Ltd.). The coloring degree was used.
Table 1 shows the results.
[0020]
[Table 1]
Figure 2004254545
[0021]
Example 2
The extract was concentrated in the same manner as in the circulating liquid film falling vacuum concentration method of Example 1. That is, using a circulating liquid film falling type vacuum concentrator manufactured by Nichinan Kikai Co., Ltd. having a structure shown in FIG. 1, an extract having a solid content concentration of Bx5.5 was prepared at a temperature of 30 to 70 ° C. and a degree of vacuum of 100 to 500. Concentrated in the range of tall with a charge of 1000 liters. In each concentration, the solid content concentration (Bx) was concentrated to 62, and the degree of coloring was measured in the same manner as in Example 1.
Table 2 shows the results.
[0022]
[Table 2]
Figure 2004254545
[0023]
Example 3
The coloring degree of the commercially available yeast extract concentrate and the yeast extract concentrate obtained by the circulating liquid film falling type vacuum concentration method of Example 1 were measured in accordance with the measurement method of Example 1 and compared.
Table 3 shows the results.
[0024]
[Table 3]
Figure 2004254545
[0025]
As can be seen from Table 1 (Example 1), as shown in Table 1 (concentration by heating under atmospheric pressure at 50 ° C. for 144 hours), putrefaction occurs until the solid content reaches Bx60, and the batch-type vacuum concentration method, that is, the temperature of 50 ° C. Under the conditions of reduced pressure (100 Torr) and stirring (20 rpm), a concentration time three times that of the circulating liquid film falling vacuum concentration method was required, and the degree of coloring was high.
Further, as shown in Table 2 (Example 2), the concentration temperature was changed by a circulating liquid film falling vacuum concentration method and the degree of coloring was measured. As a result, the lower the temperature, the less the coloring.
Further, it is well known that coloring is greatly affected by the amount of sugar and free amino acid. However, as shown in Table 3 (Example 3), the product of the present invention has sugar content and free amino acid equivalent to or higher than those of commercial products. , The degree of coloration was lower than any of the commercially available concentrates.
[0026]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a production method suitable for industrial production of a yeast extract in which browning and coloring during concentration are prevented as much as possible.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an outline of a circulating liquid film falling vacuum concentrator used in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Heating can 2 ... Evaporation can 3 ... Circulation pump
4 ・ ・ ・ Hollow capillary, 5 ・ ・ ・ Yeast extract supply port,
6 ... circulation extract supply port, 7 ... steam injector,
8 ... Steam supply port, 9 ... Suction port, 10 ... Steam drain drain port,
11 ... top of evaporator, 12 ... gas-liquid separator (drain separator),
13: steam booster, 14: liquid phase reservoir,
15 ... Concentrated extract extraction pipe

Claims (5)

酵母の自己消化物または酵素分解物から酵母エキスを製造するに際し、酵母エキスの濃縮を循環式液膜流下型真空濃縮法で行うことを特徴とする酵母エキスの製造方法。A method for producing a yeast extract, comprising, when producing a yeast extract from a self-digested or enzymatically decomposed product of yeast, concentrating the yeast extract by a circulating liquid membrane falling vacuum concentration method. 自己消化物または酵素分解物から抽出された酵母エキスを循環式液膜流下型真空濃縮法で一次濃縮し、ついで精製工程に付した後、さらに、循環式液膜流下型真空濃縮法で二次濃縮する請求項1記載の製造方法。The yeast extract extracted from the autolysate or enzymatic degradation product is primarily concentrated by a circulating liquid membrane falling vacuum concentration method, and then subjected to a purification step. The production method according to claim 1, wherein the concentration is performed. 循環式液膜流下型真空濃縮法による濃縮を、濃縮温度30〜80℃、真空度30〜200トール、濃縮する酵母エキスの粘度1000cps/20℃以下の条件で行う請求項2記載の製造方法。The production method according to claim 2, wherein the concentration by the circulating liquid film falling-type vacuum concentration method is performed under the conditions of a concentration temperature of 30 to 80 ° C, a degree of vacuum of 30 to 200 Torr, and a viscosity of 1,000 cps / 20 ° C or less of the yeast extract to be concentrated. 一次濃縮を固形分濃度15〜35重量%まで行う請求項2記載の製造方法。3. The method according to claim 2, wherein the primary concentration is performed up to a solid concentration of 15 to 35% by weight. 精製工程が、殺菌、おり下げ、ついで脱臭を行う工程である請求項2記載の製造方法。3. The method according to claim 2, wherein the refining step is a step of sterilizing, lowering and then deodorizing.
JP2003047198A 2003-02-25 2003-02-25 Method for producing yeast extract Pending JP2004254545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003047198A JP2004254545A (en) 2003-02-25 2003-02-25 Method for producing yeast extract

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003047198A JP2004254545A (en) 2003-02-25 2003-02-25 Method for producing yeast extract

Publications (1)

Publication Number Publication Date
JP2004254545A true JP2004254545A (en) 2004-09-16

Family

ID=33113503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003047198A Pending JP2004254545A (en) 2003-02-25 2003-02-25 Method for producing yeast extract

Country Status (1)

Country Link
JP (1) JP2004254545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115180A (en) * 2008-11-18 2011-06-16 Asahi Breweries Ltd Method for producing yeast containing glutamic acid at high concentration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115180A (en) * 2008-11-18 2011-06-16 Asahi Breweries Ltd Method for producing yeast containing glutamic acid at high concentration
US9005683B2 (en) 2008-11-18 2015-04-14 Asahi Group Holdings, Ltd. Method for producing yeast with high glutamic acid content

Similar Documents

Publication Publication Date Title
EP3451856B1 (en) Methods for the production and use of myceliated high protein food compositions
RU2233599C2 (en) METHOD FOR PRODUCING OF COMPOSITION CONTAINING WATER-SOLUBLE β-GLUCAN, (VERSIONS) AND PRODUCTS OBTAINED THEREFROM
EP0417481A1 (en) Process for preparing a soy sauce
TWI720202B (en) Fermented seasoning containing nucleic acid and its manufacturing method
US20050054058A1 (en) Process for producing nucleic acid-rich yeast extract and nucleic acid-rich yeast extract
JP2009161448A (en) Extract from malt root, method of producing the same, and fermentation promoter for microorganism comprising the same
SK122997A3 (en) Method for the preparation of fermented protein koji
CN1544646A (en) Bitterless soybean polypeptide and its production method
JP2022535695A (en) Yeast extract rich in trehalose
JPH0568235B2 (en)
JP2004254545A (en) Method for producing yeast extract
CN102659566A (en) Production technology of medicinal anhydrous citric acid
CN104351338A (en) Preparation method of agrocybe cylindracea yogurt
JP2002355008A (en) Method for producing yeast essence
JP2001327263A (en) Method for extracting mushroom ingredient
JP3458337B2 (en) How to make fish sauce
CN1235780A (en) Method for preparing composite seasoning juice by using glutamic acid thallus
JPH11137207A (en) Fish-based seasoning and its production
US20040258800A1 (en) Brewer&#39; s yeast or brewer&#39; s yeast extract with improved flavor, process for producing the same and flavor improving agent therefor
JP3791681B2 (en) Beverage containing acetic acid
JP2001046013A (en) Method for producing seasoning liquid
JPS5820166A (en) Preparation of saccharified liquid of young bamboo and young bamboo liquor
JPH1132787A (en) Production of menaquinone-containing product, and food and drink containing the same product
JP2009213395A (en) Method for producing yeast extract
KR100421606B1 (en) A method to make soysauce made from bean-cured refuse by acid-decomposition and its soysauce