JP2004253396A - Ceramic heater for sensor and oxygen sensor - Google Patents

Ceramic heater for sensor and oxygen sensor Download PDF

Info

Publication number
JP2004253396A
JP2004253396A JP2004096423A JP2004096423A JP2004253396A JP 2004253396 A JP2004253396 A JP 2004253396A JP 2004096423 A JP2004096423 A JP 2004096423A JP 2004096423 A JP2004096423 A JP 2004096423A JP 2004253396 A JP2004253396 A JP 2004253396A
Authority
JP
Japan
Prior art keywords
sensor
ceramic heater
heat generating
heating
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004096423A
Other languages
Japanese (ja)
Inventor
Takao Kojima
孝夫 小島
Yoshiaki Kuroki
義昭 黒木
Kunio Yanagi
邦夫 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2004096423A priority Critical patent/JP2004253396A/en
Publication of JP2004253396A publication Critical patent/JP2004253396A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic heater for a sensor, capable of heating a sensor quickly without generating problems such as a crack and disconnection, and to provide an oxygen sensor. <P>SOLUTION: A heating pattern 9 comprises a heating part 11 arranged in zigzag to make six columns at the edge of a substrate, and a lead part 12 extending from right and left end parts of the heating part 11 to the bottom side of the substrate. The line width of a center part 11a of the heating part 11 is set wider than the line width of right and left side area parts 11b1, 11b2, so that the resistance of the center part 11a of the heating part 11 is lower than the resistance of each side area part 11b1, 11b2. The line space of the center part 11a of the heating part 11 is set wider than the line space of the side area parts 11b1, 11b2, allowing the amount of heat generation of the center part 11a of the heating part 11 to be lower than the amount heat generation of either of the side area parts 11b1, 11b2. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、例えば自動車等の内燃機関の酸素センサなどに使用されるセンサ用セラミックヒータ、及びこのセンサ用セラミックヒータを備えた酸素センサに関するものである。   The present invention relates to a ceramic heater for a sensor used for, for example, an oxygen sensor of an internal combustion engine such as an automobile, and an oxygen sensor including the ceramic heater for the sensor.

従来より、セラミック基体内に、Pt又はWからなる導電性抵抗体を発熱パターンとして備えた積層型板状ヒータ(以下単にセラミックヒータと記す)は、酸素センサ用又は汎用加熱器用として広く使用されている。   2. Description of the Related Art Conventionally, a laminated plate heater (hereinafter simply referred to as a ceramic heater) including a ceramic substrate and a conductive resistor made of Pt or W as a heating pattern has been widely used for an oxygen sensor or a general-purpose heater. I have.

例えば図5(a)に示す様に、チタニア等の金属酸化物感応体を感ガス素子P1として使用する板状の酸素センサ素子P2には、酸素センサ素子P2と積層されて一体に形成されたセラミックヒータP3が使用されている。このセラミックヒータP3としては、例えば図5(b)に示す様に、蛇行状の発熱部P4と発熱部P4から伸びる一対のリード部P5とからなる発熱パターンP6を、セラミック基板P7上に形成したものが知られている。   For example, as shown in FIG. 5A, a plate-shaped oxygen sensor element P2 using a metal oxide sensitive body such as titania as the gas-sensitive element P1 is formed integrally with the oxygen sensor element P2 by lamination. The ceramic heater P3 is used. As the ceramic heater P3, for example, as shown in FIG. 5B, a heating pattern P6 including a meandering heating portion P4 and a pair of lead portions P5 extending from the heating portion P4 is formed on a ceramic substrate P7. Things are known.

しかしながら、このセラミックヒータP3には下記(1),(2)の様な問題があり、その解決が望まれていた。
(1)つまり、酸素センサ素子P2に用いられるセラミックヒータP3に対して、例えば内燃機関の始動時などに印加電圧を加えて昇温を行なう場合には、その温度変化のために、昇温中にセラミック基板P7の(発熱部P4が集中する)中央部と(熱が逃げ易い幅方向の)側辺部との間に過度な温度差が生じる。その結果、発熱部P4の中央部と側辺部との熱膨張の違いによって、セラミック基板P7にクラックP8が発生したり、発熱部P4が断線するという問題があった。
However, this ceramic heater P3 has the following problems (1) and (2), and it has been desired to solve the problems.
(1) That is, when the temperature is increased by applying an applied voltage to the ceramic heater P3 used for the oxygen sensor element P2, for example, at the time of starting the internal combustion engine, the temperature is increased during the temperature increase. An excessive temperature difference occurs between the central portion (where the heat generating portions P4 are concentrated) of the ceramic substrate P7 and the side portions (in the width direction where heat can easily escape). As a result, due to the difference in thermal expansion between the central portion and the side portions of the heat generating portion P4, cracks P8 occur in the ceramic substrate P7 and the heat generating portion P4 is disconnected.

(2)また、近年では、特に米国における自動車の排気規制におけるOBD−II(On board diagnosis)において、酸素センサ、触媒装置、制御センサ等の劣化を検出することが義務づけられており、それに伴う問題も生じている。   (2) In recent years, it has been obligated in recent years to detect deterioration of oxygen sensors, catalyst devices, control sensors, and the like in OBD-II (On board diagnosis) in the emission regulations of automobiles in the United States. Has also occurred.

このOBD−IIは、米国カリフォルニア州での1996年頃から施行されることが予測される環境保護法による規制であって、機関の排気が規制値を満たさなくなったとき、その規制値を満たさなくなったことを運転者に判る様に表示することが義務づけられている。そして、この表示系統に故障が発生すれば、そのことのみでリコールの対象とされるため、酸素センサ、触媒装置、制御センサ等の劣化を検知すること、及びこの検知する装置が長期間正確に機能することが非常に重要なこととなっている。そのため、触媒装置の下流側にも診断用酸素センサを装着する必要があるが、その場合、下記の様な不具合が発生することがある。   The OBD-II is a regulation by the environmental protection law in California, USA, which is expected to be enforced from around 1996. When the engine emission does not meet the regulation value, the regulation value is not satisfied. It is obligatory to display this so that the driver can understand it. If a failure occurs in this display system, it is only possible to recall the failure, so it is necessary to detect the deterioration of the oxygen sensor, the catalyst device, the control sensor, etc. It is very important that it works. For this reason, it is necessary to mount a diagnostic oxygen sensor downstream of the catalyst device, but in such a case, the following problems may occur.

つまり、機関始動時に触媒装置に溜った凝縮水が粒状に飛散し、触媒装置の下流側のヒータにより加熱された感ガス素子P1に付着することによって、感ガス素子P1が破壊されてしまう場合がある。このため、機関始動時にはヒータには通電せずに、凝縮水の飛散が激減する機関始動後30秒後にヒータに通電して、感ガス素子P1を活性化する温度まで昇温させる必要が生ずる。その結果、感ガス素子P1が活性化する温度に達するまでは、実質的に空燃比の制御が正確になされないために、排気の浄化率が悪くなったり燃費が悪くなってしまう。   That is, when the condensed water accumulated in the catalyst device at the time of starting the engine is scattered in a granular form and adheres to the gas-sensitive element P1 heated by the heater on the downstream side of the catalyst device, the gas-sensitive element P1 may be destroyed. is there. For this reason, when the engine is started, it is necessary to turn on the heater 30 seconds after the start of the engine, when the scattering of condensed water is sharply reduced, without heating the heater, and to raise the temperature to a temperature at which the gas-sensitive element P1 is activated. As a result, the air-fuel ratio is not accurately controlled until the temperature reaches the temperature at which the gas-sensitive element P1 is activated, so that the purification rate of the exhaust gas deteriorates and the fuel efficiency deteriorates.

従って、なるべく短時間に感ガス素子P1が活性化する温度にまで昇温する必要があり、特に触媒装置の上流に装着された通常の空燃比制御用センサは、機関始動後50秒ほどで活性化温度に達するので、診断用酸素センサもこの時間内つまり通電開始後20秒以内に活性化することが望まれている。   Therefore, it is necessary to raise the temperature to a temperature at which the gas-sensitive element P1 is activated in as short a time as possible. In particular, a normal air-fuel ratio control sensor mounted upstream of the catalyst device is activated about 50 seconds after the engine is started. Since the temperature reaches the activation temperature, it is desired that the diagnostic oxygen sensor be activated within this time, that is, within 20 seconds after the start of energization.

この対策として、酸素センサ素子P2に用いられる(前記図5の様な)セラミックヒータP3に対して、従来の印加電圧より大きな印加電圧を加えて迅速に昇温を行なうことが考えられるが、この場合には、急な温度変化のために、上述したセラミック基板P7の中央部と側辺部との間に一層大きな温度差が生じてしまう。つまり、迅速に昇温を行なう場合には、従来より一層クラックP8の発生や断線の問題が顕著になるという大きな問題があった。   As a countermeasure, it is conceivable that the ceramic heater P3 (as shown in FIG. 5) used for the oxygen sensor element P2 is quickly heated by applying an applied voltage higher than the conventional applied voltage. In this case, a sudden temperature change causes a larger temperature difference between the central portion and the side portion of the ceramic substrate P7 described above. In other words, when the temperature is raised quickly, there is a major problem that cracks P8 and disconnections become more remarkable than in the past.

本発明は、前記課題を解決するためになされたものであり、クラックや断線等の不具合を生じることなく、迅速にセンサを加熱することができるセンサ用セラミックヒータ及び酸素センサを提供することを目的とする。   The present invention has been made to solve the above problems, and has as its object to provide a ceramic heater for a sensor and an oxygen sensor that can quickly heat the sensor without causing a problem such as a crack or disconnection. And

前記目的を達成するための請求項1の発明は、
セラミック基体に、該セラミック基体の長手方向に旋回した発熱部と該発熱部から伸びるリード部とからなる発熱パターンを形成したセンサ用セラミックヒータにおいて、前記発熱部の中央部の発熱量を、側辺部の発熱量より小さく設定したことを特徴とするセンサ用セラミックヒータを要旨とする。
The invention of claim 1 for achieving the above object is as follows.
In a ceramic heater for a sensor in which a heating pattern formed of a heating portion turned in a longitudinal direction of the ceramic base and a lead portion extending from the heating portion is formed on a ceramic base, the amount of heat generated at a central portion of the heating portion is determined by a side edge. The present invention provides a ceramic heater for a sensor, wherein the ceramic heater is set to be smaller than the calorific value of the portion.

請求項2の発明は、
前記発熱部を蛇行させて蛇行部分を形成するとともに、該蛇行部分の中央部の線幅を、該蛇行部分の側辺部の線幅より太く設定したことを特徴とする前記請求項1記載のセンサ用セラミックヒータを要旨とする。
The invention of claim 2 is
2. The meandering part is formed by meandering the heat generating part, and a line width of a central part of the meandering part is set to be larger than a line width of a side part of the meandering part. The gist is a ceramic heater for a sensor.

請求項3の発明は、
前記発熱部を蛇行させて蛇行部分を形成するとともに、該蛇行部分の中央部の線間隔を、該蛇行部分の側辺部の線間隔より広く設定したことを特徴とする前記請求項1又は2記載のセンサ用セラミックヒータを要旨とする。
The invention of claim 3 is
The meandering portion is formed by meandering the heat generating portion, and a line interval at a center portion of the meandering portion is set wider than a line interval at a side portion of the meandering portion. The gist is the ceramic heater for sensor described.

請求項4の発明は、
前記発熱部における前記中央部の抵抗値を、前記側辺部の抵抗値の20〜80%の範囲に設定したことを特徴とする前記請求項1又は2記載のセンサ用セラミックヒータを要旨とする。
The invention of claim 4 is
3. The sensor ceramic heater according to claim 1, wherein a resistance value of the central portion of the heat generating portion is set in a range of 20 to 80% of a resistance value of the side portion. .

請求項5の発明は、
前記発熱部における前記中央部の抵抗値を、前記側辺部の抵抗値の30〜70%の範囲に設定したことを特徴とする前記請求項4記載のセンサ用セラミックヒータを要旨とする。
The invention of claim 5 is
The gist of the sensor ceramic heater according to claim 4, wherein a resistance value of the central portion of the heat generating portion is set in a range of 30 to 70% of a resistance value of the side portion.

請求項6の発明は、
前記請求項1〜請求項5のいずれかのセンサ用セラミックヒータと、酸素濃度に対して抵抗値が変化する感ガス素子及び該感ガス素子から出力を取り出す出力取出部をセラミック基体に設けた検出部と、を積層してヒータ付き酸素センサ素子を形成し、該ヒータ付き酸素センサ素子を金属ケースに収納したことを特徴とする酸素センサを要旨とする。
The invention of claim 6 is
A sensor comprising: a ceramic heater for a sensor according to any one of claims 1 to 5; a gas-sensitive element whose resistance value changes with respect to oxygen concentration; and an output extraction unit for extracting an output from the gas-sensitive element provided on a ceramic base. And an oxygen sensor element with a heater formed by laminating the oxygen sensor element and a heater, and the oxygen sensor element with the heater is housed in a metal case.

請求項7の発明は、
前記発熱部と前記感ガス素子とが、前記セラミック基体の対応する位置の表裏面に各々形成されたことを特徴とする前記請求項6記載の酸素センサを要旨とする。
The invention of claim 7 is
7. The gist of the oxygen sensor according to claim 6, wherein the heat generating portion and the gas-sensitive element are respectively formed on front and back surfaces of the ceramic base at corresponding positions.

ここで、前記セラミック基体としては、アルミナ基板を使用でき、発熱パターンとしては、Pt,Wを使用でき、感ガス素子としては、チタニアを使用できる。   Here, an alumina substrate can be used as the ceramic substrate, Pt and W can be used as the heat generation pattern, and titania can be used as the gas-sensitive element.

請求項1のセンサ用セラミックヒータでは、セラミック基体に形成された発熱部の中央部の発熱量がその側辺部より小さく設定されている。従って、側辺部から熱が逃げて温度が低くなっても、中央部の発熱量が少ないので、側辺部と中央部との温度差が小さい。よって、急速加熱した場合でも、温度差がそれほど大きならないので、通常の使用状態だけでなく、急速加熱の際にもクラックの発生及び断線を防止することができる。   In the ceramic heater for a sensor according to the first aspect, the calorific value of the central portion of the heat generating portion formed on the ceramic base is set smaller than that of the side portion. Therefore, even if heat escapes from the side portion and the temperature decreases, the calorific value of the central portion is small, so that the temperature difference between the side portion and the central portion is small. Therefore, even if the heating is performed rapidly, the temperature difference is not so large, so that the occurrence of cracks and disconnection can be prevented not only in a normal use condition but also during the rapid heating.

請求項2のセンサ用セラミックヒータでは、発熱部の蛇行部分の中央部における線幅が側辺部より太く設定されている。そのため、同じ電圧が印加された場合でも、中央部の発熱量が少なくなるので、側辺部と中央部の温度差が小さくなって、通常の使用状態だけでなく、急速加熱の際にもクラックや断線の発生を防止することができる。   In the ceramic heater for a sensor according to the second aspect, the line width at the central portion of the meandering portion of the heat generating portion is set to be larger than the side portion. Therefore, even when the same voltage is applied, the calorific value of the central portion is reduced, so that the temperature difference between the side portion and the central portion is reduced, and the crack is generated not only in the normal use condition but also in the rapid heating. Or disconnection can be prevented.

請求項3のセンサ用セラミックヒータでは、発熱部の蛇行部分の中央部における線間隔が側辺部より広く設定されている。そのため、中央部における発熱パターンの占める割合が少ないので、中央部の発熱量が少なくなり、中央部と側辺部との温度差が小さくなって、通常の使用状態だけでなく、急速加熱の際にもクラックや断線の発生を防止することができる。   In the ceramic heater for a sensor according to the third aspect, the line interval in the central portion of the meandering portion of the heat generating portion is set wider than the side portion. Therefore, since the ratio of the heat generation pattern in the center portion is small, the heat generation amount in the center portion is small, the temperature difference between the center portion and the side portion is small, and not only in the normal use state, but also in the case of rapid heating. Also, the occurrence of cracks and disconnections can be prevented.

請求項4のセンサ用セラミックヒータでは、発熱部の中央部の抵抗値が側辺部の抵抗値の20〜80%として、中央部の方が発熱量が小さくなる様に設定されているので、周辺部と側辺部の温度差が小さくなって、通常の使用状態だけでなく、急速加熱の際にもクラックや断線の発生を防止することができる。   In the sensor ceramic heater according to the fourth aspect, the resistance value at the central portion of the heat generating portion is set to be 20 to 80% of the resistance value at the side portion, and the central portion is set so that the calorific value is smaller. The temperature difference between the peripheral portion and the side portion is reduced, so that cracks and disconnections can be prevented not only during normal use but also during rapid heating.

請求項5のセンサ用セラミックヒータでは、発熱部の中央部の抵抗値が側辺部の抵抗値の30〜70%と設定されているので、中央部と側辺部との温度差が一層小さくなって、通常の使用状態だけでなく、急速加熱の際にもクラックや断線の発生をより好適に防止することができる。   In the ceramic heater for a sensor according to the fifth aspect, since the resistance value of the central portion of the heat generating portion is set to 30 to 70% of the resistance value of the side portion, the temperature difference between the central portion and the side portion is further reduced. As a result, cracks and disconnections can be more suitably prevented not only during normal use but also during rapid heating.

請求項6の酸素センサでは、前記請求項1〜請求項5のセンサ用セラミックヒータと検出部とが積層されたヒータ付き酸素センサ素子が金属ケースに収納されて使用されるので、通常の使用状態だけでなく、急速加熱の際にもクラックや断線を生じることなく、感ガス素子を迅速に加熱することができ、よってセンサによる測定を迅速に開始できるという効果がある。   In the oxygen sensor according to the sixth aspect, the oxygen sensor element with the heater, in which the ceramic heater for the sensor according to the first to fifth aspects and the detection unit are stacked, is housed in a metal case and used. In addition, the gas-sensitive element can be heated quickly without causing cracks and disconnections even during rapid heating, so that measurement by the sensor can be started quickly.

請求項7の酸素センサでは、発熱部と感ガス素子とがセラミック基体の対応する表裏面に各々形成されることにより、発熱部が感ガス素子の加熱に最も好適な位置に配置されるので、加熱を効率よく行なうことができ、センサによる測定を迅速に開始できるという利点がある。   In the oxygen sensor according to claim 7, since the heat-generating portion and the gas-sensitive element are respectively formed on the corresponding front and back surfaces of the ceramic base, the heat-generating portion is arranged at a position most suitable for heating the gas-sensitive element. There is an advantage that heating can be performed efficiently and measurement by a sensor can be started quickly.

請求項1のセンサ用セラミックヒータでは、セラミック基体に形成された発熱部の中央部の発熱量がその側辺部より小さく設定されている。従って、側辺部から熱が逃げて温度が低くなっても、中央部の発熱量が少ないので、側辺部と中央部との温度差が小さい。よって、通常の加熱の場合だけでなく、急速加熱した場合でも、温度差がそれほど大きならないので、通常加熱及び急速加熱の際のクラックの発生及び断線が防止される。   In the ceramic heater for a sensor according to the first aspect, the calorific value of the central portion of the heat generating portion formed on the ceramic base is set smaller than that of the side portion. Therefore, even if heat escapes from the side portion and the temperature decreases, the calorific value of the central portion is small, so that the temperature difference between the side portion and the central portion is small. Therefore, not only in the case of normal heating but also in the case of rapid heating, since the temperature difference is not so large, the occurrence of cracks and disconnection during normal heating and rapid heating are prevented.

請求項2のセンサ用セラミックヒータでは、発熱部の蛇行部分の中央部における線幅が側辺部より太く設定されている。そのため、同じ電圧が印加された場合でも、中央部の発熱量が少なくなるので、前記請求項1と同様に、側辺部と中央部の温度差が小さくなって、クラックや断線の発生が防止される。   In the ceramic heater for a sensor according to the second aspect, the line width at the central portion of the meandering portion of the heat generating portion is set to be larger than the side portion. Therefore, even when the same voltage is applied, the calorific value of the central portion is reduced, so that the temperature difference between the side portion and the central portion is reduced and the occurrence of cracks and disconnections is prevented as in the case of the first aspect. Is done.

請求項3のセンサ用セラミックヒータでは、発熱部の蛇行部分の中央部における線間隔が側辺部より広く設定されている。そのため、中央部における発熱パターンの占める割合が少ないので、中央部の発熱量が少なくなり、前記請求項1と同様に、中央部と側辺部との温度差が小さくなって、クラックや断線の発生が防止される。   In the ceramic heater for a sensor according to the third aspect, the line interval in the central portion of the meandering portion of the heat generating portion is set wider than the side portion. Therefore, since the ratio of the heat generation pattern in the central portion is small, the amount of heat generated in the central portion is reduced, and the temperature difference between the central portion and the side portion is reduced, as in the case of claim 1, and cracks and disconnections are caused. The occurrence is prevented.

請求項4のセンサ用セラミックヒータでは、発熱部の中央部の抵抗値が側辺部の抵抗値の20〜80%となる様に設定されているので、即ち中央部の方が発熱量が小さくなる様に設定されているので、前記請求項1と同様に、周辺部と側辺部の温度差が小さくなって、クラックや断線の発生が防止される。   In the ceramic heater for a sensor according to the fourth aspect, the resistance value of the central portion of the heat generating portion is set to be 20 to 80% of the resistance value of the side portion, that is, the calorific value is smaller in the central portion. As a result, the temperature difference between the peripheral portion and the side portion is reduced, thereby preventing the occurrence of cracks and disconnections.

請求項5のセンサ用セラミックヒータでは、発熱部の中央部の抵抗値が側辺部の抵抗値の30〜70%となる様に設定されているので、中央部と側辺部との温度差が一層小さくなって、クラックや断線の発生が防止される。   In the ceramic heater for a sensor according to the fifth aspect, the resistance value of the central portion of the heat generating portion is set to be 30 to 70% of the resistance value of the side portion, so that the temperature difference between the central portion and the side portion. Is further reduced, and the occurrence of cracks and disconnections is prevented.

請求項6の酸素センサでは、前記請求項1〜請求項5のいずれかのセンサ用セラミックヒータと検出部とが積層されてヒータ付き酸素センサ素子が形成され、このヒータ付き酸素センサ素子は金属ケースに収納されて使用されるので、クラックや断線を生じることなく、感ガス素子を迅速に加熱することが可能となる。   In the oxygen sensor according to the sixth aspect, the sensor ceramic heater according to any one of the first to fifth aspects and the detection unit are stacked to form an oxygen sensor element with a heater, and the oxygen sensor element with a heater is a metal case. The gas-sensitive element can be quickly heated without causing cracks or disconnections.

請求項7の酸素センサでは、発熱部と感ガス素子とがセラミック基体の対応する表裏面に各々形成されることにより、発熱部は感ガス素子の加熱に最も好適な位置に配置されるので、加熱を効率よく行なうことが可能である。   In the oxygen sensor according to claim 7, since the heat-generating portion and the gas-sensitive element are respectively formed on the corresponding front and back surfaces of the ceramic base, the heat-generating portion is arranged at a position most suitable for heating the gas-sensitive element. Heating can be performed efficiently.

以下、本発明の実施例のセンサ用セラミックヒータ及び酸素センサについて説明する。
(実施例1)
図1に示す様に、本実施例のセンサ用セラミックヒータ1は、感ガス素子5の加熱用に用いられるものであり、この板状のセラミックヒータ1が板状の検出部2に積層されることによって、幅4mm×長さ40mm×厚さ2.2mmの柱状の酸素センサ素子3が形成されている。
Hereinafter, a ceramic heater for a sensor and an oxygen sensor according to an embodiment of the present invention will be described.
(Example 1)
As shown in FIG. 1, a ceramic heater 1 for a sensor according to the present embodiment is used for heating a gas-sensitive element 5, and the plate-shaped ceramic heater 1 is laminated on a plate-shaped detection unit 2. Thus, a columnar oxygen sensor element 3 having a width of 4 mm, a length of 40 mm and a thickness of 2.2 mm is formed.

つまり、検出部2とは、厚さ1mmの第1のアルミナ基板(センサ基板)4上に、チタニア等の金属酸化物感応体からなる感ガス素子5と、感ガス素子5に接するPtからなる一対の検出用電極6と、検出用電極6の大部分を覆う厚さ0.2mmのアルミナ質からなる絶縁シート7とが設けられたものであり、この絶縁シート7は感ガス素子5と検出用電極6とが接する電極面積を規定するとともに、感ガス素子5と検出用電極6とが接する部分以外を雰囲気から密封する。一方、セラミックヒータ1とは、厚さ1mmの第2のアルミナ基板8上に、Ptからなる発熱パターン9が設けられたものであり、この板状の検出部2の裏面側にセラミックヒータ1が積層されて、酸素センサ素子3が構成されている。従って、本実施例では、発熱パターン9は、第1のアルミナ基板4と第2のアルミナ基板8とに挟まれるとともに、発熱パターン9の発熱部11と感ガス素子5とは、第1のアルミナ基板4を挟んで表裏面の同じ位置に配置されていることになる。   That is, the detection unit 2 is composed of a gas-sensitive element 5 made of a metal oxide sensitive body such as titania and a Pt in contact with the gas-sensitive element 5 on a first alumina substrate (sensor substrate) 4 having a thickness of 1 mm. A pair of detection electrodes 6 and an insulating sheet 7 made of alumina and having a thickness of 0.2 mm which covers most of the detection electrodes 6 are provided. The electrode area in contact with the electrode for use 6 is defined, and the portion other than the contact between the gas-sensitive element 5 and the detection electrode 6 is sealed from the atmosphere. On the other hand, the ceramic heater 1 has a heat generating pattern 9 made of Pt provided on a second alumina substrate 8 having a thickness of 1 mm. The oxygen sensor element 3 is configured by being stacked. Therefore, in the present embodiment, the heat generating pattern 9 is sandwiched between the first alumina substrate 4 and the second alumina substrate 8, and the heat generating portion 11 of the heat generating pattern 9 and the gas-sensitive element 5 are connected to the first alumina substrate 4. That is, they are arranged at the same position on the front and back surfaces with the substrate 4 interposed therebetween.

図2に示す様に、第2のアルミナ基板8上に設けられた発熱パターン9は、基板先端側にて6列となる様に蛇行する発熱部11と、発熱部11の左右端部から基板根元側に伸びる一対のリード部12とから構成されている。   As shown in FIG. 2, the heat generating pattern 9 provided on the second alumina substrate 8 includes a heat generating portion 11 meandering in six rows at the front end side of the substrate, and a heat generating portion 9 extending from the left and right ends of the heat generating portion 11. And a pair of lead portions 12 extending to the root side.

特に本実施例においては、発熱部11の中央部11aの線幅(例えば0.35mm)が、左右の側辺部11b1,11b2の線幅(例えば0.3mm)より太く設定されることによって、発熱部11の中央部11aの抵抗値が各側辺部11b1,11b2の抵抗値より小さくなる様に設定されている。また、発熱部11の中央部11aの線間隔(例えば0.40mm)が、側辺部11b1,11b2の線間隔(例えば0.33mm)より広く設定されている。 In particular, the present embodiment, the line width of the central portion 11a of the heating portion 11 (e.g., 0.35 mm) is thicker be set from the left and right side portions 11b 1, 11b 2 of the line width (e.g., 0.3 mm) Accordingly, the resistance value of the central portion 11a of the heating portion 11 is set so as be smaller than the resistance value of each side portion 11b 1, 11b 2. The line spacing of the central portion 11a of the heating portion 11 (e.g., 0.40 mm) is set wider than side portions 11b 1, 11b 2 of the line spacing (for example, 0.33 mm).

これによって、発熱部11の中央部11aの発熱量が左右の側辺部11b1,11b2のいずれの発熱量よりも小さくなる様に設定されている。尚、発熱部11の線幅や線間隔は、アルミナ基板8の中心方向に行くほど順番に大きくなる様に設定してもよい。 Thus, the heating value of the central portion 11a of the heating portion 11 is set so as be smaller than any of the calorific value of the side portions 11b 1, 11b 2 of the right and left. The line width and line interval of the heat generating portion 11 may be set so as to increase in order toward the center of the alumina substrate 8.

また、上述したセラミックヒータ1を備えた酸素センサ素子3は、例えば図3に示す様に、セラミックスリーブ21やガラスシール22等を介して、その感ガス素子5側を先端として、主体金具23や金属キャップ24等からなる金属ケース25内に格納され、例えば内燃機関の酸素濃度の検出等に使用される。
<実験例1>
次に、本実施例のセラミックヒータの効果を確認するために行った実験例について説明する。
As shown in FIG. 3, the oxygen sensor element 3 having the above-described ceramic heater 1 is provided with a metallic sleeve 23 and a gas-sensitive element 5 through a ceramic sleeve 21 and a glass seal 22. It is stored in a metal case 25 made up of a metal cap 24 and the like, and is used, for example, for detecting the oxygen concentration of an internal combustion engine.
<Experimental example 1>
Next, an experimental example performed for confirming the effect of the ceramic heater of the present embodiment will be described.

本実験例では、前記実施例1の構造のセラミックヒータ部分を使用した。つまり、第1のアルミナ基板と第2のアルミナ基板との間に発熱パターンが挟まれただけのセラミックヒータ(幅4.0mm×長さ40.0mm×厚さ2.0mm)の試料を作成した。   In this experimental example, the ceramic heater portion having the structure of the first embodiment was used. That is, a sample of a ceramic heater (4.0 mm in width × 40.0 mm in length × 2.0 mm in thickness) in which a heating pattern was sandwiched between the first alumina substrate and the second alumina substrate was prepared. .

具体的には、セラミックヒータとして、下記表1の様に、発熱部の中央部及び側辺部の線幅,抵抗値,線間隔を違えた試料(No.1〜3)を各25個づつ製造した。また、同様に、線幅や線間隔を変更しない比較例(No.4)も25個製造した。   More specifically, as ceramic heaters, as shown in Table 1 below, 25 samples (Nos. 1 to 3) having different line widths, resistance values, and line intervals at the central portion and side portions of the heating portion were each used. Manufactured. Similarly, 25 comparative examples (No. 4) in which the line width and the line interval were not changed were manufactured.

尚、本実験例においては、図2に示す様に、側片部は左右の側片の各1往復の蛇行部とし、発熱部の中央部は側片部を除いた部分とする。また、表1中の抵抗値は、25個の平均値を示す。   In this experimental example, as shown in FIG. 2, the side piece is a meandering part of one reciprocation of the left and right side pieces, and the center of the heat generating part is a part excluding the side piece. Further, the resistance values in Table 1 indicate an average value of 25 pieces.

Figure 2004253396
Figure 2004253396

そして、それらのセラミックヒータの試料に対して、下記の試験条件1),2)で試験を行った。その結果を、下記表2に記す。   Then, tests were performed on the ceramic heater samples under the following test conditions 1) and 2). The results are shown in Table 2 below.

1)ヒータ抵抗値(全抵抗)を約5.9Ωとする。これは、印加電圧がDC11Vで、電圧印加20秒後に感ガス素子が500℃に達するのに必要な電力量となる抵抗値である。   1) Set the heater resistance (total resistance) to about 5.9Ω. This is a resistance value at which the applied voltage is DC 11 V and the amount of power required for the gas sensing element to reach 500 ° C. 20 seconds after the voltage is applied.

2)試験条件として、DC14.5Vで20秒間電圧を印加した後に、ヒータにクラックが発生したか否かを調べた。   2) As a test condition, after applying a voltage of 14.5 V DC for 20 seconds, it was examined whether or not cracks occurred in the heater.

Figure 2004253396
Figure 2004253396

この表2から明らかな様に、本実施例のものは、所定の印加電圧を加えた場合でもクラックの発生率が少なく好適であるが、比較例のものは、クラックの発生率が大きく好ましくない。
<実験例2>
次に、本実施例のセラミックヒータにおけるクラックの発生状態を詳しく調べた実験例について説明する。
As is evident from Table 2, the device according to the present example has a small crack generation rate even when a predetermined applied voltage is applied, and the comparative example has a large crack generation rate, which is not preferable. .
<Experimental example 2>
Next, an experimental example will be described in which the state of occurrence of cracks in the ceramic heater of the present embodiment was examined in detail.

本実験例では、前記実験例1で使用した構造のセラミックヒータにおいて、その中央部の抵抗値と片側の抵抗値との割合を10%づつ変更した試料を各25個作成した。そして、上記2)の実験条件(DC14.5×20秒間印加)にて、クラック発生率を調べた。その結果を図4に示す。   In the present experimental example, in the ceramic heater having the structure used in Experimental Example 1, 25 samples were prepared in which the ratio between the resistance value at the center and the resistance value on one side was changed by 10%. Then, the crack generation rate was examined under the experimental conditions of the above 2) (DC 14.5 × applied for 20 seconds). The result is shown in FIG.

図4から明らかな様に、中央部の抵抗値と片側の抵抗値との割合(中央部の抵抗値/片側側片部の抵抗値)が30〜70%の場合には、クラックの発生率がほぼ零と極端に少なく、極めて好適である。   As is clear from FIG. 4, when the ratio of the resistance value at the central portion to the resistance value at one side (the resistance value at the central portion / the resistance value at one side at one side) is 30 to 70%, the crack generation rate Is extremely small, almost zero, which is extremely suitable.

尚、本発明は前記実施例になんら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment at all, and it goes without saying that the present invention can be implemented in various modes without departing from the gist of the present invention.

本実施例の酸素センサ素子を示す分解斜視図である。FIG. 2 is an exploded perspective view illustrating the oxygen sensor element according to the embodiment. 本実施例のセラミックヒータを示す一部破断平面図である。It is a partially broken plan view showing the ceramic heater of the present example. 本実施例の酸素センサを示す断面図である。It is sectional drawing which shows the oxygen sensor of a present Example. 実験例2のクラック発生率を示すグラフである。9 is a graph showing a crack generation rate in Experimental Example 2. 従来技術を示す説明図である。It is explanatory drawing which shows a prior art.

符号の説明Explanation of reference numerals

1…セラミックヒータ、 2…検出部、
3…酸素センサ素子、 4…第1のアルミナ基板、
5…感ガス素子、 8…第2のアルミナ基板、
9…発熱パターン、 11…発熱部、
12…リード部
1 ... ceramic heater, 2 ... detector,
3 oxygen sensor element 4 first alumina substrate
5 ... gas sensitive element, 8 ... second alumina substrate,
9: heat generation pattern, 11: heat generation section,
12 Lead part

Claims (7)

セラミック基体に、該セラミック基体の長手方向に旋回した発熱部と該発熱部から伸びるリード部とからなる発熱パターンを形成したセンサ用セラミックヒータにおいて、
前記発熱部の中央部の発熱量を、側辺部の発熱量より小さく設定したことを特徴とするセンサ用セラミックヒータ。
A ceramic heater for a sensor in which a heating pattern formed of a heating portion turned in a longitudinal direction of the ceramic base and a lead portion extending from the heating portion is formed on the ceramic base,
A ceramic heater for a sensor, wherein a calorific value of a central portion of the heat generating portion is set smaller than a calorific value of a side portion.
前記発熱部を蛇行させて蛇行部分を形成するとともに、該蛇行部分の中央部の線幅を、該蛇行部分の側辺部の線幅より太く設定したことを特徴とする前記請求項1記載のセンサ用セラミックヒータ。 2. The method according to claim 1, wherein the heat generating portion is meandered to form a meandering portion, and a line width at a central portion of the meandering portion is set to be larger than a line width at a side portion of the meandering portion. Ceramic heater for sensors. 前記発熱部を蛇行させて蛇行部分を形成するとともに、該蛇行部分の中央部の線間隔を、該蛇行部分の側辺部の線間隔より広く設定したことを特徴とする前記請求項1又は2記載のセンサ用セラミックヒータ。 The meandering portion is formed by meandering the heat generating portion, and a line interval at a center portion of the meandering portion is set wider than a line interval at a side portion of the meandering portion. The ceramic heater for a sensor as described in the above. 前記発熱部における前記中央部の抵抗値を、前記側辺部の抵抗値の20〜80%の範囲に設定したことを特徴とする前記請求項1又は2記載のセンサ用セラミックヒータ。 3. The sensor ceramic heater according to claim 1, wherein a resistance value of the central portion of the heat generating portion is set in a range of 20% to 80% of a resistance value of the side portion. 前記発熱部における前記中央部の抵抗値を、前記側辺部の抵抗値の30〜70%の範囲に設定したことを特徴とする前記請求項4記載のセンサ用セラミックヒータ。 5. The sensor ceramic heater according to claim 4, wherein a resistance value of the central portion of the heat generating portion is set in a range of 30 to 70% of a resistance value of the side portion. 前記請求項1〜請求項5のいずれかのセンサ用セラミックヒータと、酸素濃度に対して抵抗値が変化する感ガス素子及び該感ガス素子から出力を取り出す出力取出部をセラミック基体に設けた検出部と、を積層してヒータ付き酸素センサ素子を形成し、該ヒータ付き酸素センサ素子を金属ケースに収納したことを特徴とする酸素センサ。 A sensor comprising: a ceramic heater for a sensor according to any one of claims 1 to 5; a gas-sensitive element whose resistance value changes with respect to oxygen concentration; and an output extraction unit for extracting an output from the gas-sensitive element provided on a ceramic base. And an oxygen sensor element with a heater formed by laminating the oxygen sensor element with the heater and the oxygen sensor element with the heater housed in a metal case. 前記発熱部と前記感ガス素子とが、前記セラミック基体の対応する位置の表裏面に各々形成されたことを特徴とする前記請求項6記載の酸素センサ。 7. The oxygen sensor according to claim 6, wherein the heat generating portion and the gas-sensitive element are respectively formed on front and back surfaces of the ceramic base at corresponding positions.
JP2004096423A 2004-03-29 2004-03-29 Ceramic heater for sensor and oxygen sensor Pending JP2004253396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004096423A JP2004253396A (en) 2004-03-29 2004-03-29 Ceramic heater for sensor and oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004096423A JP2004253396A (en) 2004-03-29 2004-03-29 Ceramic heater for sensor and oxygen sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6154702A Division JPH0821812A (en) 1994-07-06 1994-07-06 Sensor ceramic heater and oxygen sensor

Publications (1)

Publication Number Publication Date
JP2004253396A true JP2004253396A (en) 2004-09-09

Family

ID=33028542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004096423A Pending JP2004253396A (en) 2004-03-29 2004-03-29 Ceramic heater for sensor and oxygen sensor

Country Status (1)

Country Link
JP (1) JP2004253396A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515636A (en) * 2003-12-18 2007-06-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Ceramic laminated composite
CN103698359A (en) * 2013-12-13 2014-04-02 苏州纳格光电科技有限公司 Semiconductor gas sensor
JP2017041421A (en) * 2015-08-21 2017-02-23 日本碍子株式会社 Ceramic heater, sensor element, and gas sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515636A (en) * 2003-12-18 2007-06-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Ceramic laminated composite
CN103698359A (en) * 2013-12-13 2014-04-02 苏州纳格光电科技有限公司 Semiconductor gas sensor
CN103698359B (en) * 2013-12-13 2016-06-15 苏州纳格光电科技有限公司 Semiconductor gas sensor
JP2017041421A (en) * 2015-08-21 2017-02-23 日本碍子株式会社 Ceramic heater, sensor element, and gas sensor
US10837937B2 (en) 2015-08-21 2020-11-17 Ngk Insulators, Ltd. Ceramic heater, sensor element, and gas sensor

Similar Documents

Publication Publication Date Title
US5895591A (en) Ceramic heater and oxygen sensor
US8823400B2 (en) Method and system for contamination signature detection diagnostics of a particulate matter sensor
US8035404B2 (en) Method for influencing soot deposits on sensors
JP5212574B2 (en) Gas sensor abnormality diagnosis device
US20110203348A1 (en) Soot sensor system
EP2009433A1 (en) Catalytic combustion type gas sensor, detection device and compensating device
JP2012093292A (en) Particulate substance detection element
US20130000678A1 (en) Method and system for contamination removal from a particulate matter sensor
JP2006266961A (en) Soot sensor
JP2003050226A (en) Heater control device for gas concentration sensor
JP3546590B2 (en) Air-fuel ratio sensor
JP4172279B2 (en) Gas sensor
JP6321968B2 (en) Gas sensor element
DE102011006167A1 (en) Gas sensor and method for detecting the interruption in a gas sensor
JP6596535B2 (en) Gas sensor
JP6350359B2 (en) Gas sensor
JP2004253396A (en) Ceramic heater for sensor and oxygen sensor
JP3523911B2 (en) Ceramic heater for sensor and oxygen sensor
JPH10502428A (en) Automotive catalyst performance monitoring system
JPH0821812A (en) Sensor ceramic heater and oxygen sensor
JP5201069B2 (en) Gas concentration detector
JP2004006345A (en) Ceramic heater for sensor and oxygen sensor
JP2005030887A (en) Liquid type identifying apparatus for gas oil, and liquid type identification method of gas oil
JP5014938B2 (en) Contact combustion type gas sensor
JP6678084B2 (en) Particulate matter detection sensor and particulate matter detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508