JP2004253360A - Dielectric barrier discharge type low-pressure discharge lamp - Google Patents

Dielectric barrier discharge type low-pressure discharge lamp Download PDF

Info

Publication number
JP2004253360A
JP2004253360A JP2003170652A JP2003170652A JP2004253360A JP 2004253360 A JP2004253360 A JP 2004253360A JP 2003170652 A JP2003170652 A JP 2003170652A JP 2003170652 A JP2003170652 A JP 2003170652A JP 2004253360 A JP2004253360 A JP 2004253360A
Authority
JP
Japan
Prior art keywords
lamp
tubular glass
sealed
type low
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003170652A
Other languages
Japanese (ja)
Other versions
JP2004253360A5 (en
JP3878153B2 (en
Inventor
Yuji Takeda
雄士 武田
Takayoshi Kurita
貴好 栗田
Masasane Takagi
将実 高木
Tomomasa Hirao
智将 平尾
Shiro Ochi
志郎 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harison Toshiba Lighting Corp filed Critical Harison Toshiba Lighting Corp
Priority to JP2003170652A priority Critical patent/JP3878153B2/en
Publication of JP2004253360A publication Critical patent/JP2004253360A/en
Publication of JP2004253360A5 publication Critical patent/JP2004253360A5/ja
Application granted granted Critical
Publication of JP3878153B2 publication Critical patent/JP3878153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance reliability of long-term lighting by preventing a mercury exhaustion phenomenon in sealing parts at both ends of a tubular glass lamp vessel. <P>SOLUTION: In this dielectric barrier discharge type low-pressure discharge lamp 1, a ball bead sealing part 11 is formed by loading a ball bead 41 in at least one end of the tubular glass vessel 10, that is, the end part of the vessel on the side sealed after evacuating it and filling a filler in it and by thermally fusing it, protrusion of the ball bead into a discharge space at the ball bead sealing part thermally sealed under the atmospheric pressure is minimized, to prevent the mercury exhaust phenomenon at the ball bead sealing part, and to make long-term lighting possible. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、誘電体バリア放電型低圧放電ランプに関する。
【0002】
【従来の技術】
管状ガラスランプ容器の外表面に電極を備える、いわゆる誘電体バリア放電型低圧放電ランプとして、例えば実開昭61−126559号公報に記載されたものが知られている。
【0003】
図5は、このような公報記載の技術を参考にし、本願発明者らが試作した誘電体バリア放電型低圧放電ランプの構造を示している。図5において、5は低圧放電ランプ、10は管状ガラスランプ容器であり、この管状ガラスランプ容器10の内部には水銀と希ガスの混合ガスによる充填剤60が放電媒体として封入してある。管状ガラスランプ容器10の内壁面には、必要に応じて蛍光体層70を形成しいる。管状ガラスランプ容器10の両端部外表面には、電流導体層31,36で構成される外部電極21,26が配設してある。この外部電極21,26の電流導体層31,36は超音波半田槽に端部をディップすることによって形成したものである。
【0004】
図5に示す低圧放電ランプ5において、13及び16は管状ガラスランプ容器10の両端部の封着部である。製造工程において、一方のビーズレス封着部16はガラスランプ容器10が真空排気される前に熱封着し、他方の従来型封止部13は管状ガラスランプ容器10を真空排気し、充填剤60を導入した後に熱封着する。この従来型封止部13の封着工程では、ガラスランプ容器10の内部気圧が大気圧よりも低いため、封着時に高温で柔軟になった状態のガラス材が外気圧に押されてガラスランプ容器10の放電空間内に吸い込まれた形となる。このため、封着部13のガラスの肉厚が非常に薄くなり、この部分でガラスが破損し易いという問題点があった。
【0005】
この問題点を解決するために、本願発明者らは図6に示す構造の誘電体バリア放電型低圧放電ランプ6を試作した。この誘電体バリア放電型低圧放電ランプ6は、製造工程において、一方のランプ端のビーズレス封着部16はガラスランプ容器10が真空排気される前に熱封着し、他方のランプ端の円柱ビーズ封着部14については、比較的入手し易いガラス細棒をカットして得た円柱ビーズ44を管状ガラスランプ容器10の円柱ビーズ封着部14の位置まで挿入し、この状態でガラスランプ容器10の内部を真空排気し、充填剤60を導入した後に、円柱ビーズ44を覆うように管状ガラスランプ容器10の端部を熱封着することで得たものである。
【0006】
この構造の誘電体バリア放電型低圧放電ランプ6では、円柱ビーズ44を介在させたことによって、この円柱ビーズ封着部14のガラスが放電空間内に吸い込まれることがなく、図6に示す構造に製造できる。
【0007】
【特許文献1】
実開昭61−126559号公報
【0008】
【発明が解決しようとする課題】
しかしながら、後者の誘電体バリア放電型低圧放電ランプ6では、円柱ビーズ封着部14の円柱ビーズ44の端部が管状ガラスランプ容器10の放電空間内に突出し、ガラスランプ容器10とこの突出部分との間に隙間が生じることが避けられない。この隙間があると、ランプ点灯中に、この隙間の部分に充填剤60中の水銀蒸気が滞留、蓄積してしまう。そしてこの結果、充填剤60中の水銀が枯渇して局所的に希ガスだけになり、希ガス放電が生じる。この希ガス放電が起こると、放電部と接しているガラスランプ容器10の温度が部分的に上昇する傾向にあるため、ガラスが溶けてリークに到る場合があり、長時間点灯の信頼性に乏しいという問題点があった。なお、大気圧下で封着されたビーズレス封着部16では、ガラスが放電空間に突出していないために、上記希ガス放電による温度上昇は発生しない。
【0009】
本発明はこのような技術的課題に鑑みてなされたもので、管状ガラスランプ容器の両端の封着部での水銀枯渇現象を防止でき、長期間点灯の信頼性が保証できる誘電体バリア放電型低圧放電ランプを提供することを目的とする。
【0010】
【課題を解決するための手段】
請求項1の発明は、管状ガラスランプ容器の管両端部の外周に外部電極を配設し、前記管状ガラスランプ容器内に放電媒体を封入した誘電体バリア放電型低圧放電ランプにおいて、前記管状ガラスランプ容器の管両端の一方を熱封着し、前記管両端の他方に球ビーズを込めて熱封着し、前記管両端の端面及び外周面を前記外部電極により覆ったものである。
【0011】
請求項2の発明は、管状ガラスランプ容器の管両端部の外周に外部電極を配設し、前記管状ガラスランプ容器内に放電媒体を封入した誘電体バリア放電型低圧放電ランプにおいて、前記管状ガラスランプ容器の管両端それぞれに球ビーズを込めて熱封着し、前記管両端の端面及び外周面を前記外部電極により覆ったものである。
【0012】
請求項1及び2の発明の誘電体バリア放電型低圧放電ランプでは、管状ガラスランプ容器の少なくとも一端、つまり真空排気、充填剤封入後に封着する側の端部に球ビーズを込めて熱封着することにより、大気圧下で熱封着された球ビーズの放電空間内への突出を小さくでき、水銀を含有する放電媒体の場合に球ビーズ封着部分での水銀枯渇現象を防止し、長期間点灯を可能にする。
【0013】
請求項3の発明は、管状ガラスランプ容器の管両端部の外周に外部電極を配設し、前記管状ガラスランプ容器内に放電媒体を封入した誘電体バリア放電型低圧放電ランプにおいて、前記管状ガラスランプ容器の管両端の一方を熱封着し、前記管両端の他方に砲弾型ビーズをその頭部が放電空間側を向く姿勢にして込めて熱封着し、前記管両端の端面及び外周面を前記外部電極により覆ったものである。
【0014】
請求項2の発明は、管状ガラスランプ容器の管両端部の外周に外部電極を配設し、前記管状ガラスランプ容器内に放電媒体を封入した誘電体バリア放電型低圧放電ランプにおいて、前記管状ガラスランプ容器の管両端それぞれに砲弾型ビーズをその頭部が放電空間側を向く姿勢にして込めて熱封着し、前記管両端の端面及び外周面を前記外部電極により覆ったものである。
【0015】
請求項1及び2の発明の誘電体バリア放電型低圧放電ランプでは、管状ガラスランプ容器の少なくとも一端、つまり真空排気、充填剤封入後に封着する側の端部に砲弾型ビーズをその頭部が放電空間側を向く姿勢にして込めて熱封着することにより、大気圧下で熱封着された砲弾型ビーズの丸い頭部が放電空間側を向くためにその放電空間内への突出を小さくでき、水銀を含有する放電媒体の場合に球ビーズ封着部分での水銀枯渇現象を防止し、長期間点灯を可能にする。加えて、砲弾型ビーズの場合、熱封着工程で管状ガラスランプ容器の端部に導入する際に引っかかることなくスムーズに導入でき、それ故に量産での製品の歩留まりをよくできる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて詳説する。図1は、本発明の第1の実施の形態の誘電体バリア放電型低圧放電ランプの構成を示している。この図1において、図5、図6に示した試作低圧放電ランプ5,6と共通する符号は同一の要素を示している。
【0017】
図1に示す誘電体バリア放電型低圧放電ランプ1において、41は球ビーズであり、ガラス細棒から切り出した円柱ビーズをさらに成型することで製造したものである。ただし、この球ビーズ41の製造方法が問われることはなく、管状ガラスランプ容器10のサイズに応じ、適切な直径のガラス球を選択して用いることができる。
【0018】
本実施の形態の誘電体バリア放電型低圧放電ランプ1の製造工程では、一方のランプ端のビーズレス封着部16はガラスランプ容器10が真空排気される前に熱封着し、他方のランプ端の球ビーズ封着部11については、球ビーズ41を管状ガラスランプ容器10の球ビーズ封着部11の位置まで挿入し、この状態でガラスランプ容器10の内部を真空排気し、充填剤60を導入した後に、球ビーズ41を覆うように管状ガラスランプ容器10の端部を熱封着する。
【0019】
図6に示した試作低圧放電ランプ6で用いた円柱ビーズ44の代わりに、本実施の形態では球ビーズ41を用いたことにより、封着部11の放電空間内への突出を防止できる。このため、本実施の形態の誘電体バリア放電型低圧放電ランプ1では、円柱ビーズ44で封着していたときに発生していたようなランプ点灯時における円柱ビーズ44と管状ガラスランプ10との隙間での水銀枯渇による局所的な希ガス放電の発生を防止でき、この希ガス放電による温度上昇によってガラスが溶融し、リークに到る不具合の発生を防止できる。
【0020】
次に、本発明の第2の実施の形態の誘電体バリア放電型低圧放電ランプ2について、図2を用いて説明する。第2の実施の形態は、管状ガラスランプ容器10の両端部に球ビーズ41,46を挿入し、熱封着することにより球ビーズ封着部11,17を形成した構成を特徴とする。なお、図2において、図1に示した第1の実施の形態と共通する要素には同一の符号を付して示してある。
【0021】
本実施の形態の誘電体バリア放電型低圧放電ランプ2の製造では、一方のランプ端の球ビーズ封着部17はガラスランプ容器10が真空排気される前に球ビーズ46をガラス管内に込めて熱封着し、他方のランプ端の球ビーズ封着部11については、球ビーズ41を管状ガラスランプ容器10の球ビーズ封着部11の位置まで挿入し、この状態でガラスランプ容器10の内部を真空排気し、充填剤60を導入した後に、球ビーズ41を覆うように管状ガラスランプ容器10の端部を熱封着する。
【0022】
この第2の実施の形態の誘電体バリア放電型低圧放電ランプ2にあっても、第1の実施の形態と同様に、円柱ビーズ44で封着していたときに発生していたようなランプ点灯時における円柱ビーズ44と管状ガラスランプ10との隙間での水銀枯渇による局所的な希ガス放電の発生を防止でき、この希ガス放電による温度上昇によってガラスが溶融し、リークに到る不具合の発生を防止できる。
【0023】
次に、本発明の第3の実施の形態の誘電体バリア放電型低圧放電ランプについて、図3を用いて説明する。図3において、図1、図2に示した第1、第2の実施の形態の誘電体バリア放電型低圧放電ランプ1,2と共通する符号は同一の要素を示している。
【0024】
図3に示す誘電体バリア放電型低圧放電ランプ3において、41Aは砲弾型ビーズであり、ガラス細棒から切り出した円柱ビーズをさらに成型することで製造したものである。ただし、この砲弾型ビーズ41Aの製造方法が問われることはなく、管状ガラスランプ容器10のサイズに応じ、適切な径のものを選択して用いる。
【0025】
本実施の形態の誘電体バリア放電型低圧放電ランプ3の製造工程では、一方のランプ端のビーズレス封着部16はガラスランプ容器10が真空排気される前に熱封着し、他方のランプ端の砲弾型ビーズ封着部11Aについては、砲弾型ビーズ41Aをその頭部が放電空間側を向く姿勢にして管状ガラスランプ容器10の砲弾型ビーズ封着部11Aの位置まで挿入し、この状態でガラスランプ容器10の内部を真空排気し、充填剤60を導入した後に、砲弾型ビーズ41を覆うように管状ガラスランプ容器10の端部を熱封着する。
【0026】
図6に示した試作低圧放電ランプ6で用いた円柱ビーズ44の代わりに、本実施の形態では砲弾型ビーズ41Aをその頭部が放電空間側を向く姿勢にして用いたことにより、封着部11Aの放電空間内への突出を防止できる。このため、本実施の形態の誘電体バリア放電型低圧放電ランプ3では、円柱ビーズ44で封着していたときに発生していたようなランプ点灯時における円柱ビーズ44と管状ガラスランプ10との隙間での水銀枯渇による局所的な希ガス放電の発生を防止でき、この希ガス放電による温度上昇によってガラスが溶融し、リークに到る不具合の発生を防止できる。
【0027】
また、第1の実施の形態の様に球ビーズ41の場合、微小な径の完全な球形に整形するのが技術的に容易でなく、製造コストの面から簡易な工作で球形にしようとするいびつになりがちであり、いびつになるとガラス管内に挿入して管状ガラスランプ容器10の端部まで導入する工程で途中で引っかかってしまい、所定の位置まで導入するのが難しい場合がある。ところが、本実施の形態のように球ビーズ41に代えて砲弾型ビーズ41Aを用いる場合、円柱ガラスから取り出した短円柱の一端を研磨することにより砲弾型に整形した砲弾型ビーズ41Aをその頭部が放電空間側を向く姿勢にして管状ガラスランプ容器10の端部に導入することにより、所定の位置に円滑に導入することができる。このため、本実施の形態の誘電体バリア放電型低圧放電ランプ3では、製品歩留まりの向上が図れる。
【0028】
次に、本発明の第4の実施の形態の誘電体バリア放電型低圧放電ランプ4について、図4を用いて説明する。第4の実施の形態は、管状ガラスランプ容器10の両端部に砲弾型ビーズ41A,46Aを挿入し、熱封着することにより砲弾型ビーズ封着部11A,17Aを形成した構成を特徴とする。なお、図4において、図3に示した第3の実施の形態と共通する要素には同一の符号を付して示してある。
【0029】
本実施の形態の誘電体バリア放電型低圧放電ランプ4の製造では、一方のランプ端の砲弾型ビーズ封着部17Aはガラスランプ容器10が真空排気される前に砲弾型ビーズ46Aをその頭部が放電空間側を向く姿勢にしてガラス管内に込めて熱封着し、他方のランプ端の砲弾型ビーズ封着部11Aについては、砲弾型ビーズ41Aを管状ガラスランプ容器10の砲弾型ビーズ封着部11Aの位置までその頭部が放電空間側を向く姿勢にして挿入し、この状態でガラスランプ容器10の内部を真空排気し、充填剤60を導入した後に、砲弾型ビーズ41Aを覆うように管状ガラスランプ容器10の端部を熱封着する。
【0030】
この第4の実施の形態の誘電体バリア放電型低圧放電ランプ4にあっても、第3の実施の形態と同様に、従来円柱ビーズ44で封着していたときに発生していたようなランプ点灯時における円柱ビーズ44と管状ガラスランプ10との隙間での水銀枯渇による局所的な希ガス放電の発生を防止でき、この希ガス放電による温度上昇によってガラスが溶融し、リークに到る不具合の発生を防止できる。
【0031】
加えて、第3の実施の形態と同様に製造における製品歩留まりの向上も図れる。
【0032】
なお、本発明は上記第1〜第4の実施の形態のように、管状ガラスランプ容器10内に放電媒体として充填する充填剤60は水銀レスにしてもよい。
【0033】
【実施例】
図1に示した構成の実施例1、図3に示した構成の実施例2と、図6に示した構成の試作機を製作し、点灯試験をした結果を説明する。
【0034】
[実施例1]
<管状ガラスランプ容器>
材質:ホウ珪酸ガラス。
【0035】
寸法:外径2.6mm、内径2.0mm、全長379mm。
【0036】
<外部電極>
電流導体層:超音波半田層。
【0037】
外部電極長さ:17mm。
【0038】
<蛍光体層>
材質:三波長蛍光体。厚み:20μm。
【0039】
<充填剤>
封入ガス:ネオンとアルゴンの混合ガス(組成比:ネオン/アルゴン=90モル%/10モル%)。
【0040】
封入圧:8kPa。
【0041】
水銀:封入量3mg。
【0042】
<封着用ビーズ>
球ビーズ。
【0043】
[実施例2]
管状ガラスランプ容器、外部電極、蛍光体層、充填剤の仕様は、実施例1と共通である。そして封着用ビーズには、砲弾型ビーズを用いた。
【0044】
[比較例]
封着ビーズに円柱ビーズを用いてガラスランプ容器の一端部を封着した以外の構成は、実施例と共通である。
【0045】
本発明の実施例1、実施例2と比較例の誘電体バリア放電型低圧放電ランプそれぞれをランプ電流5mAで5000時間点灯したところ、いずれもガラス溶融の発生には到らなかったが、比較例では円柱ビーズと管状ガラスランプ容器の隙間で希ガス放電が起こっていたのに対し、本発明の実施例1、実施例2ではそのような現象は発生しなかった。
【0046】
【発明の効果】
以上のように本発明によれば、管状ガラスランプ容器のランプ端部のビーズ封着部に球ビーズ又は砲弾型ビーズを封着することで、ビーズの端部が放電空間内へ突出する寸法を小さくでき、ビーズ封着部での水銀枯渇現象を防止でき、長期間点灯を可能にして放電ランプの信頼性を高めることができる。
【0047】
加えて本発明において、封着用ビーズに砲弾型ビーズを用いることにより、封着のために管状ガラスランプ容器の端部へ導入する工程が円滑に行え、製品歩留まりの向上が図れる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態のランプ軸方向の断面図。
【図2】本発明の第2の実施の形態のランプ軸方向の断面図。
【図3】本発明の第3の実施の形態のランプ軸方向の断面図。
【図4】本発明の第4の実施の形態のランプ軸方向の断面図。
【図5】本願発明者らによる試作機のランプ軸方向の断面図。
【図6】本願発明者らによる別の試作機のランプ軸方向の断面図。
【符号の説明】
1〜4 誘電体バリア放電型低圧放電ランプ
10 管状ガラスランプ容器
11 球ビーズ封着部
11A 砲弾型ビーズ封着部
17 球ビーズ封着部
17A 砲弾型ビーズ封着部
21,26 外部電極
31,36 電流導体層
41,46 球ビーズ
41A,46A 砲弾型ビーズ
60 充填剤
70 蛍光体層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dielectric barrier discharge type low pressure discharge lamp.
[0002]
[Prior art]
2. Description of the Related Art As a so-called dielectric barrier discharge type low-pressure discharge lamp having electrodes on the outer surface of a tubular glass lamp vessel, for example, the one described in Japanese Utility Model Application Laid-Open No. 61-126559 is known.
[0003]
FIG. 5 shows the structure of a dielectric barrier discharge type low-pressure discharge lamp prototyped by the inventors of the present invention with reference to the technology described in this publication. In FIG. 5, reference numeral 5 denotes a low-pressure discharge lamp, and reference numeral 10 denotes a tubular glass lamp vessel. Inside the tubular glass lamp vessel 10, a filler 60 made of a mixed gas of mercury and a rare gas is sealed as a discharge medium. On the inner wall surface of the tubular glass lamp container 10, a phosphor layer 70 is formed as necessary. External electrodes 21 and 26 composed of current conductor layers 31 and 36 are disposed on the outer surfaces of both ends of the tubular glass lamp vessel 10. The current conductor layers 31, 36 of the external electrodes 21, 26 are formed by dipping the ends in an ultrasonic solder bath.
[0004]
In the low-pressure discharge lamp 5 shown in FIG. 5, 13 and 16 are sealing portions at both ends of the tubular glass lamp container 10. In the manufacturing process, one beadless sealing portion 16 heat seals the glass lamp vessel 10 before the glass lamp vessel 10 is evacuated, and the other conventional sealing section 13 evacuates the tubular glass lamp vessel 10, After introducing 60, heat sealing is performed. In the sealing step of the conventional sealing portion 13, since the internal pressure of the glass lamp vessel 10 is lower than the atmospheric pressure, the glass material in a high-temperature and flexible state at the time of sealing is pressed by the external pressure to form a glass lamp. The shape is drawn into the discharge space of the container 10. For this reason, the thickness of the glass of the sealing portion 13 becomes very thin, and there is a problem that the glass is easily broken at this portion.
[0005]
In order to solve this problem, the present inventors have prototyped a dielectric barrier discharge type low-pressure discharge lamp 6 having the structure shown in FIG. In the dielectric barrier discharge type low-pressure discharge lamp 6, in the manufacturing process, the beadless sealing portion 16 at one lamp end is heat-sealed before the glass lamp container 10 is evacuated, and the cylinder at the other lamp end is sealed. As for the bead sealing portion 14, a cylindrical bead 44 obtained by cutting a relatively easily available thin glass rod is inserted up to the position of the cylindrical bead sealing portion 14 of the tubular glass lamp container 10, and in this state, the glass lamp container After evacuating the inside of 10 and introducing the filler 60, the end of the tubular glass lamp vessel 10 is heat sealed so as to cover the cylindrical beads 44.
[0006]
In the dielectric barrier discharge type low-pressure discharge lamp 6 having this structure, since the cylindrical beads 44 are interposed, the glass of the cylindrical bead sealing portion 14 is not sucked into the discharge space, and the structure shown in FIG. Can be manufactured.
[0007]
[Patent Document 1]
Japanese Utility Model Application Laid-Open No. 61-126559 [0008]
[Problems to be solved by the invention]
However, in the latter dielectric-barrier discharge type low-pressure discharge lamp 6, the end of the cylindrical bead 44 of the cylindrical bead sealing portion 14 protrudes into the discharge space of the tubular glass lamp vessel 10, and the glass lamp vessel 10 and this protruding portion It is unavoidable that a gap is formed between them. If there is such a gap, the mercury vapor in the filler 60 stays and accumulates in the gap during the operation of the lamp. Then, as a result, the mercury in the filler 60 is depleted, and only the rare gas is locally generated, and a rare gas discharge occurs. When this rare gas discharge occurs, the temperature of the glass lamp container 10 in contact with the discharge part tends to partially rise, so that the glass may be melted, leading to leakage, and the reliability of lighting for a long time may be reduced. There was a problem of being scarce. In the beadless sealing portion 16 sealed under the atmospheric pressure, since the glass does not protrude into the discharge space, the temperature rise due to the rare gas discharge does not occur.
[0009]
The present invention has been made in view of such technical problems, and can prevent a mercury depletion phenomenon at a sealing portion at both ends of a tubular glass lamp container, and can guarantee a long-term reliability of a dielectric barrier discharge type. An object is to provide a low-pressure discharge lamp.
[0010]
[Means for Solving the Problems]
The invention according to claim 1 is a dielectric barrier discharge type low-pressure discharge lamp in which external electrodes are provided on the outer periphery of both ends of a tubular glass lamp vessel and a discharge medium is sealed in the tubular glass lamp vessel. One end of the tube of the lamp vessel is heat-sealed, and the other end of the tube is heat-sealed with ball beads, and the end surfaces and the outer peripheral surface of both ends of the tube are covered with the external electrodes.
[0011]
The invention according to claim 2 is a dielectric barrier discharge type low-pressure discharge lamp in which external electrodes are provided on the outer periphery of both ends of a tubular glass lamp vessel and a discharge medium is sealed in the tubular glass lamp vessel. Ball beads are put into both ends of the tube of the lamp vessel and heat-sealed, and the end surfaces and outer peripheral surfaces of both ends of the tube are covered with the external electrodes.
[0012]
In the dielectric barrier discharge type low pressure discharge lamp according to the first and second aspects of the present invention, at least one end of the tubular glass lamp container, that is, the end on the side to be sealed after vacuum evacuation and filling of the filler is heat sealed with ball beads. By doing so, the protrusion of the thermally sealed spherical beads under atmospheric pressure into the discharge space can be reduced, and in the case of a discharge medium containing mercury, the mercury depletion phenomenon at the sealed spherical bead portion can be prevented. Enable lighting for a period.
[0013]
The invention according to claim 3 is the dielectric barrier discharge type low-pressure discharge lamp in which external electrodes are provided on the outer periphery of both ends of the tube of the tubular glass lamp vessel and a discharge medium is sealed in the tubular glass lamp vessel. One of both ends of the tube of the lamp vessel is heat-sealed, and the other end of the tube is heat-sealed by inserting a bullet-shaped bead with the head thereof facing the discharge space, and the end surface and the outer peripheral surface of both ends of the tube Is covered with the external electrode.
[0014]
The invention according to claim 2 is a dielectric barrier discharge type low-pressure discharge lamp in which external electrodes are provided on the outer periphery of both ends of a tubular glass lamp vessel and a discharge medium is sealed in the tubular glass lamp vessel. Shell-type beads are placed at both ends of the tube of the lamp vessel with their heads facing the discharge space side and heat sealed, and the end surfaces and the outer peripheral surfaces of both ends of the tube are covered with the external electrodes.
[0015]
In the dielectric barrier discharge type low-pressure discharge lamp according to the first and second aspects of the present invention, at least one end of the tubular glass lamp vessel, that is, the end on the side to be sealed after vacuum evacuation and filling of the filler, is provided with a bead-shaped bead. By placing it in a position facing the discharge space side and heat sealing, the round head of the shell type beads sealed at atmospheric pressure faces the discharge space side, so that the protrusion into the discharge space is reduced. In the case of a discharge medium containing mercury, it is possible to prevent a mercury depletion phenomenon in a sealed portion of a spherical bead and enable lighting for a long time. In addition, in the case of shell-type beads, they can be smoothly introduced without being caught when introduced into the end of the tubular glass lamp vessel in the heat sealing step, and therefore the product yield in mass production can be improved.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows the configuration of a dielectric barrier discharge type low-pressure discharge lamp according to a first embodiment of the present invention. In FIG. 1, reference numerals common to the prototype low-pressure discharge lamps 5 and 6 shown in FIGS. 5 and 6 indicate the same elements.
[0017]
In the dielectric barrier discharge type low-pressure discharge lamp 1 shown in FIG. 1, reference numeral 41 denotes a spherical bead, which is manufactured by further molding a cylindrical bead cut out from a thin glass rod. However, the method for producing the spherical beads 41 is not limited, and a glass bulb having an appropriate diameter can be selected and used according to the size of the tubular glass lamp container 10.
[0018]
In the manufacturing process of the dielectric barrier discharge type low-pressure discharge lamp 1 of the present embodiment, the beadless sealing portion 16 at one lamp end is heat-sealed before the glass lamp container 10 is evacuated, and the other lamp is sealed. With regard to the ball bead sealing portion 11 at the end, the ball bead 41 is inserted up to the position of the ball bead sealing portion 11 of the tubular glass lamp vessel 10, and in this state, the inside of the glass lamp vessel 10 is evacuated and the filler 60 is filled. Is introduced, the end of the tubular glass lamp vessel 10 is heat sealed so as to cover the spherical beads 41.
[0019]
In this embodiment, the spherical beads 41 are used instead of the cylindrical beads 44 used in the prototype low-pressure discharge lamp 6 shown in FIG. 6, so that the sealing portion 11 can be prevented from protruding into the discharge space. For this reason, in the dielectric barrier discharge type low-pressure discharge lamp 1 of the present embodiment, the cylindrical beads 44 and the tubular glass lamp 10 at the time of lamp lighting as generated when sealing with the cylindrical beads 44 are used. The occurrence of local rare gas discharge due to the depletion of mercury in the gap can be prevented, and the occurrence of the problem that the glass melts due to the temperature rise due to the rare gas discharge and leads to leakage can be prevented.
[0020]
Next, a dielectric barrier discharge type low-pressure discharge lamp 2 according to a second embodiment of the present invention will be described with reference to FIG. The second embodiment is characterized in that the spherical beads 41, 46 are inserted into both ends of the tubular glass lamp vessel 10, and the beads 11 and 17 are formed by heat sealing. In FIG. 2, components common to those in the first embodiment shown in FIG. 1 are denoted by the same reference numerals.
[0021]
In the manufacture of the dielectric barrier discharge type low-pressure discharge lamp 2 of the present embodiment, the spherical bead sealing portion 17 at one end of the lamp inserts the spherical beads 46 into the glass tube before the glass lamp container 10 is evacuated. After heat sealing, the ball bead 41 is inserted into the ball bead sealing portion 11 of the other lamp end up to the position of the ball bead sealing portion 11 of the tubular glass lamp vessel 10, and in this state, the inside of the glass lamp vessel 10 is Is evacuated and the filler 60 is introduced, and then the end of the tubular glass lamp container 10 is heat-sealed so as to cover the spherical beads 41.
[0022]
In the dielectric barrier discharge type low-pressure discharge lamp 2 of the second embodiment, similarly to the first embodiment, a lamp which is generated when the lamp is sealed with the cylindrical beads 44 is used. The occurrence of local rare gas discharge due to mercury depletion in the gap between the cylindrical beads 44 and the tubular glass lamp 10 at the time of lighting can be prevented, and the temperature rise due to the rare gas discharge melts the glass and causes a problem that leads to leakage. Occurrence can be prevented.
[0023]
Next, a dielectric barrier discharge type low-pressure discharge lamp according to a third embodiment of the present invention will be described with reference to FIG. In FIG. 3, the same reference numerals as those of the dielectric barrier discharge type low-pressure discharge lamps 1 and 2 of the first and second embodiments shown in FIGS. 1 and 2 indicate the same elements.
[0024]
In the dielectric barrier discharge type low-pressure discharge lamp 3 shown in FIG. 3, reference numeral 41A denotes bullet-shaped beads, which are produced by further molding cylindrical beads cut out from a thin glass rod. However, the manufacturing method of the bullet-shaped beads 41A is not limited, and an appropriate diameter is selected and used according to the size of the tubular glass lamp container 10.
[0025]
In the manufacturing process of the dielectric barrier discharge type low-pressure discharge lamp 3 of the present embodiment, the beadless sealing portion 16 at one lamp end is heat-sealed before the glass lamp container 10 is evacuated, and the other lamp is sealed. With regard to the shell-shaped bead sealing portion 11A at the end, the shell-shaped bead 41A is inserted to the position of the shell-shaped bead sealing portion 11A of the tubular glass lamp container 10 with the head thereof facing the discharge space, and in this state. After evacuating the inside of the glass lamp container 10 and introducing the filler 60, the end of the tubular glass lamp container 10 is heat-sealed so as to cover the bullet-shaped beads 41.
[0026]
In the present embodiment, instead of the cylindrical beads 44 used in the prototype low-pressure discharge lamp 6 shown in FIG. 11A can be prevented from protruding into the discharge space. For this reason, in the dielectric barrier discharge type low-pressure discharge lamp 3 of the present embodiment, the cylindrical beads 44 and the tubular glass lamp 10 at the time of lamp lighting as generated when sealing with the cylindrical beads 44 are used. The occurrence of local rare gas discharge due to the depletion of mercury in the gap can be prevented, and the occurrence of the problem that the glass melts due to the temperature rise due to the rare gas discharge and leads to leakage can be prevented.
[0027]
Further, in the case of the spherical beads 41 as in the first embodiment, it is not technically easy to form a complete spherical shape with a small diameter, and it is attempted to make the spherical shape by a simple work from the viewpoint of manufacturing cost. It tends to be distorted, and if it is distorted, it may be difficult to introduce it to a predetermined position because it is caught in the middle of the process of being inserted into the glass tube and being introduced to the end of the tubular glass lamp vessel 10. However, when the shell type beads 41A are used instead of the spherical beads 41 as in the present embodiment, the shell type beads 41A formed into a shell type by polishing one end of a short cylinder taken out from the cylindrical glass are used as the head. Can be smoothly introduced into a predetermined position by introducing into the end of the tubular glass lamp vessel 10 in a posture facing the discharge space side. Therefore, in the dielectric barrier discharge type low-pressure discharge lamp 3 of the present embodiment, the product yield can be improved.
[0028]
Next, a dielectric barrier discharge type low-pressure discharge lamp 4 according to a fourth embodiment of the present invention will be described with reference to FIG. The fourth embodiment is characterized in that shell-shaped beads 41A and 46A are inserted into both ends of a tubular glass lamp container 10, and the shells 11A and 17A are formed by heat sealing. . In FIG. 4, elements common to those of the third embodiment shown in FIG. 3 are denoted by the same reference numerals.
[0029]
In the manufacture of the dielectric barrier discharge type low-pressure discharge lamp 4 of the present embodiment, the bullet-shaped bead sealing portion 17A at one of the lamp ends has the bullet-shaped bead 46A before the glass lamp container 10 is evacuated to vacuum. Is placed in a glass tube in a posture facing the discharge space side, and heat sealed. The shell type beads sealing portion 11A at the other end of the lamp is sealed with shell type beads 41A by the shell type beads of the tubular glass lamp container 10. In this state, the inside of the glass lamp vessel 10 is evacuated, the filler 60 is introduced, and then the shell-shaped beads 41A are covered. The end of the tubular glass lamp vessel 10 is heat sealed.
[0030]
Also in the dielectric barrier discharge type low-pressure discharge lamp 4 of the fourth embodiment, similar to the third embodiment, the low-pressure discharge lamp 4 may be generated when sealing with the cylindrical beads 44 in the related art. The occurrence of local rare gas discharge due to mercury depletion in the gap between the cylindrical beads 44 and the tubular glass lamp 10 when the lamp is turned on can be prevented, and the temperature rise due to the rare gas discharge melts the glass and leads to leakage. Can be prevented.
[0031]
In addition, similarly to the third embodiment, the product yield in manufacturing can be improved.
[0032]
In the present invention, as in the above-described first to fourth embodiments, the filler 60 filling the tubular glass lamp container 10 as a discharge medium may be mercury-free.
[0033]
【Example】
Prototypes having the configuration shown in FIG. 1, the embodiment 1 shown in FIG. 1, the configuration shown in FIG. 3, and the configuration shown in FIG. 6 were manufactured, and the results of lighting tests will be described.
[0034]
[Example 1]
<Tubular glass lamp container>
Material: borosilicate glass.
[0035]
Dimensions: outer diameter 2.6 mm, inner diameter 2.0 mm, total length 379 mm.
[0036]
<External electrode>
Current conductor layer: Ultrasonic solder layer.
[0037]
External electrode length: 17 mm.
[0038]
<Phosphor layer>
Material: three-wavelength phosphor. Thickness: 20 μm.
[0039]
<Filler>
Filled gas: mixed gas of neon and argon (composition ratio: neon / argon = 90 mol% / 10 mol%).
[0040]
Sealing pressure: 8 kPa.
[0041]
Mercury: 3 mg enclosed amount.
[0042]
<Beads for sealing>
Sphere beads.
[0043]
[Example 2]
The specifications of the tubular glass lamp container, the external electrode, the phosphor layer, and the filler are the same as in the first embodiment. And shell-shaped beads were used as beads for sealing.
[0044]
[Comparative example]
The configuration is the same as that of the embodiment except that one end of the glass lamp container is sealed using cylindrical beads as sealing beads.
[0045]
When each of the dielectric barrier discharge type low-pressure discharge lamps of Examples 1 and 2 of the present invention and the comparative example was lit for 5000 hours at a lamp current of 5 mA, no glass melting occurred. While noble gas discharge occurred in the gap between the cylindrical beads and the tubular glass lamp vessel in Example 1, such a phenomenon did not occur in Examples 1 and 2 of the present invention.
[0046]
【The invention's effect】
As described above, according to the present invention, by sealing spherical beads or bullet-shaped beads to the bead sealing portion at the lamp end of the tubular glass lamp container, the size of the end of the bead projecting into the discharge space is reduced. The size of the discharge lamp can be reduced, and the mercury depletion phenomenon at the bead sealing portion can be prevented.
[0047]
In addition, in the present invention, by using bullet-shaped beads for the beads to be sealed, the step of introducing the beads into the end of the tubular glass lamp container for sealing can be performed smoothly, and the product yield can be improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a first embodiment of the present invention in a lamp axial direction.
FIG. 2 is a sectional view in a lamp axis direction according to a second embodiment of the present invention.
FIG. 3 is a sectional view in a lamp axial direction of a third embodiment of the present invention.
FIG. 4 is a sectional view in a lamp axis direction of a fourth embodiment of the present invention.
FIG. 5 is a cross-sectional view in the lamp axis direction of a prototype manufactured by the present inventors.
FIG. 6 is a cross-sectional view in the lamp axis direction of another prototype manufactured by the present inventors.
[Explanation of symbols]
1-4 Dielectric barrier discharge type low pressure discharge lamp 10 Tubular glass lamp vessel 11 Ball bead sealing portion 11A Shell type bead sealing portion 17 Ball bead sealing portion 17A Shell type bead sealing portion 21, 26 External electrodes 31, 36 Current conductor layers 41, 46 Ball beads 41A, 46A Shell type beads 60 Filler 70 Phosphor layer

Claims (4)

管状ガラスランプ容器の管両端部の外周に外部電極を配設し、前記管状ガラスランプ容器内に放電媒体を封入した誘電体バリア放電型低圧放電ランプにおいて、
前記管状ガラスランプ容器の管両端の一方を熱封着し、前記管両端の他方に球ビーズを込めて熱封着し、
前記管両端の端面及び外周面を前記外部電極により覆って成る誘電体バリア放電型低圧放電ランプ。
An external electrode is disposed on the outer periphery of both ends of the tube of the tubular glass lamp vessel, and a dielectric barrier discharge type low pressure discharge lamp in which a discharge medium is sealed in the tubular glass lamp vessel,
One of the two ends of the tube of the tubular glass lamp vessel is heat-sealed, and the other end of the tube is heat-sealed with ball beads in between,
A dielectric-barrier discharge type low-pressure discharge lamp comprising an end face and an outer peripheral face at both ends of the tube covered by the external electrode.
管状ガラスランプ容器の管両端部の外周に外部電極を配設し、前記管状ガラスランプ容器内に放電媒体を封入した誘電体バリア放電型低圧放電ランプにおいて、
前記管状ガラスランプ容器の管両端それぞれに球ビーズを込めて熱封着し、
前記管両端の端面及び外周面を前記外部電極により覆って成る誘電体バリア放電型低圧放電ランプ。
An external electrode is disposed on the outer periphery of both ends of the tube of the tubular glass lamp vessel, and a dielectric barrier discharge type low pressure discharge lamp in which a discharge medium is sealed in the tubular glass lamp vessel,
Putting spherical beads on both ends of the tube of the tubular glass lamp container and heat sealing,
A dielectric-barrier discharge type low-pressure discharge lamp comprising an end face and an outer peripheral face at both ends of the tube covered by the external electrode.
管状ガラスランプ容器の管両端部の外周に外部電極を配設し、前記管状ガラスランプ容器内に放電媒体を封入した誘電体バリア放電型低圧放電ランプにおいて、
前記管状ガラスランプ容器の管両端の一方を熱封着し、前記管両端の他方に砲弾型ビーズをその頭部が放電空間側を向く姿勢で込めて熱封着し、
前記管両端の端面及び外周面を前記外部電極により覆って成る誘電体バリア放電型低圧放電ランプ。
An external electrode is disposed on the outer periphery of both ends of the tube of the tubular glass lamp vessel, and a dielectric barrier discharge type low pressure discharge lamp in which a discharge medium is sealed in the tubular glass lamp vessel,
One of the two ends of the tube of the tubular glass lamp vessel is heat sealed, and the other end of the tube is heat sealed with a bullet-shaped bead placed in a position where the head faces the discharge space side,
A dielectric-barrier discharge type low-pressure discharge lamp comprising an end face and an outer peripheral face at both ends of the tube covered by the external electrode.
管状ガラスランプ容器の管両端部の外周に外部電極を配設し、前記管状ガラスランプ容器内に放電媒体を封入した誘電体バリア放電型低圧放電ランプにおいて、
前記管状ガラスランプ容器の管両端それぞれに砲弾型ビーズをその頭部が放電空間側を向く姿勢で込めて熱封着し、
前記管両端の端面及び外周面を前記外部電極により覆って成る誘電体バリア放電型低圧放電ランプ。
An external electrode is disposed on the outer periphery of both ends of the tube of the tubular glass lamp vessel, and a dielectric barrier discharge type low pressure discharge lamp in which a discharge medium is sealed in the tubular glass lamp vessel,
Shell-shaped beads are placed at both ends of the tubular glass lamp vessel in a manner that their heads face the discharge space side, and heat sealed,
A dielectric-barrier discharge type low-pressure discharge lamp comprising an end face and an outer peripheral face at both ends of the tube covered by the external electrode.
JP2003170652A 2002-12-25 2003-06-16 Dielectric barrier discharge type low pressure discharge lamp Expired - Fee Related JP3878153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003170652A JP3878153B2 (en) 2002-12-25 2003-06-16 Dielectric barrier discharge type low pressure discharge lamp

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002375408 2002-12-25
JP2003170652A JP3878153B2 (en) 2002-12-25 2003-06-16 Dielectric barrier discharge type low pressure discharge lamp

Publications (3)

Publication Number Publication Date
JP2004253360A true JP2004253360A (en) 2004-09-09
JP2004253360A5 JP2004253360A5 (en) 2006-08-17
JP3878153B2 JP3878153B2 (en) 2007-02-07

Family

ID=33031786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003170652A Expired - Fee Related JP3878153B2 (en) 2002-12-25 2003-06-16 Dielectric barrier discharge type low pressure discharge lamp

Country Status (1)

Country Link
JP (1) JP3878153B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012127387A1 (en) * 2011-03-22 2012-09-27 Cosmo Wealth Creation Limited Light tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012127387A1 (en) * 2011-03-22 2012-09-27 Cosmo Wealth Creation Limited Light tube

Also Published As

Publication number Publication date
JP3878153B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
US6573656B2 (en) High-pressure discharge lamp and method for producing the same
JP5331477B2 (en) Ceramic bulb and its manufacturing method
JP3238909B2 (en) Metal halide lamp
JP3385014B2 (en) High pressure discharge lamp and method of manufacturing the same
JP4618793B2 (en) Mercury-free arc tube for discharge bulb
JP2001357818A (en) Discharge lamp bulb and its manufacturing method
JP2004253360A (en) Dielectric barrier discharge type low-pressure discharge lamp
JP2001023573A (en) Arc tube for discharge lamp device and its manufacture
KR100630998B1 (en) Dielectric Barrier Discharging Type Low Pressure Discharge Lamp
JP2009032446A (en) High-voltage discharge lamp
JP2001006549A (en) Manufacture of arc tube for discharge lamp device and arc tube
JP2009004155A (en) Metal halide lamp
JP2004265753A (en) Short arc type ultra-high pressure discharge lamp
KR20050033486A (en) Electrode assembly for fluorescent lamp and fabricating method thereof and cold cathod fluorescent lamp
JP3217313B2 (en) High pressure discharge lamp and method of manufacturing the same
JP3464994B2 (en) High pressure discharge lamp and method of manufacturing the same
KR20010095250A (en) Discharge lamp and lamp unit
JP3594890B2 (en) Method for manufacturing high-pressure lamp and high-pressure lamp formed by the method
JP2006216387A (en) Low-pressure mercury discharge lamp and its manufacturing method
JPS62123647A (en) Ceramic discharge lamp
JP5311291B2 (en) Ceramic metal halide lamp and manufacturing method thereof
JP2003282024A (en) High-pressure discharge lamp and sealing method of its bulb
JP2001256921A (en) High-pressure discharge lamp
JPH10154484A (en) Manufacture of discharge lamp and discharge lamp
JP2001084961A (en) High-pressure discharge lamp and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060705

A975 Report on accelerated examination

Effective date: 20060724

Free format text: JAPANESE INTERMEDIATE CODE: A971005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Effective date: 20061002

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061101

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20091110

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20101110

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20111110

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20121110

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20121110

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20131110

LAPS Cancellation because of no payment of annual fees