JP2004254333A - Method for controlling wavelength dispersion and method for detecting amount of dispersion - Google Patents

Method for controlling wavelength dispersion and method for detecting amount of dispersion Download PDF

Info

Publication number
JP2004254333A
JP2004254333A JP2004099702A JP2004099702A JP2004254333A JP 2004254333 A JP2004254333 A JP 2004254333A JP 2004099702 A JP2004099702 A JP 2004099702A JP 2004099702 A JP2004099702 A JP 2004099702A JP 2004254333 A JP2004254333 A JP 2004254333A
Authority
JP
Japan
Prior art keywords
dispersion
signal
frequency
intensity
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004099702A
Other languages
Japanese (ja)
Other versions
JP3897768B2 (en
Inventor
Hiromi Ooi
寛己 大井
Joji Ishikawa
丈二 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2004099702A priority Critical patent/JP3897768B2/en
Publication of JP2004254333A publication Critical patent/JP2004254333A/en
Application granted granted Critical
Publication of JP3897768B2 publication Critical patent/JP3897768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To supervise and control a wavelength dispersion of a transmission line which transmits an optical signal essentially not including a clock component such as a RZ signal and an OTDM signal, and control a dispersion of a transmission line without interrupting a system operation. <P>SOLUTION: When a bit rate of an optical signal is Bb/s, a band pass filter 42 extracts BHz component from a base band signal obtained by a receiver side light receiving device 40 and a variable dispersion compensation device 34 is controlled so as to minimize an intensity of the extracted signal. Since the control is performed under system operation, a low-frequency signal from an oscillator 52 is superimposed on a control signal of the variable dispersion compensation device 34. A band pass filter 60 extracts a low frequency component from a detection output of the BHz component and a phase of both its extracted signal and a low-frequency signal from an oscillator 52 is compared and an amount of a dispersion compensation is automatically controlled depending on the result. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、伝送路の波長分散の制御のための方法と装置及び分散量検出方法に関する。
現在基幹系光通信において10Gb/s光伝送システムが実用化段階にあるが、急激な情報量の増加に伴い、更なる光通信システムの大容量化が望まれている。その方式としては時分割多重(光時分割多重を含む)および波長多重が候補として考えられており、時分割多重方式においては、40Gb/sシステムの研究も国内外で活発になってきている。
The present invention relates to a method and an apparatus for controlling chromatic dispersion of a transmission line, and a dispersion amount detection method.
At present, a 10 Gb / s optical transmission system is being put to practical use in backbone optical communication. With the rapid increase in the amount of information, a further increase in the capacity of the optical communication system is desired. Time division multiplexing (including optical time division multiplexing) and wavelength multiplexing have been considered as candidates, and studies on the 40 Gb / s system in the time division multiplexing method have been active in Japan and overseas.

本発明は、時分割多重方式による大容量光伝送システムを実現するための、伝送路の波長分散の監視および制御技術に言及する。   The present invention refers to a technique for monitoring and controlling chromatic dispersion of a transmission line for realizing a large-capacity optical transmission system using a time division multiplexing method.

40Gb/sシステムにおける伝送距離を制限する要因の一つとして、波長分散(群速度分散:GVD)がある。分散耐力がビットレートの二乗に反比例するために、10Gb/sでは約800ps/nmであった分散耐力が、40Gb/sでは1/16の約50ps/nmと厳しくなる。   One of the factors that limit the transmission distance in a 40 Gb / s system is chromatic dispersion (group velocity dispersion: GVD). Since the dispersion proof stress is inversely proportional to the square of the bit rate, the dispersion proof strength is about 800 ps / nm at 10 Gb / s, but becomes as severe as about 16 ps / nm at 40 Gb / s.

測定結果によれば、信号光波長が1.55μm(石英系ファイバにおける伝送損失が最小である波長)、入力信号光パワーが+3dBm、ビットレート40Gb/sの光時分割多重(OTDM)信号(後述)を、零分散波長が1.3μm(現在世界で最も広く布設されているもの)の単一モードファイバ(SMF)で50kmの距離を伝送し、分散補償ファイバ(DCF)で分散補償を行なったとき、パワーペナルティ(伝送による光信号の受信感度劣化)を1dB以下に抑えるために許される分散補償値の範囲の幅(分散補償トレランス)は30ps/nmであった。このときに必要な分散補償値は930ps/nm(18.6ps/nm/km×50km)であるから、930±15ps/nmと、ほぼ100%に近い精度で分散補償を行なわなければならないことがわかる。   According to the measurement results, an optical time-division multiplexing (OTDM) signal having a signal light wavelength of 1.55 μm (the wavelength at which the transmission loss in the silica-based fiber is minimum), an input signal light power of +3 dBm, and a bit rate of 40 Gb / s (described later) ) Was transmitted over a distance of 50 km over a single mode fiber (SMF) having a zero-dispersion wavelength of 1.3 μm (which is currently the most widely laid in the world), and dispersion compensation was performed using a dispersion compensation fiber (DCF). At this time, the width (dispersion compensation tolerance) of the range of the dispersion compensation value allowed to suppress the power penalty (reception sensitivity deterioration of the optical signal due to transmission) to 1 dB or less was 30 ps / nm. Since the dispersion compensation value required at this time is 930 ps / nm (18.6 ps / nm / km × 50 km), it is necessary to perform dispersion compensation with an accuracy close to 100%, which is 930 ± 15 ps / nm. Understand.

一方、伝送路分散は温度変化等の経時変化によって変わる。例えば、SMF50km伝送で、−50〜100℃の温度変化がある場合の伝送路分散の変化量は以下のように見積もられる。
(伝送路零分散波長の温度依存性)×(温度変化)×(分散スロープ)×(伝送距離)
=0.03nm/℃×150℃×0.07ps/nm2 /km×50km
=16ps/nm
これは、上記分散補償トレランスと比較しても無視出来ない値である。よって、40Gb/s以上の大容量伝送においては、伝送路分散を常時監視し、総分散を零に合わせ込む必要がある。その点については、1.55μm帯における波長分散の小さい分散シフトファイバ(DSF)を用いた場合でも同じである。
On the other hand, the dispersion of the transmission line changes due to a temporal change such as a temperature change. For example, in SMF 50 km transmission, the amount of change in transmission line dispersion when there is a temperature change of −50 to 100 ° C. is estimated as follows.
(Temperature dependence of transmission line zero dispersion wavelength) x (temperature change) x (dispersion slope) x (transmission distance)
= 0.03nm / ℃ × 150 ℃ × 0.07ps / nm 2 / km × 50km
= 16ps / nm
This is a value that cannot be ignored even when compared with the dispersion compensation tolerance. Therefore, in large-capacity transmission of 40 Gb / s or more, it is necessary to constantly monitor the transmission line dispersion and adjust the total dispersion to zero. The same applies to the case where a dispersion-shifted fiber (DSF) having a small chromatic dispersion in the 1.55 μm band is used.

自動分散等化システム(総分散を自動的に零にフィードバック制御するシステム)を開発する場合に問題となるのは、次の点である。
(i)可変分散補償器の実現
(ii)伝送路分散(または分散補償後の総分散量)の検出方法
(iii )分散補償量のフィードバック制御の方法
(i)に関しては、簡単には、分散補償量の異なるDCFを光スイッチで切換えて不連続に分散補償量を変えることが考えられる。連続的に可変する方法としては、現在までにファイバグレーティングに応力(M. M. Ohm et al., Tunable grating dispersion using a piezoelectric stack, OFC '97 Technical Digest, WJ3, pp.155-156)や温度傾斜(Sergio Barcelos et al., Characteristics of chirped fiber gratings for dispersion compensation, OFC '96 Technical Digest, WK12, pp.161-162)を与える方法、PLC(Planer Lightwave Circuit)に温度変化による位相変化を与える方法(K. Takiguchi, et al., Variable Group-Delay Dispersion Equalizer Using Lattice-Form Programmable Optical Filter on Planar Lightwave Circuit, IEEE J. Selected Topics in Quantum Electronics, ,1996, pp.270-276) で分散補償量を変化させることが試みられている。可変分散補償器を用いる代わりに、波長可変光源を用いて伝送路分散を変化させる方法も考えられる。この場合、光フィルタの中心波長も同時に連動変化させる必要がある。
When developing an automatic dispersion equalization system (a system that automatically performs feedback control of the total dispersion to zero), the following points are problematic.
(I) Realization of tunable dispersion compensator (ii) Detection method of transmission line dispersion (or total dispersion amount after dispersion compensation) (iii) Feedback control method of dispersion compensation amount It is conceivable to change the dispersion compensation amount discontinuously by switching DCFs having different compensation amounts with an optical switch. As a method of continuously changing, a stress (MM Ohm et al., Tunable grating dispersion using a piezoelectric stack, OFC '97 Technical Digest, WJ3, pp.155-156) and a temperature gradient (Sergio Barcelos et al., Characteristics of chirped fiber gratings for dispersion compensation, OFC '96 Technical Digest, WK12, pp. 161-262), method of giving phase change due to temperature change to PLC (Planer Lightwave Circuit) (K. Takiguchi, et al., Variable Group-Delay Dispersion Equalizer Using Lattice-Form Programmable Optical Filter on Planar Lightwave Circuit, IEEE J. Selected Topics in Quantum Electronics, 2 , 1996, pp.270-276) Have been tried. Instead of using a tunable dispersion compensator, a method of changing the transmission line dispersion using a tunable light source is also conceivable. In this case, it is necessary to simultaneously change the center wavelength of the optical filter.

(ii)に関しては、複数の異なる波長の光をファイバに入力し、出力光間の群遅延差や位相差を測定するパルス法や位相法が従来から用いられてきた。しかし、これらの方法をシステム運用時に行う場合、分散量の測定時にシステム運用を中断するか、信号光とは別の波長の測定光を用いて波長多重する必要がある。後者の場合、伝送路分散が波長によって異なるため、測定光での分散量の測定結果から信号光での分散量を推定する必要が生じるという問題がある。“A. Sano et al., Automatic dispersion equalization by monitoring extracted-clock power level in a 40-Gbit/s, 200-km Transmission line, ECOC '96, TuD. 3.5, 1996, pp.207-210”には、受信した光信号からクロック成分(データ信号のビットレートがBb /sであるときBHz成分)のパワーを検出し、それが最大となるように分散補償量を制御することが開示されている。しかしながら、零復帰(RZ)信号の場合にはクロック成分が含まれているが、非零復帰(NRZ)信号、または複数のRZ信号を互いの裾が重なり合うようにして時分割多重したOTDM信号のように零分散時にクロック成分強度が最大とならない場合にはこの手法を適用することはできない。   Regarding (ii), a pulse method or a phase method of inputting a plurality of lights of different wavelengths into a fiber and measuring a group delay difference or a phase difference between output lights has been conventionally used. However, when these methods are performed during system operation, it is necessary to interrupt the system operation when measuring the amount of dispersion or to perform wavelength multiplexing using measurement light having a wavelength different from the signal light. In the latter case, there is a problem that it is necessary to estimate the amount of dispersion in the signal light from the measurement result of the amount of dispersion in the measurement light because the transmission line dispersion differs depending on the wavelength. “A. Sano et al., Automatic dispersion equalization by monitoring extracted-clock power level in a 40-Gbit / s, 200-km Transmission line, ECOC '96, TuD. 3.5, 1996, pp.207-210” Discloses that a power of a clock component (a BHz component when the bit rate of a data signal is Bb / s) is detected from a received optical signal, and the amount of dispersion compensation is controlled so as to maximize the detected power. However, although a clock component is included in the case of a return-to-zero (RZ) signal, a non-return-to-zero (NRZ) signal or an OTDM signal obtained by time-division multiplexing a plurality of RZ signals so that their bottoms overlap each other is provided. As described above, when the clock component intensity does not become maximum at the time of zero dispersion, this method cannot be applied.

(iii )に関しては、システム運用を中断して可変分散補償器や波長可変光源によって総分散量を広範囲に掃引し、総分散量が零になる設定点を検出した後でその値に設定する方法が考えられる。しかし、システム運用を中断する必要無く常時制御できる方法が望ましい。   Regarding (iii), a method of suspending the system operation, sweeping the total dispersion over a wide range by using a tunable dispersion compensator or a tunable light source, and detecting a set point at which the total dispersion becomes zero, and then setting the value to that value. Can be considered. However, a method that can always be controlled without interrupting the system operation is desirable.

したがって本発明の目的は、NRZ信号、複数のRZ信号を互いの裾が重なり合うようにして多重化したOTDM信号のように零分散時にクロック成分強度が最大とならない光信号について伝送路分散を制御するための方法と装置を提供することにある。   Accordingly, an object of the present invention is to control transmission line dispersion for an optical signal whose clock component intensity does not become maximum at the time of zero dispersion, such as an OTDM signal obtained by multiplexing an NRZ signal and a plurality of RZ signals so that the skirts overlap each other. To provide a method and apparatus for the same.

本発明の他の目的は、システム運用を中断することなく伝送路分散を制御するための方法と装置および分散量検出方法を提供することにある。   It is another object of the present invention to provide a method and apparatus for controlling transmission line dispersion without interrupting system operation, and a dispersion amount detection method.

本発明によれば、データ信号で変調された光信号を伝送する伝送路の波長分散を制御する分散制御方法であって、該伝送路で伝送された光信号から特定の周波数の成分の強度を検出し、検出された特定周波数成分の強度が極小となるように伝送路の総分散量を制御するステップを具備する分散制御方法が提供される。   According to the present invention, there is provided a dispersion control method for controlling chromatic dispersion of a transmission line for transmitting an optical signal modulated with a data signal, wherein the intensity of a component of a specific frequency is determined from the optical signal transmitted on the transmission line. There is provided a dispersion control method including a step of detecting and controlling a total dispersion amount of a transmission line such that the intensity of the detected specific frequency component is minimized.

本発明によれば、データ信号で変調された光信号を伝送する伝送路の波長分散を制御する分散制御方法であって、総分散量の制御信号に低周波信号を重畳し、低周波信号が重畳された制御信号に従って伝送路の総分散量を変化させ、該伝送路で伝送された光信号から特定周波数の成分の強度を検出し、特定周波数成分の検出信号から前記低周波信号と同じ周波数の成分を抽出し、抽出された周波数成分の位相と該低周波信号の位相を比較し、該位相比較結果に基いて前記総分散量の制御信号を生成するステップを具備する分散制御方法もまた提供される。   According to the present invention, there is provided a dispersion control method for controlling chromatic dispersion of a transmission line for transmitting an optical signal modulated with a data signal, wherein a low-frequency signal is superimposed on a control signal of a total dispersion amount, and the low-frequency signal is The total dispersion of the transmission line is changed in accordance with the superimposed control signal, the intensity of a specific frequency component is detected from the optical signal transmitted through the transmission line, and the same frequency as the low frequency signal is detected from the detection signal of the specific frequency component. A dispersion control method comprising the steps of: extracting a component of the frequency component; comparing the phase of the extracted frequency component with the phase of the low-frequency signal; and generating a control signal of the total variance based on the phase comparison result. Provided.

本発明によれば、データ信号で変調された光信号を伝送する伝送路の分散量を検出する方法であって、該伝送路で伝送された光信号から特定の周波数の成分の強度を検出し、検出された特定周波数成分の強度から伝送路の総分散量を決定するステップを具備する分散検出方法もまた提供される。
本発明によれば、データ信号で変調された光信号を伝送する伝送路の波長分散を制御する分散制御装置であって、該伝送路で伝送された光信号から特定の周波数の成分の強度を検出する光検出器と、検出された特定周波数成分の強度が極小となるように伝送路の総分散量を制御する分散制御手段とを具備する分散制御装置もまた提供される。
According to the present invention, there is provided a method for detecting the amount of dispersion of a transmission line for transmitting an optical signal modulated with a data signal, wherein the intensity of a component of a specific frequency is detected from the optical signal transmitted on the transmission line. And determining the total dispersion amount of the transmission path from the detected intensity of the specific frequency component.
According to the present invention, there is provided a dispersion control device for controlling chromatic dispersion of a transmission line for transmitting an optical signal modulated with a data signal, wherein the intensity of a component of a specific frequency is determined from the optical signal transmitted on the transmission line. There is also provided a dispersion control device including a photodetector to be detected and dispersion control means for controlling the total dispersion amount of the transmission line so that the intensity of the detected specific frequency component is minimized.

本発明によれば、データ信号で変調された光信号を伝送する伝送路の波長分散を制御する分散制御装置であって、総分散量の制御信号に低周波信号を重畳する低周波重畳回路と、低周波信号が重畳された制御信号に従って伝送路の総分散量を変化させる分散可変手段と、該伝送路で伝送された光信号から特定周波数の成分の強度を検出する光検出器と、特定周波数成分の検出信号から前記低周波信号と同じ周波数の成分を抽出する信号抽出回路と、抽出された周波数成分の位相と該低周波信号の位相を比較する位相比較回路と、該位相比較回路の出力に基いて前記総分散量の制御信号を生成する制御信号生成回路とを具備する分散制御装置もまた提供される。   According to the present invention, there is provided a dispersion control device that controls chromatic dispersion of a transmission line that transmits an optical signal modulated with a data signal, and a low-frequency superimposing circuit that superimposes a low-frequency signal on a control signal of a total dispersion amount. A variable dispersion means for changing the total amount of dispersion of a transmission line according to a control signal on which a low-frequency signal is superimposed; a photodetector for detecting the intensity of a specific frequency component from an optical signal transmitted on the transmission line; A signal extraction circuit that extracts a component having the same frequency as the low-frequency signal from the detection signal of the frequency component; a phase comparison circuit that compares the phase of the extracted frequency component with the phase of the low-frequency signal; And a control signal generation circuit for generating a control signal of the total amount of dispersion based on an output.

本発明によれば、mビット/秒のデータ信号で振幅変調されたn個の光信号を時分割多重化して得られた、n・mビット/秒のデータ信号で変調された時分割多重光信号を光ファイバ伝送路に送信し、光ファイバ伝送路より受信した前記時分割多重光信号から、n・mヘルツ、またはmヘルツの周波数成分を抽出し、抽出したn・mヘルツ、またはmヘルツの周波数成分がそれぞれ極小値または極大値を示すように、上記光ファイバ伝送路の分散を可変にすることを特徴とする光ファイバ伝送路の分散制御方法もまた提供される。   According to the present invention, a time-division multiplexed optical signal modulated by an nm bit / second data signal obtained by time-division multiplexing of n optical signals amplitude-modulated by an m-bit / second data signal. A signal is transmitted to an optical fiber transmission line, and a frequency component of nmhertz or mhertz is extracted from the time-division multiplexed optical signal received from the optical fiber transmission line, and the extracted nmhertz or mhertz is extracted. A dispersion control method for an optical fiber transmission line, characterized in that the dispersion of the optical fiber transmission line is made variable so that the frequency components of the optical fiber transmission line indicate a minimum value or a maximum value, respectively.

本発明によれば、時分割多重化された、mビット/秒のデータ信号で振幅変調されたn個の光信号を光ファイバ伝送路から受信する手段と、受信した前記時分割多重化された光信号から、n・mヘルツ、またはmヘルツの周波数成分を抽出する手段と、抽出したn・mヘルツ、またはmヘルツの周波数成分がそれぞれ極小値または極大値を示すように、上記光ファイバ伝送路の分散量を制御する手段とを備えたことを特徴とする光ファイバ伝送路の分散制御装置もまた提供される。   According to the present invention, means for receiving, from an optical fiber transmission line, n optical signals time-division multiplexed and amplitude-modulated with an m-bit / second data signal, and the time-division multiplexed signal received A means for extracting a frequency component of nmhertz or mhertz from the optical signal; and transmitting the optical fiber so that the extracted frequency component of nmhertz or mhertz indicates a minimum value or a maximum value, respectively. Means for controlling the amount of dispersion of the optical fiber transmission line.

データ信号のビットレートが40GHz のOTDM信号、NRZ光信号、RZ光信号(デューティ50%)、およびRZ光信号(デューティ25%)のベースバンドスペクトル中の40GHz 成分強度の総分散依存性の計算機シミュレーションの結果をそれぞれ図1〜4に示す。図1〜4には振幅方向のアイ開口度についても示してある。入力光のパワーは平均で−5dBm,SMF長は50kmであり、SMFに直列に接続したDCFの分散量を変えることにより、総分散量を変えた。   Computer simulation of total dispersion dependence of 40 GHz component intensity in baseband spectrum of OTDM signal, NRZ optical signal, RZ optical signal (duty 50%), and RZ optical signal (duty 25%) with data signal bit rate 40 GHz 1 to 4 show the results. 1 to 4 also show the eye opening degree in the amplitude direction. The power of the input light was -5 dBm on average, and the SMF length was 50 km. The total dispersion was changed by changing the dispersion of the DCF connected in series to the SMF.

上記のOTDM信号とは図5に示すような光変調器10から出力される光信号である。図5において、LiNbO3 基板12にTiを熱拡散させて図5に示すような光導波路14を形成し、その上に図5中にハッチングで示す電極パターン16をAuで形成して、1入力2出力光スイッチ18、独立な2系列の光変調器を有するデータ変調部20、位相制御部22および光多重部24が形成される。1入力2出力光スイッチ18の光導波路に連続光を入力し、2つの電極に位相差が180°の20GHz クロックを印加すると、図6の(a)(b)欄に示す互いに逆相の2系統の20GHz 光クロックが光スイッチ18から出力され、データ変調部20の2つの光変調器へ入力される。2つの光変調器のそれぞれには20Gb/sのデータ信号が印加されて図6の(c)(d)欄に示す2系列のRZ信号がデータ変調器20から出力される。位相制御部22では2光波間の位相差が180°になるように光波の位相が調節され、光多重部24で合成される。2光波間の位相差が180°であるので、図6の(e)欄に示すように1が連続するところでは裾部分が打ち消し合ってRZ信号に近い波形になり、それ以外の隣接ビットの少なくとも一方が0になるところではNRZ信号の波形に近くなる。 The OTDM signal is an optical signal output from the optical modulator 10 as shown in FIG. In FIG. 5, Ti is thermally diffused into a LiNbO 3 substrate 12 to form an optical waveguide 14 as shown in FIG. 5, on which an electrode pattern 16 shown by hatching in FIG. A two-output optical switch 18, a data modulator 20 having two independent optical modulators, a phase controller 22, and an optical multiplexer 24 are formed. When continuous light is input to the optical waveguide of the one-input two-output optical switch 18 and a 20 GHz clock having a phase difference of 180 ° is applied to the two electrodes, two opposite phases shown in columns (a) and (b) of FIG. The 20 GHz optical clock of the system is output from the optical switch 18 and input to the two optical modulators of the data modulator 20. A data signal of 20 Gb / s is applied to each of the two optical modulators, and two series of RZ signals shown in columns (c) and (d) of FIG. The phase control unit 22 adjusts the phases of the light waves so that the phase difference between the two light waves becomes 180 °, and the light waves are combined by the optical multiplexing unit 24. Since the phase difference between the two light waves is 180 °, as shown in the column (e) of FIG. 6, where 1s continue, the skirt portions cancel each other out, resulting in a waveform close to the RZ signal. When at least one becomes zero, the waveform becomes close to the waveform of the NRZ signal.

図3および図4のRZ信号については、総分散量が零になったときに40GHz 成分の強度が最大になることがわかる。これに対して、図1のOTDM信号および図2のNRZ信号では、逆に総分散量が零のときに40GHz 成分強度は極小となっていることがわかる。
参考のためにOTDM及びNRZについて光変調信号ベースハンドスペクトルをそれぞれ図7及び図8に示す。NRZについては40GHz 成分が無く、波長分散を受けた後ではスペクトル拡がりのために40GHz 成分を生じると定性的には考えられる。また、OTDM及びNRZの各々について、−40,0,+40ps/nmの分散を受けた後の波形(等化波形)を図9及び図10に示すが、OTDMとNRZの両方とも波形中心の“1”レベルが分散(正負)を受けた後に高くなり、クロスポイント位置が逆に下がっていることから、1タイムスロットの長さと同じ周期の強度変動が起きており、これによって40GHz 成分を生じることが分かる。
As for the RZ signals of FIGS. 3 and 4, it can be seen that the intensity of the 40 GHz component becomes maximum when the total amount of dispersion becomes zero. On the other hand, in the OTDM signal of FIG. 1 and the NRZ signal of FIG. 2, when the total dispersion amount is zero, the 40 GHz component intensity is minimal.
FIGS. 7 and 8 show optical modulation signal base hand spectra for OTDM and NRZ, respectively, for reference. It is qualitatively considered that the NRZ has no 40 GHz component and that after receiving chromatic dispersion, a 40 GHz component is generated due to spectrum spreading. 9 and 10 show waveforms (equalized waveforms) after receiving dispersion of −40, 0, and +40 ps / nm for each of OTDM and NRZ. Since the 1 "level rises after receiving the variance (positive / negative) and the cross point position decreases, the intensity fluctuation of the same cycle as the length of one time slot occurs, thereby generating a 40 GHz component. I understand.

したがって(ii)の点に関して、一般にビットレートがBb/sで、零分散においてBヘルツ成分が極小となる光信号を伝送する場合に、分散補償量や信号光波長等の可変分散デバイスの制御点を変化させて受光信号中のBHz成分強度が極小となる制御点を検出できれば、総分散量を零に設定できることになる。なお、BHz成分以外にも、BHzの高調波成分など、他の周波数成分を用いて同様の制御を行うことも考えられる。また、OTDM,NRZ波形においては、図1および図2から明らかなように極小点の両側に2つの極大点が対称に存在するから、極小点の検出が難しい場合、2つの極大点を与える可変分散補償デバイスの制御点を検出して、その中点を取ることで総分散量を零に設定することができる。   Therefore, with respect to the point (ii), when transmitting an optical signal whose bit rate is generally Bb / s and the B hertz component is minimized at zero dispersion, the control point of the variable dispersion device such as the amount of dispersion compensation and signal light wavelength is transmitted. If the control point at which the intensity of the BHz component in the received light signal is minimized can be detected, the total dispersion can be set to zero. It is also conceivable to perform similar control using other frequency components such as a harmonic component of BHz other than the BHz component. In addition, in the OTDM and NRZ waveforms, since two maximum points exist symmetrically on both sides of the minimum point as is clear from FIGS. 1 and 2, when it is difficult to detect the minimum point, a variable giving two maximum points is used. By detecting the control point of the dispersion compensating device and taking the midpoint, the total dispersion amount can be set to zero.

さらに、mビット/秒のデータ信号で振幅変調されたn個のRZ信号を時分割多重して得られた、n・mビット/秒のデータ信号で変調されたOTDM信号の場合、前述のようにn・mヘルツ成分を抽出してそれが極小となるように伝送路の総分散を制御する代わりに、mヘルツ成分を抽出してそれが極大になるように伝送路の総分散を制御しても良い。このOTDM信号を構成する速度mビット/秒のRZ信号にはmヘルツ成分が含まれ、図3及び図4から明らかなように、それは総分散量が0のとき極大となるからである。すなわち、この場合、n・mヘルツ成分またはmヘルツ成分を抽出し、それがそれぞれ極小または極大となるように伝送路の総分散量が制御される。   Further, in the case of an OTDM signal modulated by an nm bit / second data signal obtained by time division multiplexing n RZ signals amplitude-modulated with an m bit / second data signal, as described above. Instead of extracting the nm hertz component and controlling the total dispersion of the transmission line so that it becomes a minimum, instead of extracting the m Hertz component and controlling the total dispersion of the transmission line so that it becomes a maximum, May be. The RZ signal having the rate of m bits / sec, which constitutes the OTDM signal, includes an m hertz component, and as is apparent from FIGS. 3 and 4, this is because when the total variance is 0, it becomes a maximum. That is, in this case, the nm dispersion component or the m Hz component is extracted, and the total dispersion amount of the transmission path is controlled such that the component becomes minimum or maximum, respectively.

また、(iii )の点に関しては、BHz成分強度が極小(または極大)となる点を常時検出するために、極小点(または極大点)の回りで総分散量を低周波f0 で微小変動させる方法が考えられる。その方法の原理を図11および12に示す。図11のように分散補償量が極小点(または極大点)にある場合は、BHz成分強度は周波数2×f0 で時間変化し、周波数f0 の成分は含まない。この状態から図12の(b)や(c)のように分散補償量がずれた場合、図12に示すようにBHz成分強度の時間変化には周波数f0 の成分が現れ、しかも(b)と(c)でその成分の符号が逆になる。よって、BHz成分強度から周波数f0 の成分を検知し、その成分が無くなるように総分散量を変化させるようなフィードバックをかけることを考える。その変化の方向は、上記周波数f0 の成分の位相から判別することができる。 Regarding the point (iii), in order to always detect the point where the BHz component intensity is minimal (or maximal), the total variance around the minimal point (or maximal point) is slightly changed at a low frequency f 0. There is a way to do this. The principle of the method is shown in FIGS. When the dispersion compensation amount is at the minimum point (or the maximum point) as shown in FIG. 11, the BHz component intensity changes with time at the frequency 2 × f 0 , and does not include the frequency f 0 component. If the amount of dispersion compensation deviates from this state as shown in FIGS. 12B and 12C, the frequency f 0 component appears in the time change of the BHz component intensity as shown in FIG. And (c), the signs of the components are reversed. Therefore, consider the case where the component of the frequency f 0 is detected from the BHz component intensity, and feedback is performed so as to change the total variance so as to eliminate the component. Direction of the change can be determined from the phase component of the frequency f 0.

また、図1〜4の特性を利用して、総分散量検出を行うこともできる。つまり、特定の周波数成分強度を検出し、その大きさと図1〜4の対応関係から総分散量を求めることができる。但し、特定の周波数成分強度と総分散量が1対1の関係になっていないので、必要に応じてある範囲で可変分散デバイスの制御点を掃引して特性測定を行う。   Further, the total dispersion amount can be detected by using the characteristics shown in FIGS. That is, the intensity of a specific frequency component is detected, and the total variance can be obtained from the magnitude and the correspondence between FIGS. However, since the specific frequency component intensity and the total dispersion amount do not have a one-to-one relationship, the characteristic measurement is performed by sweeping the control points of the variable dispersion device within a certain range as necessary.

以上の分散等化方式および分散検出方式は、時分割多重システムのみならず、波長多重(WDM)システムにも適用可能である。つまり、異なる各波長成分を分離した後に、各成分毎に本発明による分散等化方式および分散検出方式が適用できる。
図13は本発明に係る自動分散等化システムの一実施例を示す。光送信機30からのビットレートBb/sの光信号は光伝送路(SMF)32で伝送された後、可変分散補償器34を経て光受信機36へ入力される。光受信機36へ入力される光信号の一部は光カプラ38で分岐され、受光器40で電気信号に変換される。受光器40の出力から中心周波数がBHzのバンドパスフィルタ42でBHz成分が抽出され、強度検出部44でその強度が検出される。補償量制御部46においては、RZ信号に対してはBHz成分が極大になる方向に、OTDMまたはNRZ波形に対しては、BHz成分が極小になる方向に可変分散補償器34の分散補償量を制御する。なお、ここでは、可変分散補償器34が受信端に配置されているが、送信側や線型中継器中など、他の位置に配置されていても同様の制御が行える。また、mb/sのRZ信号をn個多重したOTDM信号の場合、mnヘルツ成分を極小にする代わりにmヘルツ成分を極大にしても良い。
The above dispersion equalization method and dispersion detection method are applicable not only to a time division multiplexing system but also to a wavelength division multiplexing (WDM) system. That is, after separating the different wavelength components, the dispersion equalization method and the dispersion detection method according to the present invention can be applied to each component.
FIG. 13 shows an embodiment of the automatic distributed equalization system according to the present invention. The optical signal of the bit rate Bb / s from the optical transmitter 30 is transmitted through an optical transmission line (SMF) 32 and then input to an optical receiver 36 via a variable dispersion compensator 34. A part of the optical signal input to the optical receiver 36 is branched by the optical coupler 38 and converted into an electric signal by the optical receiver 40. A BHz component is extracted from the output of the light receiver 40 by a band-pass filter 42 having a center frequency of BHz, and the intensity is detected by an intensity detector 44. The compensation amount controller 46 adjusts the dispersion compensation amount of the tunable dispersion compensator 34 in a direction in which the BHz component is maximized for the RZ signal, and in a direction in which the BHz component is minimized for the OTDM or NRZ waveform. Control. Although the variable dispersion compensator 34 is arranged at the receiving end here, the same control can be performed even if the variable dispersion compensator 34 is arranged at another position such as on the transmitting side or in a linear repeater. Also, in the case of an OTDM signal in which n mb / s RZ signals are multiplexed, the m hertz component may be maximized instead of minimizing the mn hertz component.

図14及び図15に図13の光送信機30、光受信機36の具体例を示す。図14の光送信機30において、光信号生成のための光変調器として図5に示したOTDM変調器10が使用されている。図14には、図5のOTDM変調器10が図5と同一の構成要素に同一の参照番号を用いて機能的に表わされている。
この例では、パラレルに入力される2つの10Gb/sのデータ信号をパラレル/シリアル変換部70で変換して1つの20Gb/sのNRZ信号を得る。この20Gb/sのNRZ信号をドライバ72に入力し、光変調器20を駆動する20Gb/sのドライブ信号を得る。各光変調器20の出力(20Gb/sのRZ光信号)は、位相調整部22で位相調整され(光の位相差が180°になるように位相がずらされる。)た後、それらを光多重部24(光カプラ)にて合波して、1つのNRZ形式の40Gb/sの光信号を得、光ポストアンプ74を経て伝送路へ送出される。このような、光送信器の詳細回路図を図16に示す。
14 and 15 show specific examples of the optical transmitter 30 and the optical receiver 36 in FIG. In the optical transmitter 30 of FIG. 14, the OTDM modulator 10 shown in FIG. 5 is used as an optical modulator for generating an optical signal. In FIG. 14, the OTDM modulator 10 of FIG. 5 is functionally represented by using the same reference numerals for the same components as those of FIG.
In this example, two parallel 10 Gb / s data signals are converted by the parallel / serial converter 70 to obtain one 20 Gb / s NRZ signal. The 20 Gb / s NRZ signal is input to the driver 72 to obtain a 20 Gb / s drive signal for driving the optical modulator 20. The output (RZ optical signal of 20 Gb / s) of each optical modulator 20 is phase-adjusted by the phase adjuster 22 (the phase is shifted so that the phase difference of the light becomes 180 °), and then the light is converted to light. The multiplexed signal is multiplexed by the multiplexing unit 24 (optical coupler) to obtain one NRZ type 40 Gb / s optical signal, which is transmitted to the transmission line via the optical post-amplifier 74. FIG. 16 shows a detailed circuit diagram of such an optical transmitter.

図15において、40Gb/sの光信号は、可変分散補償器34、光プリアンプ76、ビームスプリッタ38を介して、光DEMUX78に入力される。光DEMUX78としては、図17に示す偏光無依存型光DEMUXを用いることができる。
図17に偏光無依存型光DEMUX78の構造図を示す。受信側に配置する光DEMUXには偏光無依存性が要求される。そのため、まず、ファイバ伝送後に入力される40Gb/s OTDM信号を、初段の交差導波路型偏光スプリッタ80によりTE成分とTM成分に偏光分離する。なお、ここでは偏波消光比が20dB以上確保できるように交差長を最適化している。次に各々のモードに対し、20GHz 正弦波信号駆動の1×2スイッチ84を用いて、20Gb/s光RZ信号への光時分割分離を行う。このとき、それぞれの1×2スイッチの2出力は相補関係にある。ただし、一般にLNスイッチ(変調器)においては、TEモードよりTMモードの方が変調効率が大きいため、本デバイスでは偏光分離後のTEモード光を1/2波長板82でTMモード光に変換してから光分離を行っている。最終段では、2つの偏波ビームコンバイナで、同じビットシーケンス同志を合波している。このとき、TMモード光同志を合波すると、前述のOTDM変調器の場合と同様に光干渉の問題が生じるので、先にTE/TMモード変換を行わなかったポートの1×2スイッチ84の後段で1/2波長板88によりTM/TEモード変換を行った後、直交偏波成分をパワー合波している。
In FIG. 15, a 40 Gb / s optical signal is input to an optical DEMUX 78 via a tunable dispersion compensator 34, an optical preamplifier 76, and a beam splitter 38. As the light DEMUX 78, a polarization-independent light DEMUX shown in FIG. 17 can be used.
FIG. 17 shows a structure diagram of the polarization independent light DEMUX78. The optical DEMUX arranged on the receiving side is required to be polarization independent. Therefore, first, the 40 Gb / s OTDM signal input after the fiber transmission is polarized and separated into a TE component and a TM component by the first-stage cross waveguide polarization splitter 80. Here, the intersection length is optimized so that a polarization extinction ratio of 20 dB or more can be secured. Next, for each mode, optical time division separation into a 20 Gb / s optical RZ signal is performed using a 1 × 2 switch 84 driven by a 20 GHz sine wave signal. At this time, the two outputs of each 1 × 2 switch are in a complementary relationship. However, in general, in the LN switch (modulator), the TM mode has higher modulation efficiency than the TE mode. Therefore, in this device, the TE mode light after polarization separation is converted into the TM mode light by the half-wave plate 82. Light separation. In the final stage, two polarization beam combiners combine the same bit sequence. At this time, if TM mode light is multiplexed, a problem of optical interference occurs as in the case of the above-mentioned OTDM modulator. Therefore, the latter stage of the 1 × 2 switch 84 of the port which did not perform the TE / TM mode conversion first. After the TM / TE mode conversion is performed by the half-wave plate 88 in the above, the orthogonal polarization components are power-multiplexed.

光DEMUX78にて得られた、2つの20Gb/s光RZ信号は、それぞれフォトダイオード90に入力されて電気信号に変換され、プリアンプ92にて増幅された後等化アンプ94にて波形成形される。そして、シリアル/パラレル変換部96にて、元の10Gb/s NRZデーターに再生される。図示されていないが、その後、10Gb/s識別部によりデータが再生される。このような光受信機36の光分離までの部分の詳細回路図を図18に示す。   The two 20 Gb / s optical RZ signals obtained by the optical DEMUX 78 are respectively input to the photodiodes 90, converted into electric signals, amplified by the preamplifier 92, and then shaped by the equalizing amplifier 94. . Then, the serial / parallel converter 96 reproduces the original 10 Gb / s NRZ data. Although not shown, the data is thereafter reproduced by the 10 Gb / s identification unit. FIG. 18 shows a detailed circuit diagram of the portion of the optical receiver 36 up to the optical separation.

次に可変分散補償器の一例(M. M. Ohm et al., "Tunable fiber grating dispersion using a piesoelectric stack", OFC '97 Technical Digest, WJ3, pp.155-156)について説明する。
図19に示すように、チャープドファイバグレーティング90の21個のセグメントの各々に別々に圧電素子92を取り付ける。各圧電素子への印加電圧V1 〜V21として図20に示すように傾斜をつけて電圧を与えると、クレーティング90の長手方向に加わる圧力が変化し、図20のA〜Dの電圧パターンに対して図21のように分散値(線の傾き)が変化する。
Next, an example of a variable dispersion compensator (MM Ohm et al., "Tunable fiber grating dispersion using a piesoelectric stack", OFC '97 Technical Digest, WJ3, pp.155-156) will be described.
As shown in FIG. 19, a piezoelectric element 92 is separately attached to each of the 21 segments of the chirped fiber grating 90. When a voltage is applied with an inclination as shown in FIG. 20 as applied voltages V 1 to V 21 to the respective piezoelectric elements, the pressure applied in the longitudinal direction of the crating 90 changes, and the voltage patterns A to D in FIG. In contrast, the variance value (the slope of the line) changes as shown in FIG.

図22は、補償量制御部の一例を示す図である。40Gb/sの周波数成分の強度値は、A/D変換器94でA/D変換され、ディジタル信号として、MPU96に入力される。MPU96は、メモリ98に記憶されている前回受信した強度値Ipと、今回の強度値Icとを比較し、現時点の分散量と40Gb/sの強度との関係が、図2におけるXのスロープにあるか、Yのスロープにあるかをチェックする。即ち、Xのスロープにあれば可変分散補償器34の分散量を減少させれば、分散量0(Zポイント)に収束する。またYのスロープであれば、可変分散補償器34の分散量を増加させれば分散量0に収束する。従って、Ic>Ipの場合は、Xスロープにあると見なし、図19の可変分散補償器34に与える電圧を制御するため、分散量が減少するようなV1 〜V21の値を求め、D/A変換器100経由で、各圧電素子に与える電圧を出力する。逆にIc<Ipの場合は、Yスロープにあると見なし、図19の可変分散補償器34に与える電圧を制御するため、分散量が増加するようなV1 〜V21の値を求める。 FIG. 22 is a diagram illustrating an example of the compensation amount control unit. The intensity value of the 40 Gb / s frequency component is A / D converted by an A / D converter 94 and input to the MPU 96 as a digital signal. The MPU 96 compares the previously received intensity value Ip stored in the memory 98 with the current intensity value Ic, and determines the relationship between the current dispersion amount and the intensity of 40 Gb / s to the slope of X in FIG. Check if it is on the Y slope. That is, if the dispersion amount of the variable dispersion compensator 34 is reduced if the slope is X, the dispersion amount converges to 0 (Z point). If the slope is Y, the dispersion amount converges to 0 if the dispersion amount of the variable dispersion compensator 34 is increased. Therefore, when Ic> Ip, it is regarded as being on the X slope, and in order to control the voltage applied to the variable dispersion compensator 34 in FIG. 19, the values of V 1 to V 21 that reduce the amount of dispersion are obtained. A voltage to be applied to each piezoelectric element is output via the / A converter 100. Conversely, if Ic <Ip, it is regarded as being on the Y slope, and values of V 1 to V 21 that increase the amount of dispersion are obtained to control the voltage applied to the variable dispersion compensator 34 in FIG.

なお、V1 〜V21の値を求めるためには、図20及び図21に示すデータ(分散量とV1 〜V21との関係を示すデータ)と、図2に示すデータ(40GHz成分の強度と分散量との関係を示すデータ)をメモリにあらかじめ記憶しておく。そして、図2のX,Yスロープのいずれのスロープにあるかをまず求めて、現在の分散量Icを図2に示すデータより求める。現在の分散量Icから、分散量0のZポイントに収束させるために可変分散補償器34で補償すべき分散量Ic′を求める。即ち、Ic+Ic′=0となるように、Ic′を求める。 In order to obtain the values of V 1 to V 21, the data shown in FIGS. 20 and 21 (data indicating the relationship between the variance and V 1 to V 21 ) and the data shown in FIG. Data indicating the relationship between the intensity and the amount of dispersion) is stored in the memory in advance. Then, it is first determined which slope of the X or Y slope in FIG. 2 is present, and the current dispersion amount Ic is determined from the data shown in FIG. From the current dispersion amount Ic, a dispersion amount Ic 'to be compensated by the variable dispersion compensator 34 to converge to the Z point of the dispersion amount 0 is obtained. That is, Ic 'is determined so that Ic + Ic' = 0.

このようにしてIc′が求まれば、図20及び図21に示されたデータをもとに、Ic′を得るために可変分散補償器34に与えるV1 〜V21を求める。
図23は図13のシステムの一変形を示す。図23以下の図面において、同一の構成要素には同一の参照番号を付してその説明を省略する。図23のシステムにおいては、図13のシステムにおける可変分散補償器34の代わりに光送信機30に波長可変光源48を用い、信号光波長制御部50で信号光の波長を制御することにより光伝送路32の波長分散量を制御している。
'If is determined, based on the data shown in FIGS. 20 and 21, Ic' this way Ic Request V 1 ~V 21 applied to the variable dispersion compensator 34 in order to obtain.
FIG. 23 shows a variation of the system of FIG. In the drawings following FIG. 23, the same components are denoted by the same reference numerals and description thereof will be omitted. In the system shown in FIG. 23, a tunable light source 48 is used for the optical transmitter 30 instead of the tunable dispersion compensator 34 in the system shown in FIG. The chromatic dispersion amount of the path 32 is controlled.

図24は図13の自動分散等化システムのより詳細な構成の他の例を示す。発振器52は低周波数f0 の正弦波を発生する。発振器52が発生する低周波信号は、低周波重畳回路54において、分散補償量設定回路56からの補償量設定信号に重畳されて可変分散補償器34に与えられる。バンドパスフィルタ42から出力されるBHz成分は強度検出器58(例えば二乗検波器)でその強度が検出され、バンドパスフィルタ60において検出出力からf0 成分が抽出される。バンドパスフィルタ60で抽出されたf0 成分の位相と発振器52が出力する低周波信号の位相とが位相比較回路62において比較される。分散補償量設定回路56は位相比較回路62における比較結果に基いて補償量設定信号を生成し出力する。強度検出器58は乗算器またはミキサまたは一般のパワーディテクタ等で実現され、位相比較回路62は乗算器またはミキサまたは全波整流回路等と低域通過フィルタで実現される。 FIG. 24 shows another example of a more detailed configuration of the automatic distributed equalization system of FIG. Oscillator 52 generates a sine wave of low frequency f 0. The low-frequency signal generated by the oscillator 52 is superimposed on the compensation amount setting signal from the dispersion compensation amount setting circuit 56 in the low-frequency superimposing circuit 54 and is supplied to the variable dispersion compensator 34. BHz component output from the band-pass filter 42 whose intensity is detected by the intensity detector 58 (for example, square detector), f 0 component is extracted from the detection output in the band-pass filter 60. The phase of the f 0 component extracted by the band-pass filter 60 and the phase of the low-frequency signal output by the oscillator 52 are compared in the phase comparison circuit 62. The dispersion compensation amount setting circuit 56 generates and outputs a compensation amount setting signal based on the comparison result in the phase comparison circuit 62. The intensity detector 58 is realized by a multiplier, a mixer, a general power detector, or the like, and the phase comparison circuit 62 is realized by a multiplier, a mixer, a full-wave rectifier, or the like, and a low-pass filter.

図25の(a)〜(g)欄には図24中に(a)〜(g)で示した個所の信号波形を示す。
図25の(a)欄に示すように分散補償量が最適値から正の側にずれた場合、低周波重畳回路54の出力は(b)欄に示すようになる。分散補償量が最適値から正の側にずれている場合、分散補償量が増加すればNRZまたOTDMの場合BHz成分強度は増加するので(図1,2および12参照)、バンドパスフィルタ42で抽出されるBHz成分の振幅は(c)欄のように周波数f0 で変化し、それを強度検出し((d)欄)、f0 成分を抽出した結果((e)欄)は発振器52が出力する低周波信号((f)欄)と同相になり、位相比較回路62からは正の電圧が出力される((g)欄)。この正の出力信号に対して、分散補償量設定回路56が出力する分散補償量制御信号((a)欄)が低下するようにフィードバック制御することで分散補償量は最適値に近づく。分散補償量が最適値よりも低い場合にはバンドパスフィルタ60の出力は発振器52の出力に対して逆相になり、位相比較回路62からは負の電圧が出力されるので、負の出力信号に対して分散補償量信号が増加するようにフィードバック制御することで、分散補償量は最適値へ向かって変化する。なお、RZ信号の場合、分散補償量の変化の方向を上記とは逆にすれば良い。
The signal waveforms at the points indicated by (a) to (g) in FIG. 24 are shown in columns (a) to (g) of FIG.
When the dispersion compensation amount deviates from the optimum value to the positive side as shown in FIG. 25A, the output of the low frequency superposition circuit 54 becomes as shown in FIG. If the amount of dispersion compensation deviates from the optimum value to the positive side, the BHz component intensity increases in the case of NRZ or OTDM if the amount of dispersion compensation increases (see FIGS. 1, 2 and 12). The amplitude of the extracted BHz component changes at the frequency f 0 as shown in the column (c), the intensity is detected ((d)), and the result of extracting the f 0 component (the column (e)) is the oscillator 52. Are in phase with the low-frequency signal output (column (f)), and a positive voltage is output from the phase comparison circuit 62 (column (g)). By performing feedback control on the positive output signal so that the dispersion compensation amount control signal (column (a)) output from the dispersion compensation amount setting circuit 56 decreases, the dispersion compensation amount approaches an optimum value. When the dispersion compensation amount is lower than the optimum value, the output of the band-pass filter 60 is in the opposite phase to the output of the oscillator 52, and a negative voltage is output from the phase comparison circuit 62. By performing feedback control so that the dispersion compensation amount signal increases, the dispersion compensation amount changes toward the optimum value. In the case of the RZ signal, the direction of the change in the amount of dispersion compensation may be reversed.

図26は図24のシステムの一変形を示す。図13から図23への変形と同様に、可変分散補償器34による分散補償量の制御が波長可変光源48による波長の制御に置き換えられた点を除いて図24と同様である。この方法の場合、受信側での位相比較で得られた検出信号を送信側に伝達する必要が生じる。これには低速の別回線を用意する方法、逆方向の伝送信号に情報を載せる方法が考えられる。   FIG. 26 shows a variation of the system of FIG. As in the modification from FIG. 13 to FIG. 23, the control is the same as that in FIG. 24 except that the control of the dispersion compensation amount by the variable dispersion compensator 34 is replaced by the control of the wavelength by the wavelength variable light source 48. In the case of this method, it is necessary to transmit the detection signal obtained by the phase comparison on the receiving side to the transmitting side. For this purpose, a method of preparing another low-speed line or a method of putting information on a transmission signal in the opposite direction can be considered.

図27は本発明の他の実施例に係る分散等化システムの一例を示す。これまでの例では、システム運用を行いながらの分散値制御を想定しているが、ここでは、システム立ち上げ時、および、自動分散等化制御が最適点から大きく外れたときの再立ち上げ時への適用、または、意図的にシステム運用を中断して分散量最適化を行う場合への適用を想定している。可変分散補償器34の分散補償量を広範囲で掃引し、そのときの強度検出部44の出力からBHz成分強度の変化を検出する。前述したように、BHz成分強度特性を図1〜4の特性と比較することによって、総分散量を検知することができる。RZ信号に対してはBHz成分が極大になる分散補償量を記録しておき、補償量掃引後にその分散補償量に設定してから、システムの運用を開始する。OTDMまたはNRZ波形に対しては、例えば、BHz成分強度が極大になる2つの分散補償量を記録しておき、補償量掃引後にその2つの値の中間に分散補償量を設定すればよい。   FIG. 27 shows an example of a distributed equalization system according to another embodiment of the present invention. In the previous examples, dispersion value control is assumed while the system is operating.However, here, when the system is started, and when the automatic decentralization control is significantly deviated from the optimal point, it is restarted. It is assumed to be applied to the case where the system operation is intentionally interrupted and the amount of dispersion is optimized. The dispersion compensation amount of the variable dispersion compensator 34 is swept over a wide range, and a change in the BHz component intensity is detected from the output of the intensity detection unit 44 at that time. As described above, the total dispersion amount can be detected by comparing the BHz component intensity characteristics with the characteristics in FIGS. For the RZ signal, the dispersion compensation amount at which the BHz component is maximized is recorded, and after the compensation amount is swept, the dispersion compensation amount is set, and then the system operation is started. For the OTDM or NRZ waveform, for example, two dispersion compensation amounts at which the BHz component intensity is maximum may be recorded, and after the compensation amount sweep, the dispersion compensation amount may be set between the two values.

図28は図27のシステムの一変形を示す。図27の可変分散補償器34の掃引および設定が波長可変光源48による波長の掃引および設定に置き換えられた点を除いて図27と同様である。   FIG. 28 shows a variation of the system of FIG. 27 is the same as FIG. 27 except that the sweep and setting of the tunable dispersion compensator 34 in FIG. 27 are replaced by the sweep and setting of the wavelength by the wavelength variable light source 48.

以上述べたように本発明によれば、NRZ波形およびOTDM波形のようにクロック成分が零分散時に極小となる光信号についての伝送路分散の監視および制御が可能になり、また、システム運用を中断することなく伝送路分散を制御することができる。   As described above, according to the present invention, it is possible to monitor and control transmission line dispersion for an optical signal whose clock component is minimized when the dispersion is zero, such as an NRZ waveform and an OTDM waveform, and interrupt system operation. It is possible to control transmission line dispersion without performing.

40Gb/s OTDM信号についての40GHz クロック成分強度の総分散量依存性の計算機シミュレーションの結果を示すグラフである。FIG. 10 is a graph showing the results of computer simulation of the total dispersion amount dependence of the 40 GHz clock component intensity for a 40 Gb / s OTDM signal. FIG. 40Gb/s NRZ信号についての40GHz クロック成分強度の総分散量依存性の計算機シミュレーションの結果を示すグラフである。FIG. 11 is a graph showing the results of computer simulation of the total variance dependence of the 40 GHz clock component strength for a 40 Gb / s NRZ signal. FIG. 40Gb/s RZ信号(デューティ50%)についての40GHz クロック成分強度の総分散量依存性の計算機シミュレーションの結果を示すグラフである。10 is a graph showing the results of computer simulation of the total dispersion amount dependence of the 40 GHz clock component intensity for a 40 Gb / s RZ signal (duty 50%). 40Gb/s RZ信号(デューティ25%)についての40GHz クロック成分強度の総分散量依存性の計算機シミュレーションの結果を示すグラフである。10 is a graph showing the results of computer simulation of the total dispersion amount dependence of the 40 GHz clock component intensity for a 40 Gb / s RZ signal (duty 25%). 40Gb/s OTDM信号を生成する光変調器の平面図である。FIG. 3 is a plan view of an optical modulator that generates a 40 Gb / s OTDM signal. 図5の光変調器の動作を説明する波形図である。FIG. 6 is a waveform chart illustrating an operation of the optical modulator of FIG. 5. OTDM信号のベースバンドスペクトルである。It is a baseband spectrum of an OTDM signal. NRZ信号のベースバンドスペクトルである。It is a baseband spectrum of an NRZ signal. 波長分散を受けた後のOTDM信号の波形図である。FIG. 4 is a waveform diagram of an OTDM signal after receiving chromatic dispersion. 波長分散を受けた後のNRZ信号の波形図である。FIG. 4 is a waveform diagram of an NRZ signal after receiving chromatic dispersion. 総分散量を低周波数f0 で微少変動させる方法において、分散補償量が極小点にある場合を説明する図である。FIG. 9 is a diagram illustrating a case where the dispersion compensation amount is at a minimum point in the method of slightly varying the total dispersion amount at a low frequency f 0 . 総分散量を低周波数f0 で微少変動させる方法において、分散補償量が極小点からずれた場合を説明する図である。FIG. 8 is a diagram illustrating a case where the dispersion compensation amount deviates from a minimum point in the method of slightly varying the total dispersion amount at a low frequency f 0 . 本発明に係る自動分散等化システムの一実施例を示すブロック図である。1 is a block diagram illustrating an embodiment of an automatic distributed equalization system according to the present invention. 図13の光送信機30の具体例を示すブロック図である。FIG. 14 is a block diagram illustrating a specific example of the optical transmitter 30 in FIG. 13. 図13の光受信機36の具体例を示すブロック図である。FIG. 14 is a block diagram illustrating a specific example of the optical receiver 36 in FIG. 13. 光送信機の詳細回路図である。It is a detailed circuit diagram of an optical transmitter. 偏光無依存型光DEMUXを示す図である。It is a figure showing polarization independent light DEMUX. 光受信機の一部の詳細回路図である。FIG. 3 is a detailed circuit diagram of a part of the optical receiver. 可変分散補償器の一例を示す図である。FIG. 3 is a diagram illustrating an example of a tunable dispersion compensator. 図19の可変分散補償器の各セグメントへ与える電圧V1 〜V21のパターンA〜Dを示すグラフである。20 is a graph showing patterns A to D of voltages V 1 to V 21 applied to each segment of the variable dispersion compensator in FIG. 19. 各電圧パターンA〜Dにおける分散値を示すグラフである。It is a graph which shows the dispersion value in each voltage pattern AD. 補償量制御部の構成の一例を示すブロック図である。It is a block diagram showing an example of composition of a compensation amount control part. 図13のシステムの一変形を示すブロック図である。FIG. 14 is a block diagram illustrating a modification of the system of FIG. 13. 図13のシステムのより詳細な構成の一例を示すブロック図である。FIG. 14 is a block diagram illustrating an example of a more detailed configuration of the system in FIG. 13. 図24のシステムの動作を説明する波形図である。FIG. 25 is a waveform chart for explaining the operation of the system in FIG. 24. 図24のシステムの一変形を示すブロック図である。FIG. 25 is a block diagram showing a modification of the system in FIG. 24. 本発明の他の実施例に係る分散等化システムの一例を示すブロック図である。FIG. 11 is a block diagram illustrating an example of a distributed equalization system according to another embodiment of the present invention. 図27のシステムの一変形を示すブロック図である。FIG. 28 is a block diagram illustrating a modification of the system of FIG. 27.

符号の説明Explanation of reference numerals

10…光変調器
12…LiNbO3 基板
14…光導波路
16…電極パターン
18…1入力2出力光スイッチ
20…データ変調部
22…位相制御部
24…光多重部
10 ... optical modulator 12 ... LiNbO 3 substrate 14 ... optical waveguide 16 ... electrode pattern 18 ... 1 Input 2 Output optical switch 20 ... data modulation unit 22 ... phase controller 24 ... optical multiplexing unit

Claims (23)

データ信号で変調された光信号を伝送する伝送路の波長分散を制御する分散制御方法であって、
前記光信号は光波の位相が互いに異なる複数の零復帰信号を多重化した光時分割多重信号、または非零復帰信号であり、
(a)該伝送路で伝送された光信号から、特定の周波数の成分であって、その強度が分散量に対して零分散の両側で極大となる周波数成分の強度を検出し、
(b)検出された前記特定周波数成分の強度が極小となるように前記伝送路の総分散量を制御するステップを具備する分散制御方法。
A dispersion control method for controlling chromatic dispersion of a transmission line that transmits an optical signal modulated with a data signal,
The optical signal is an optical time-division multiplexed signal obtained by multiplexing a plurality of return-to-zero signals having different phases of light waves, or a non-return-to-zero signal,
(A) detecting, from the optical signal transmitted through the transmission line, the intensity of a frequency component which is a component of a specific frequency and whose intensity is maximized on both sides of zero dispersion with respect to the amount of dispersion;
(B) a dispersion control method comprising the step of controlling the total dispersion amount of the transmission line so that the detected intensity of the specific frequency component is minimized.
前記データ信号のビットレートはBビット/秒であり、
ステップ(a)において、周波数がBヘルツを逓倍した周波数またはBヘルツを分周した周波数の成分の強度が検出される請求項1記載の方法。
A bit rate of the data signal is B bits / sec;
The method according to claim 1, wherein in step (a), the intensity of a component whose frequency is a frequency obtained by multiplying B hertz or a frequency obtained by dividing B hertz is detected.
前記データ信号のビットレートはBビット/秒であり、
ステップ(a)において周波数がBヘルツの成分の強度が検出される請求項1記載の方法。
A bit rate of the data signal is B bits / sec;
2. The method according to claim 1, wherein in step (a) the intensity of the component whose frequency is B hertz is detected.
前記伝送路は可変の分散値を有する可変分散補償器を含み、
ステップ(b)は該可変分散補償器の分散値を制御して前記伝送路の総分散量を制御することを含む請求項1〜3のいずれか1項記載の方法。
The transmission path includes a variable dispersion compensator having a variable dispersion value,
4. The method according to claim 1, wherein step (b) includes controlling a dispersion value of the variable dispersion compensator to control a total dispersion amount of the transmission line.
前記伝送路は光信号の波長を変化しうる波長可変光源を含み、
ステップ(b)は該波長可変光源の波長を制御して前記伝送路の総分散量を制御することを含む請求項1〜3のいずれか1項記載の方法。
The transmission path includes a wavelength variable light source that can change the wavelength of the optical signal,
4. The method according to claim 1, wherein step (b) includes controlling a wavelength of the tunable light source to control a total dispersion amount of the transmission line.
ステップ(b)において、検出された特定周波数成分の強度に基づき運用中に総分散量が連続的に制御される請求項1〜5のいずれか1項記載の方法。   The method according to any one of claims 1 to 5, wherein in step (b), the total amount of dispersion is continuously controlled during operation based on the detected intensity of the specific frequency component. ステップ(b)は、
(i)総分散量の制御信号に低周波信号を重畳し、
(ii)特定周波数成分の検出信号から該低周波信号と同じ周波数の成分を抽出し、
(iii )抽出された周波数成分の位相と該低周波信号の位相を比較し、
(iv)該位相比較結果に基いて前記総分散量の制御のための制御信号を生成するサブステップを含む請求項6記載の方法。
Step (b)
(I) superimposing a low-frequency signal on the control signal of the total variance,
(Ii) extracting a component having the same frequency as the low-frequency signal from the detection signal of the specific frequency component,
(Iii) comparing the phase of the extracted frequency component with the phase of the low-frequency signal,
7. The method according to claim 6, further comprising the step of: (iv) generating a control signal for controlling the total variance based on the phase comparison result.
ステップ(b)は、
(i)検出された特定周波数成分の強度が極大となる総分散量の2つの制御点を見い出し、
(ii)該2つの制御点の中点を特定周波数成分の強度が極小となる制御点とするサブステップを含む請求項1〜5のいずれか1項記載の方法。
Step (b)
(I) finding two control points of the total variance at which the intensity of the detected specific frequency component is maximized,
6. The method according to claim 1, further comprising the step of: (ii) setting a middle point between the two control points as a control point at which the intensity of the specific frequency component is minimized.
ステップ(b)は、
(i)運用開始前または運用中断中に総分散量を掃引し、
(ii)掃引中の特定周波数成分の強度から総分散量の制御点を見い出すサブステップを含む請求項1〜5及び8のいずれか1項記載の方法。
Step (b)
(I) sweeping the total variance before or during operation interruption,
The method according to any one of claims 1 to 5, further comprising the substep of (ii) finding a control point of the total variance from the intensity of the specific frequency component being swept.
データ信号で変調された光信号を伝送する伝送路の分散量を検出する方法であって、
前記光信号は光波の位相が互いに異なる複数の零復帰信号を多重化した光時分割多重信号、または非零復帰信号であり、
(a)該伝送路で伝送された光信号から、特定の周波数の成分であって、その強度が分散量に対して零分散の両側で極大となる周波数成分の強度を検出し、
(b)検出された特定周波数成分の強度から前記伝送路の総分散量を決定するステップを具備する分散検出方法。
A method for detecting the amount of dispersion of a transmission line that transmits an optical signal modulated with a data signal,
The optical signal is an optical time-division multiplexed signal obtained by multiplexing a plurality of return-to-zero signals having different phases of light waves, or a non-return-to-zero signal,
(A) detecting, from the optical signal transmitted through the transmission line, the intensity of a frequency component which is a component of a specific frequency and whose intensity is maximized on both sides of zero dispersion with respect to the amount of dispersion;
(B) a dispersion detection method comprising a step of determining a total dispersion amount of the transmission line from the detected intensity of the specific frequency component.
前記データ信号のビットレートはBビット/秒であり、
ステップ(a)において、周波数がBヘルツを逓倍した周波数またはBヘルツを分周した周波数の成分の強度が検出される請求項10記載の方法。
A bit rate of the data signal is B bits / sec;
The method according to claim 10, wherein in step (a), the intensity of a component whose frequency is a frequency obtained by multiplying B hertz or a frequency obtained by dividing B hertz is detected.
前記データ信号のビットレートはBビット/秒であり、
ステップ(a)において周波数がBヘルツの成分の強度が検出される請求項10記載の方法。
A bit rate of the data signal is B bits / sec;
11. The method according to claim 10, wherein in step (a) the intensity of the component whose frequency is B hertz is detected.
データ信号で変調された光信号を伝送する伝送路の波長分散を制御する分散制御装置であって、
前記光信号は光波の位相が互いに異なる複数の零復帰信号を多重化した光時分割多重信号、または、非零復帰信号であり、
該伝送路で伝送された光信号から、特定の周波数の成分であって、その強度が分散量に対して零分散の両側で極大となる周波数成分の強度を検出する光検出器と、
検出された特定周波数成分の強度が極小となるように前記伝送路の総分散量を制御する分散制御手段とを具備する分散制御装置。
A dispersion control device that controls chromatic dispersion of a transmission line that transmits an optical signal modulated with a data signal,
The optical signal is an optical time-division multiplexed signal obtained by multiplexing a plurality of return-to-zero signals having different optical wave phases, or a non-return-to-zero signal,
From the optical signal transmitted through the transmission line, a photodetector that detects the intensity of a frequency component that is a component of a specific frequency and whose intensity is maximized on both sides of zero dispersion with respect to the amount of dispersion,
A dispersion control device comprising: a dispersion control unit that controls a total dispersion amount of the transmission line so that the intensity of the detected specific frequency component is minimized.
前記データ信号のビットレートはBビット/秒であり、
前記光検出器は、周波数がBヘルツを逓倍した周波数またはBヘルツを分周した周波数の成分の強度を検出する請求項13記載の装置。
A bit rate of the data signal is B bits / sec;
14. The apparatus according to claim 13, wherein the photodetector detects the intensity of a component whose frequency is a frequency obtained by multiplying B hertz or a frequency obtained by dividing B hertz.
前記データ信号のビットレートはBビット/秒であり、
前記光検出器は周波数がBヘルツの成分の強度を検出する請求項13記載の装置。
A bit rate of the data signal is B bits / sec;
14. The apparatus of claim 13, wherein the photodetector detects the intensity of a component having a frequency of B hertz.
前記伝送路は可変の分散値を有する可変分散補償器を含み、
前記分散制御手段は該可変分散補償器の分散値を制御して前記伝送路の総分散量を制御する請求項13〜15のいずれか1項記載の装置。
The transmission path includes a variable dispersion compensator having a variable dispersion value,
The apparatus according to any one of claims 13 to 15, wherein the dispersion control unit controls a dispersion value of the variable dispersion compensator to control a total dispersion amount of the transmission line.
前記光信号を生成する光送信機は光信号の波長を変化しうる波長可変光源を含み、
前記分散制御手段は、該波長可変光源の波長を制御して前記伝送路の総分散量を制御する請求項13〜15のいずれか1項記載の装置。
The optical transmitter that generates the optical signal includes a wavelength variable light source that can change the wavelength of the optical signal,
The apparatus according to any one of claims 13 to 15, wherein the dispersion control means controls a total amount of dispersion of the transmission line by controlling a wavelength of the variable wavelength light source.
前記分散制御手段は検出された特定周波数成分の強度に基づき運用中に総分散量を連続的に制御する請求項13〜17のいずれか1項記載の装置。   The apparatus according to any one of claims 13 to 17, wherein the dispersion control means continuously controls the total dispersion amount during operation based on the detected intensity of the specific frequency component. 前記分散制御手段は、
総分散量の制御信号に低周波信号を重畳する低周波重畳回路と、
特定周波数成分の検出信号から該低周波信号と同じ周波数の成分を抽出する信号抽出回路と、
抽出された周波数成分の位相と該低周波信号の位相を比較する位相比較回路と、
該位相比較回路の出力に基いて前記総分散量の制御のための制御信号を生成する制御信号生成回路とを含む請求項18記載の装置。
The distribution control means,
A low-frequency superimposing circuit that superimposes a low-frequency signal on the control signal of the total dispersion amount,
A signal extraction circuit for extracting a component having the same frequency as the low-frequency signal from the detection signal of the specific frequency component,
A phase comparison circuit that compares the phase of the extracted frequency component with the phase of the low-frequency signal,
19. The apparatus according to claim 18, further comprising: a control signal generation circuit that generates a control signal for controlling the total dispersion amount based on an output of the phase comparison circuit.
mビット/秒のデータ信号で振幅変調された、光波の位相が互いに異なるn個の零復帰信号を時分割多重化して得られた、n・mビット/秒のデータ信号で変調された時分割多重光信号を光ファイバ伝送路に送信し、
光ファイバ伝送路より受信した前記時分割多重光信号から、n・mヘルツ、またはmヘルツの周波数成分を抽出し、
抽出したn・mヘルツの周波数成分が極小値を示すか、またはmヘルツの周波数成分が極大値を示すように、上記光ファイバ伝送路の分散を可変にすることを特徴とする光ファイバ伝送路の分散制御方法。
Time division modulated with an nm bit / second data signal obtained by time division multiplexing n time reset multiplexing of n pieces of return-to-zero signals having different phases of light waves, which are amplitude modulated with an m bit / second data signal. Transmitting the multiplexed optical signal to the optical fiber transmission line,
From the time-division multiplexed optical signal received from the optical fiber transmission line, extract nm · m hertz or m hertz frequency components,
An optical fiber transmission line, wherein the dispersion of the optical fiber transmission line is made variable so that the extracted nm-hertz frequency component shows a local minimum value or the m-hertz frequency component shows a local maximum value. Distributed control method.
時分割多重化された、mビット/秒のデータ信号で振幅変調された、光波の位相が互いに異なるn個の零復帰信号を光ファイバ伝送路から受信する手段と、
受信した前記時分割多重化された光信号から、n・mヘルツ、またはmヘルツの周波数成分を抽出する手段と、
抽出したn・mヘルツの周波数成分が極小値を示すか、またはmヘルツの周波数成分が極大値を示すように、上記光ファイバ伝送路の分散量を制御する手段とを備えたことを特徴とする光ファイバ伝送路の分散制御装置。
Means for receiving, from an optical fiber transmission line, n time-division multiplexed n return-to-zero signals whose amplitudes are modulated by an m-bit / second data signal and whose light waves have different phases from each other;
Means for extracting nm frequency components or m hertz frequency components from the received time-division multiplexed optical signal;
Means for controlling the amount of dispersion of the optical fiber transmission line so that the extracted nm-hertz frequency component shows a local minimum value or the m-hertz frequency component shows a local maximum value. Optical fiber transmission line dispersion controller.
前記分散制御手段は、
検出された特定周波数成分の強度が極大となる総分散量の2つの制御点を見い出す手段と、
該2つの制御点の中点を特定周波数成分の強度が極小となる制御点とする手段とを含む請求項13〜17のいずれか1項記載の装置。
The distribution control means,
Means for finding two control points of the total variance at which the detected specific frequency component has a maximum intensity;
Means for setting a midpoint of the two control points as a control point at which the intensity of the specific frequency component is minimized.
前記分散制御手段は、
運用開始前または運用中断中に総分散量を掃引する手段と、
掃引中の特定周波数成分の強度から総分散量の制御点を見い出す手段とを含む請求項13〜17及び22のいずれか1項記載の装置。
The distribution control means,
Means for sweeping the total variance prior to or during operation, and
Means for finding a control point of the total variance from the intensity of the specific frequency component being swept.
JP2004099702A 2004-03-30 2004-03-30 Method and apparatus for chromatic dispersion control and dispersion amount detection method Expired - Fee Related JP3897768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004099702A JP3897768B2 (en) 2004-03-30 2004-03-30 Method and apparatus for chromatic dispersion control and dispersion amount detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004099702A JP3897768B2 (en) 2004-03-30 2004-03-30 Method and apparatus for chromatic dispersion control and dispersion amount detection method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22405697A Division JP3649556B2 (en) 1997-08-20 1997-08-20 Method and apparatus for chromatic dispersion control and dispersion amount detection method

Publications (2)

Publication Number Publication Date
JP2004254333A true JP2004254333A (en) 2004-09-09
JP3897768B2 JP3897768B2 (en) 2007-03-28

Family

ID=33028548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099702A Expired - Fee Related JP3897768B2 (en) 2004-03-30 2004-03-30 Method and apparatus for chromatic dispersion control and dispersion amount detection method

Country Status (1)

Country Link
JP (1) JP3897768B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1732249A2 (en) 2005-06-07 2006-12-13 OpNext Japan, Inc. Optical receiver module and optical receiver module system
JP2007060583A (en) * 2005-08-26 2007-03-08 Fujitsu Ltd Optical receiving apparatus and its control method
JP2009500833A (en) * 2005-06-30 2009-01-08 インフィネラ コーポレイション Wavelength lock and output control system for multi-channel optical integrated circuits (PICS)
JP2014204420A (en) * 2013-04-10 2014-10-27 日本電信電話株式会社 Optical wavelength division multiplex system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1732249A2 (en) 2005-06-07 2006-12-13 OpNext Japan, Inc. Optical receiver module and optical receiver module system
US7466930B2 (en) 2005-06-07 2008-12-16 Opnext Japan, Inc. Optical receiver module and optical receiver module system
JP2009500833A (en) * 2005-06-30 2009-01-08 インフィネラ コーポレイション Wavelength lock and output control system for multi-channel optical integrated circuits (PICS)
JP2007060583A (en) * 2005-08-26 2007-03-08 Fujitsu Ltd Optical receiving apparatus and its control method
JP4516907B2 (en) * 2005-08-26 2010-08-04 富士通株式会社 Optical receiver and control method thereof
JP2014204420A (en) * 2013-04-10 2014-10-27 日本電信電話株式会社 Optical wavelength division multiplex system

Also Published As

Publication number Publication date
JP3897768B2 (en) 2007-03-28

Similar Documents

Publication Publication Date Title
JP3649556B2 (en) Method and apparatus for chromatic dispersion control and dispersion amount detection method
US6081360A (en) Method and apparatus for optimizing dispersion in an optical fiber transmission line in accordance with an optical signal power level
US6728491B1 (en) Polarization-mode dispersion detecting method, and a dispersion compensation controlling apparatus and a dispersion compensation controlling method
JP3846918B2 (en) Optical transmission system, optical multiplex transmission system and related technologies
US7035538B2 (en) Monitoring optical dispersion based on vestigial side band optical filtering
JP3892326B2 (en) Control device for optical modulator
US20070019967A1 (en) Optical receiving station, optical communication system, and dispersion controlling method
EP1814245B1 (en) Chromatic dispersion monitoring method and chromatic dispersion monitoring apparatus
JP3886223B2 (en) Distributed control method and apparatus
JPH1188262A (en) Timing signal generator and its method
US20040179849A1 (en) Optical receiver and method for controlling dispersion compensation
JP2006271009A (en) Optical transmission system, optical multiplexing transmission system, and its peripheral technique
JP4350057B2 (en) Optical transmission system, optical multiplex transmission system and related technologies
JP3897768B2 (en) Method and apparatus for chromatic dispersion control and dispersion amount detection method
JPH11346191A (en) Method for setting signal light wavelength of optical transmission system
JP2005269667A (en) Optical transmission system, optical multiplexing system, and related peripheral technique
Yu et al. Chromatic dispersion monitor for WDM systems using vestigial-sideband optical filtering
JP2005229653A (en) Optical transmission system, optical multiplexing transmission system, and related peripheral techniques
JP4533999B2 (en) Frequency shift keying demodulator
JP4357446B2 (en) Optical transmission system, optical multiplex transmission system and related technologies
JP2005252369A (en) Wdm transmission system
JP2005218138A (en) Optical transmission system, optical multiplex transmission system and peripheral technique thereof
Fischer et al. Scaling of nonlinear threshold with fiber type and channel spacing in WDM transmission systems
JP2005223945A (en) Optical transmission system, optical multiplexing transmission system and related peripheral techniques
JP2002353941A (en) Wavelength multiplex transmission system and optical fiber transmission method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees