JP2004253256A - Vacuum interrupter - Google Patents

Vacuum interrupter Download PDF

Info

Publication number
JP2004253256A
JP2004253256A JP2003042541A JP2003042541A JP2004253256A JP 2004253256 A JP2004253256 A JP 2004253256A JP 2003042541 A JP2003042541 A JP 2003042541A JP 2003042541 A JP2003042541 A JP 2003042541A JP 2004253256 A JP2004253256 A JP 2004253256A
Authority
JP
Japan
Prior art keywords
shield
vacuum interrupter
electrode
lead
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003042541A
Other languages
Japanese (ja)
Inventor
Akira Nishijima
陽 西島
Hiromi Ichikawa
裕己 市川
Takahiro Harada
貴弘 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Japan AE Power Systems Corp
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Japan AE Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd, Japan AE Power Systems Corp filed Critical Meidensha Corp
Priority to JP2003042541A priority Critical patent/JP2004253256A/en
Publication of JP2004253256A publication Critical patent/JP2004253256A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To decrease an attached amount of released products from an electrode generated in arcing even if arc time is prolonged, and prevent voltage resistant performance from being deteriorated. <P>SOLUTION: An arc shield 40 covering the surroundings of a fixed electrode 37 and a moving electrode 38 is installed on the inner surface of a metallic cylinder 30 constituting a vacuum vessel and acting as the arc shield, and reinforced shields 41, 42 covering a tip part and a part of the electrodes 37, 38 are installed at the tip part of a fixed lead 35 and a moving lead 36. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、真空開閉装置の真空インタラプタに関し、特にそのシールド構造に関するものである。
【0002】
【従来の技術】
一般に、真空インタラプタには、発弧域から発生する金属蒸気が絶縁筒の内面に付着するのを防止し、また電界分布を最適化するために、アークシールドが設けられている。図8は非特許文献1に記載された真空インタラプタの縦断面図を示し、1はガラスやアルミナセラミックスからなる円筒状の絶縁筒であり、その両端には金属製の接続筒2,3を介して端板4,5が取り付けられ、内部が真空の真空容器が形成される。端板4の中心には固定軸6が挿通固着され、端板5の中心に形成された孔5aには可動軸7が軸方向移動自在に挿入され、可動軸7はベローズ8を介して端板5に支持される。固定軸6及び可動軸7の内端には固定電極9及び可動電極10が対向して設けられ、固定電極9及び可動電極10の内端には相互に接離する接触子9a,10aが突出形成されている。11は両電極9,10を中心に形成される発弧域12の周囲を覆うアークシールドであり、その一端は端板4の内面に取り付けられ、可動軸7にもベローズ8を覆うように補助シールド13が取り付けられる。又、端板4には排気パイプ14が真空容器内部と連通して取り付けられ、排気パイプ14は排気系に接続され、加熱排気終了後に封じ切られる。
【0003】
図8の真空インタラプタはアークシールド11が片持支持であり、アークシールド11の取付が容易であるが、アークシールド11の電位が一方の電極の電位と同じになるため、真空インタラプタ内部の電位分布が不均一になる。特に、アークシールド11の端部に電界の集中が起きるため、高耐圧用としては不向きである。
【0004】
図9(a)〜(c)も非特許文献1に記載された従来の他の真空インタラプタの縦断面図を示し、まず(a)においては、二分割された絶縁筒15,16の間に金属製の接続筒17,18を介してアークシールド19が支持される。即ち、アークシールド19の外周の中央部に設けられた支持部19aが接続筒17,18間に支持される。20,21は端板4,5の内面に片持支持された補助シールドである。補助シールド20,21は、アークシールド19の端部及び絶縁筒15,16の端部の電界を緩和するために設けられる。又、(b)においても、アークシールド19の外周中央部に設けられた支持部19aが絶縁筒1に支持されている。また、(c)においては、絶縁筒22の中央部内周に設けられた環状の突出部22aにアークシールド19の支持部19aが支持されている。
【0005】
図9(a)〜(c)に示す真空インタラプタは中間シールド支持構造となっており、アークシールド19が真空容器の中央部に支持されているため、その電位は50%となり、真空インタラプタの内部の電位分布が均等となるので、高電圧用に適している。
【0006】
図10も非特許文献1に記載されたさらに他の真空インタラプタの縦断面図を示し、絶縁筒15,16の間に金属製の接続筒23,24を介して金属筒25を設けている。金属筒25の径は、電極9,10の径を大きくするために、絶縁筒15,16の径より大きくなっている。金属筒25は、真空容器の形成とアークシールドの作用を兼ねるために設けられ、この真空インタラプタは金属槽形と呼ばれる。26,27は電界緩和のために接続筒23,24に取り付けられた補助シールドである。
【0007】
【非特許文献1】
岩原皓一編「真空開閉器具と適用の実際」電気書院、昭和59年1月25日、p.27−28
【0008】
【発明が解決しようとする課題】
一般に、商用周波電流の遮断においては、単相回路の場合、アーク時間は10msを超えることはない。しかしながら、特殊な適用においては、低周波電流を遮断することもあり、アーク時間が商用周波電流の場合よりも長くなる場合もある。そのような場合、アーク時間が長くなるため、商用周波電流の遮断の場合に比べてより長い期間アークから金属蒸気が放出されることになる。例えば、低周波電流を多数回遮断する試験では、絶縁筒の内面に電極からの放出物(電極を構成する金属が蒸発したもの又は電極の一部が溶けて微小な液滴として飛び出したもの)が付着し、耐電圧性能が低下することが判った。低周波電流遮断など、商用周波電流の遮断に比べてアーク時間が長くなる回路へ適用される真空インタラプタは、このような問題を解決できるものでなくてはならない。
【0009】
この発明は上記のような課題を解決するために成されたものであり、アーク時間が長くなっても絶縁筒の内面への金属蒸気等の電極からの放出物の付着を減少させ、耐電圧性能の低下を防止することができる真空インタラプタを得ることを目的とする。
【0010】
【課題を解決するための手段】
この発明の請求項1に係る真空インタラプタは、絶縁筒を含んで構成された真空容器内に固定リードと可動リードを対向配置し、各リードの内端にそれぞれ固定電極及び可動電極を取り付けた真空インタラプタにおいて、真空容器内に設けられ、両電極の周囲を覆うアークシールドと、上記リード又は上記電極に取り付けられ、リードの先端部分及び電極の一部を覆い、遮断時に電極からの放出物が絶縁筒の内面に直接到達するのを阻止する強化シールドとを設けたものである。
【0011】
又、請求項2に係る真空インタラプタは、強化シールドの外端を外側に曲げ加工して、放出物の捕捉ポケットを形成したものである。
【0012】
請求項3に係る真空インタラプタは、強化シールドの外周面上に、曲げ加工により形成される複数の放出物の捕捉ポケットを設けたものである。
【0013】
請求項4に係る真空インタラプタは、金属槽形または中間シールド支持構造としたものである。
【0014】
【発明の実施の形態】
実施形態1
以下、この発明の実施の形態を図面とともに説明する。図1はこの発明の実施形態1による真空インタラプラの縦断面図を示し、28,29はガラスやアルミナセラミックスからなる絶縁筒であり、各絶縁筒28,29の一端間は金属筒30により接続される。絶縁筒28,29の他端には金属製の接続筒31,32を介して端板33,34が取り付けられる。このような絶縁筒28,29、金属筒30、接続筒31〜32、端板33,34により真空容器が形成される。端板33には固定リード35が挿通固定され、端板34には可動リード36が軸方向移動自在に挿通され、固定リード35と可動リード36は真空容器内で対向配置される。各リード35,36の内端にはそれぞれ固定電極37及び可動電極38が取り付けられ、可動リード36はベローズ39を介して端板34の内面に取り付けられる。
【0015】
又、金属筒30の内周にはアーク発生領域である両電極37,38の周囲を覆う二分割のアークシールド40が取り付けられる。金属筒30は真空容器の一部を構成するとともに、アークシールドの作用をなし、アークシールド40と共に両電極37,38の周囲を覆うアークシールドを構成する。又、各リード35,36の先端部分には該先端部分及び電極37,38の一部を覆う強化シールド41,42が取り付けられる。
【0016】
次に、実施形態1の作用を図2を用いて説明する。遮断時、可動リード36を軸方向に動かし、可動電極38を固定電極37から離すと、両電極37,38間にアークが発生し、両電極37,38から前述したような放出物が発生する。例えば電極38のC点で発生した放出物は、強化シールド41,42が無い場合、破線48の経路を通って絶縁筒28の内面のD点に到達する。低周波電流の遮断のようにアーク時間が長い場合には絶縁筒28の内面への放出物の付着量が多くなり、耐電圧性能が低下する。しかしながら、強化シールド41,42が設けられているので、電極37,38からの放出物は強化シールド41,42に遮られて、絶縁筒28の内面に直接到達することができず、例えば実線49に示すように金属筒30の内面及び固定リード35の表面に反射した後、絶縁筒28の内面のE点に到達する。
【0017】
実施形態1においては、電極37,38間で発生した放出物は、例えば、金属筒30及び固定リード35で反射した後、絶縁筒28の内面に到達した。このように、放出物が捕捉されずに反射する確率をαとすれば、n回反射した後の放出物の量はαに減少する。従って、絶縁筒28,29の内面に到達する放出物量を減少させ、付着量を減少させることができ、耐電圧性能の低下を防止することができる。又、金属槽形としたので、電極37,38の径を大きくするのが容易となる。
【0018】
図3は実施形態1の変形例を示し、接続筒31と端板33を一体にして端板51とするとともに、接続筒32と端板34を一体にして端板52としたものである。その他の構成、作用、効果は実施形態1と同様である。なお、以下の各実施形態においても、同様の変形例は成立する。
【0019】
実施形態2
図4(a),(b)は実施形態2による真空インタラプタの縦断面図及びその強化シールド部分の一部拡大図を示し、各リード35,36の先端部分には強化シールド43,44が取り付けられ、強化シールド43,44は各リード35,36の先端部分及び各電極37,38の一部を覆う。そして、強化シールド43の外端(電極側を内端とする。)を外側に巻き込むように曲げ、捕捉ポケット43aを形成するとともに、強化シールド44の外端も同様に外側に巻き込むように曲げ、捕捉ポケット44aを形成する。
【0020】
実施形態2の作用を図5により説明すると、遮断時、電極38のF点から発生した放出物は金属筒30の内面のG点で反射し、強化シールド43の捕捉ポケット43aであるH点に到達するが、捕捉ポケット43aは外側に巻き込むように曲げられているため、H点に到達した放出物は飛来した方向に反射されるか、あるいは捕捉ポケット43a内での反射を繰り返して捕捉ポケット43aに捕捉される。この結果、絶縁筒28,29の内面に到達する放出物が減少し、その付着量も減少し、耐電圧性能の低下を防止することができる。
【0021】
実施形態3
図6(a),(b)は実施形態3による真空インタラプタの縦断面図及びその強化シールド部分の一部拡大図を示し、各リード35,36の先端部分には強化シールド45,46が取り付けられ、強化シールド45,46は各リード35,36の先端部分及び各電極37,38の一部を覆う。そして、強化シールド45の外端を外側に巻き込むように曲げ、捕捉ポケット45aを形成するとともに、強化シールド46の外端も同様に外側に巻き込むように曲げ、捕捉ポケット46aを形成する。又、強化シールド45,46の外周にも外側に巻き込むように曲げて形成された捕捉ポケット45b,46bを設ける。
【0022】
実施形態3においては、各強化シールド45,46の外端及び外周部に捕捉ポケット45a,45b、46a,46bを設けており、捕捉ポケットの数を増加したことにより、放出物の捕捉効率が増加し、絶縁筒28,29の内面へ到達する放出物が少なくなり、その付着量も減少し、耐電圧特性の低下を防止することができる。
【0023】
実施形態4
図7は実施形態4による真空インタラプタの縦断面図を示し、絶縁筒28,29の一端間が長さの短い接続筒50を介して接続されるとともに、電極37,38の周囲を覆うアークシールド47は外周中央部に突出した支持部47aを有し、この支持部47aを介して接続筒50の内面に取り付けられている。その他の構成は実施形態1と同様である。
【0024】
実施形態4においても、強化シールド41,42を設けたことにより、絶縁筒28,29の内面に付着する放出物量を減少させることができ、耐電圧性能の低下を防止することができる。又、アークシールド47は、その外周中央部に設けた支持部47aを介して接続筒50の内周に取り付け、中間シールド支持構造となっており、実施形態1〜3の金属槽形とは異なるものとなっている。このため、適用条件によっては、小形化、部品点数の削減、構造の簡略化を行うことができる。
【0025】
なお、上記各実施形態においては、強化シールド41〜46を各リード35,36に取り付けたが、各電極37,38に取り付けてもよい。又、アークシールド40,47は従来のように片持ち支持であってもよい。
【0026】
【発明の効果】
以上のようにこの発明の請求項1によれば、遮断時に電極間に発生するアークによる電極からの放出物は強化シールドを設けたことにより直接絶縁筒の内面に到達することはなくなり、絶縁筒の内面に到達する放出物量は減少し、従って絶縁筒の内面に付着する放出物量も減少し、アーク時間が長くなっても耐電圧特性の低下を防止することができる。
【0027】
又、請求項2によれば、強化シールドの外端を外側に曲げて放出物の捕捉ポケットを設けたので、飛来した放出物がこの捕捉ポケットに捕捉されたり、反射されたりすることにより、絶縁筒の内面に到達する放出物量がさらに減少し、その付着量も減少して、耐電圧性能の低下を一層防止することができる。
【0028】
さらに、請求項3によれば、強化シールドの外周面上に複数の放出物の捕捉ポケットを設けたので、絶縁筒の内面に到達する放出物量がさらに減少し、その付着量も減少して、耐電圧性能の低下をなお一層防止することができる。
【0029】
又、請求項4によれば、真空インタラプタを金属槽形又は中間シールド支持構造としており、金属槽形とした場合には、電極径を大きくするのが容易となり、中間シールド支持構造とした場合には、適用条件によっては、小形化、部品点数の削減、構造の簡略化を行うことができる。
【図面の簡単な説明】
【図1】この発明の実施形態1による真空インタラプタの縦断面図である。
【図2】実施形態1による真空インタラプタの作用説明図である。
【図3】実施形態1の変形例による真空インタラプタの縦断面図である。
【図4】実施形態2による真空インタラプタの縦断面図及びその強化シールド部分の一部拡大図である。
【図5】実施形態2による真空インタラプタの作用説明図である。
【図6】実施形態3による真空インタラプタの縦断面図及びその強化シールド部分の一部拡大図である。
【図7】実施形態4による真空インタラプタの縦断面図である。
【図8】非特許文献1に記載された従来の真空インタラプタの縦断面図である。
【図9】非特許文献1に記載された従来の他の複数の真空インタラプタの縦断面図である。
【図10】非特許文献1に記載された従来のさらに他の真空インタラプタの縦断面図である。
【符号の説明】
28,29…絶縁筒
30…金属筒
31,32,50…接続筒
33,34,51,52…端板
35,36…リード
37,38…電極
39…ベローズ
40,47…アークシールド
41〜46…強化シールド
43a,44a,45a,45b,46a,46b…捕捉ポケット
47a…支持部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vacuum interrupter of a vacuum switchgear, and more particularly to a shield structure thereof.
[0002]
[Prior art]
Generally, the vacuum interrupter is provided with an arc shield for preventing metal vapor generated from the arcing region from adhering to the inner surface of the insulating cylinder and optimizing the electric field distribution. FIG. 8 is a longitudinal sectional view of a vacuum interrupter described in Non-Patent Document 1. Numeral 1 denotes a cylindrical insulating cylinder made of glass or alumina ceramics. The end plates 4 and 5 are attached to form a vacuum container having a vacuum inside. A fixed shaft 6 is inserted through and fixed to the center of the end plate 4, and a movable shaft 7 is inserted into a hole 5 a formed in the center of the end plate 5 so as to be movable in the axial direction. It is supported by the plate 5. At the inner ends of the fixed shaft 6 and the movable shaft 7, a fixed electrode 9 and a movable electrode 10 are provided to face each other, and at the inner ends of the fixed electrode 9 and the movable electrode 10, contactors 9a, 10a which come and go mutually protrude. Is formed. Reference numeral 11 denotes an arc shield that covers the periphery of an arcing region 12 formed around the electrodes 9 and 10. One end of the arc shield is attached to the inner surface of the end plate 4, and the movable shaft 7 also assists the bellows 8 to cover the bellows 8. The shield 13 is attached. An exhaust pipe 14 is attached to the end plate 4 so as to communicate with the inside of the vacuum vessel. The exhaust pipe 14 is connected to an exhaust system, and is sealed off after heating and exhaust.
[0003]
In the vacuum interrupter shown in FIG. 8, the arc shield 11 is cantilevered and the arc shield 11 can be easily attached. However, since the potential of the arc shield 11 is equal to the potential of one of the electrodes, the potential distribution inside the vacuum interrupter is changed. Becomes uneven. In particular, since an electric field is concentrated at the end of the arc shield 11, it is not suitable for high withstand voltage use.
[0004]
9 (a) to 9 (c) also show longitudinal sectional views of another conventional vacuum interrupter described in Non-Patent Document 1. In FIG. 9 (a), first, in FIG. An arc shield 19 is supported via metal connection tubes 17 and 18. That is, the support portion 19 a provided at the center of the outer periphery of the arc shield 19 is supported between the connection tubes 17 and 18. Reference numerals 20 and 21 denote auxiliary shields supported on the inner surfaces of the end plates 4 and 5 in a cantilever manner. The auxiliary shields 20 and 21 are provided to reduce electric fields at the ends of the arc shield 19 and the ends of the insulating cylinders 15 and 16. Also, in (b), a supporting portion 19 a provided at the center of the outer periphery of the arc shield 19 is supported by the insulating cylinder 1. In (c), a support 19a of the arc shield 19 is supported by an annular protrusion 22a provided on the inner periphery of the center of the insulating cylinder 22.
[0005]
The vacuum interrupters shown in FIGS. 9A to 9C have an intermediate shield support structure, and the arc shield 19 is supported at the center of the vacuum vessel. Is suitable for high voltages because the potential distribution of
[0006]
FIG. 10 also shows a longitudinal sectional view of still another vacuum interrupter described in Non-Patent Document 1, in which a metal tube 25 is provided between insulating tubes 15 and 16 via metal connection tubes 23 and 24. The diameter of the metal tube 25 is larger than the diameter of the insulating tubes 15 and 16 in order to increase the diameter of the electrodes 9 and 10. The metal cylinder 25 is provided to combine the formation of a vacuum vessel and the function of an arc shield, and this vacuum interrupter is called a metal tank type. Reference numerals 26 and 27 denote auxiliary shields attached to the connection cylinders 23 and 24 to alleviate the electric field.
[0007]
[Non-patent document 1]
Koichi Iwahara, "Vacuum Opening and Closing Devices and the Actual Application", Denki Shoin, January 25, 1984, p. 27-28
[0008]
[Problems to be solved by the invention]
Generally, in the interruption of the commercial frequency current, in the case of a single-phase circuit, the arc time does not exceed 10 ms. However, in special applications, low frequency currents may be interrupted, and the arc time may be longer than with commercial frequency currents. In such a case, the arc time becomes longer, so that the metal vapor is emitted from the arc for a longer period of time than in the case of interruption of the commercial frequency current. For example, in a test in which a low-frequency current is interrupted many times, a substance discharged from an electrode on the inner surface of an insulating cylinder (a substance in which the metal constituting the electrode has evaporated or a part of the electrode has melted and ejected as fine droplets) It was found that withstand voltage was deteriorated. A vacuum interrupter applied to a circuit in which the arc time is longer than that of interruption of the commercial frequency current, such as interruption of low frequency current, must be able to solve such a problem.
[0009]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and reduces deposition of substances such as metal vapor from an electrode on the inner surface of an insulating cylinder even when the arc time is long. It is an object of the present invention to obtain a vacuum interrupter capable of preventing performance degradation.
[0010]
[Means for Solving the Problems]
A vacuum interrupter according to a first aspect of the present invention is a vacuum interrupter in which a fixed lead and a movable lead are arranged opposite to each other in a vacuum vessel including an insulating cylinder, and a fixed electrode and a movable electrode are attached to the inner end of each lead. In the interrupter, an arc shield provided in a vacuum vessel and covering the periphery of both electrodes, and attached to the lead or the electrode, covering a tip portion of the lead and a part of the electrode, and insulating the emission from the electrode at the time of interruption. A reinforcing shield for preventing the inner surface of the cylinder from directly reaching is provided.
[0011]
Further, in the vacuum interrupter according to the second aspect, the outer end of the reinforcing shield is bent outward to form a trapped pocket for the emission.
[0012]
A vacuum interrupter according to a third aspect is provided with a plurality of discharge pockets formed by bending on the outer peripheral surface of the reinforcing shield.
[0013]
The vacuum interrupter according to claim 4 is of a metal tank type or an intermediate shield supporting structure.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view of a vacuum interrupter according to Embodiment 1 of the present invention. Reference numerals 28 and 29 denote insulating cylinders made of glass or alumina ceramics, and one end of each of the insulating cylinders 28 and 29 is connected by a metal cylinder 30. You. End plates 33, 34 are attached to the other ends of the insulating tubes 28, 29 via metal connecting tubes 31, 32, respectively. A vacuum container is formed by the insulating tubes 28 and 29, the metal tube 30, the connection tubes 31 to 32, and the end plates 33 and 34. A fixed lead 35 is inserted into and fixed to the end plate 33, a movable lead 36 is inserted through the end plate 34 so as to be movable in the axial direction, and the fixed lead 35 and the movable lead 36 are arranged to face each other in a vacuum vessel. A fixed electrode 37 and a movable electrode 38 are attached to the inner ends of the leads 35 and 36, respectively. The movable lead 36 is attached to the inner surface of the end plate 34 via a bellows 39.
[0015]
A two-piece arc shield 40 is attached to the inner periphery of the metal tube 30 so as to cover the periphery of both electrodes 37 and 38 which are the arc generating regions. The metal tube 30 constitutes a part of the vacuum vessel and also acts as an arc shield, and together with the arc shield 40 constitutes an arc shield that covers the periphery of both electrodes 37 and 38. Reinforced shields 41 and 42 are attached to the tips of the leads 35 and 36 to cover the tips and parts of the electrodes 37 and 38.
[0016]
Next, the operation of the first embodiment will be described with reference to FIG. When the movable lead 36 is moved in the axial direction and the movable electrode 38 is separated from the fixed electrode 37 at the time of interruption, an arc is generated between the electrodes 37 and 38, and the above-mentioned emission is generated from the electrodes 37 and 38. . For example, the emission generated at the point C of the electrode 38 reaches the point D on the inner surface of the insulating cylinder 28 through the path indicated by the broken line 48 when the reinforcing shields 41 and 42 are not provided. When the arc time is long, such as when interrupting a low-frequency current, the amount of the discharged matter adhering to the inner surface of the insulating cylinder 28 increases, and the withstand voltage performance decreases. However, since the reinforced shields 41 and 42 are provided, the emission from the electrodes 37 and 38 is blocked by the reinforced shields 41 and 42 and cannot directly reach the inner surface of the insulating cylinder 28. After being reflected on the inner surface of the metal tube 30 and the surface of the fixed lead 35 as shown in FIG.
[0017]
In the first embodiment, the emission generated between the electrodes 37 and 38 reaches the inner surface of the insulating cylinder 28 after being reflected by the metal cylinder 30 and the fixed lead 35, for example. As described above, if the probability that an emission is reflected without being captured is α, the amount of the emission after n times of reflection is reduced to α n . Therefore, it is possible to reduce the amount of discharged substances reaching the inner surfaces of the insulating cylinders 28 and 29, to reduce the amount of adhesion, and to prevent a decrease in withstand voltage performance. In addition, the diameter of the electrodes 37 and 38 can be easily increased due to the metal tank shape.
[0018]
FIG. 3 shows a modification of the first embodiment, in which the connection tube 31 and the end plate 33 are integrated into an end plate 51, and the connection tube 32 and the end plate 34 are integrated into an end plate 52. Other configurations, operations, and effects are the same as those of the first embodiment. Note that, in each of the following embodiments, a similar modified example is also established.
[0019]
Embodiment 2
4 (a) and 4 (b) show a longitudinal sectional view of a vacuum interrupter according to the second embodiment and a partially enlarged view of a reinforcing shield part thereof. Reinforcing shields 43 and 44 are attached to the tips of the leads 35 and 36, respectively. The reinforcing shields 43 and 44 cover the tips of the leads 35 and 36 and a part of the electrodes 37 and 38. Then, the outer end (the electrode side is defined as the inner end) of the reinforcing shield 43 is bent so as to be wrapped outward, so that the trapping pocket 43a is formed, and the outer end of the reinforced shield 44 is similarly bent so as to be rolled outward. A capture pocket 44a is formed.
[0020]
The operation of the second embodiment will be described with reference to FIG. 5. At the time of cutoff, the emission generated from the point F of the electrode 38 is reflected at the point G on the inner surface of the metal cylinder 30 and reaches the point H which is the trapping pocket 43 a of the reinforcing shield 43. However, since the trapping pocket 43a is bent so as to be wrapped outward, the emission reaching the point H is reflected in the direction in which it has flown, or the reflection in the trapping pocket 43a is repeated to repeat the trapping. Is captured by As a result, the amount of discharged substances reaching the inner surfaces of the insulating cylinders 28 and 29 decreases, the amount of the adhering substances decreases, and a decrease in withstand voltage performance can be prevented.
[0021]
Embodiment 3
FIGS. 6A and 6B are a vertical sectional view of a vacuum interrupter according to the third embodiment and a partially enlarged view of a reinforcing shield portion thereof. Reinforcing shields 45 and 46 are attached to the tips of the leads 35 and 36, respectively. The reinforcing shields 45 and 46 cover the tips of the leads 35 and 36 and a part of the electrodes 37 and 38. Then, the outer end of the reinforcing shield 45 is bent so as to be rolled out to form a trapping pocket 45a, and the outer end of the reinforcing shield 46 is also bent so as to be rolled out to form a trapping pocket 46a. In addition, trapping pockets 45b and 46b formed by bending so as to be wound outward are also provided on the outer periphery of the reinforcing shields 45 and 46.
[0022]
In the third embodiment, trapping pockets 45a, 45b, 46a, 46b are provided at the outer end and the outer peripheral portion of each of the reinforcing shields 45, 46, and the trapping efficiency is increased by increasing the number of trapping pockets. However, the amount of discharged substances reaching the inner surfaces of the insulating cylinders 28 and 29 is reduced, the amount of the adhering substances is also reduced, and a decrease in withstand voltage characteristics can be prevented.
[0023]
Embodiment 4
FIG. 7 is a longitudinal sectional view of a vacuum interrupter according to the fourth embodiment, in which one ends of insulating cylinders 28 and 29 are connected via a connecting cylinder 50 having a short length, and an arc shield covering the periphery of electrodes 37 and 38. 47 has a support part 47a protruding at the center part of the outer periphery, and is attached to the inner surface of the connection tube 50 via this support part 47a. Other configurations are the same as in the first embodiment.
[0024]
Also in the fourth embodiment, the provision of the reinforcing shields 41 and 42 makes it possible to reduce the amount of emitted substances adhering to the inner surfaces of the insulating cylinders 28 and 29, and to prevent a reduction in withstand voltage performance. The arc shield 47 is attached to the inner periphery of the connection tube 50 via a support portion 47a provided at the center of the outer periphery, and has an intermediate shield support structure, which is different from the metal tank shapes of the first to third embodiments. It has become something. Therefore, depending on the application conditions, downsizing, reduction in the number of parts, and simplification of the structure can be performed.
[0025]
In each of the above embodiments, the reinforcing shields 41 to 46 are attached to the leads 35 and 36, but may be attached to the electrodes 37 and 38. Further, the arc shields 40 and 47 may be cantilevered as in the related art.
[0026]
【The invention's effect】
As described above, according to the first aspect of the present invention, the emission from the electrode due to the arc generated between the electrodes at the time of interruption does not directly reach the inner surface of the insulating cylinder due to the provision of the reinforcing shield. The amount of the effluent reaching the inner surface of the insulating cylinder is reduced, and the amount of the effluent adhering to the inner surface of the insulating cylinder is also reduced, so that even if the arc time becomes longer, the withstand voltage characteristics can be prevented from lowering.
[0027]
According to the second aspect of the present invention, the outer end of the reinforcing shield is bent outwardly to provide a trapped pocket for the discharged material. Therefore, the discharged discharge is trapped or reflected by the trapped pocket, and the insulation is achieved. The amount of discharged substances reaching the inner surface of the cylinder is further reduced, and the amount of the discharged substances is also reduced, so that a reduction in withstand voltage performance can be further prevented.
[0028]
Further, according to the third aspect, since a plurality of trapped pockets of the discharged matter are provided on the outer peripheral surface of the reinforcing shield, the amount of the discharged substance reaching the inner surface of the insulating cylinder is further reduced, and the amount of the discharged substance is also reduced. A decrease in withstand voltage performance can be further prevented.
[0029]
According to the fourth aspect, the vacuum interrupter has a metal tank type or an intermediate shield support structure. When the vacuum interrupter is a metal tank type, it is easy to increase the electrode diameter. Can reduce the size, reduce the number of parts, and simplify the structure depending on the application conditions.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a vacuum interrupter according to Embodiment 1 of the present invention.
FIG. 2 is an operation explanatory view of a vacuum interrupter according to the first embodiment.
FIG. 3 is a longitudinal sectional view of a vacuum interrupter according to a modification of the first embodiment.
FIG. 4 is a longitudinal sectional view of a vacuum interrupter according to a second embodiment and a partially enlarged view of a reinforced shield portion thereof.
FIG. 5 is an operation explanatory view of a vacuum interrupter according to a second embodiment.
FIG. 6 is a longitudinal sectional view of a vacuum interrupter according to a third embodiment and a partially enlarged view of a reinforced shield portion thereof.
FIG. 7 is a longitudinal sectional view of a vacuum interrupter according to a fourth embodiment.
FIG. 8 is a longitudinal sectional view of a conventional vacuum interrupter described in Non-Patent Document 1.
FIG. 9 is a longitudinal sectional view of another conventional plurality of vacuum interrupters described in Non-Patent Document 1.
FIG. 10 is a longitudinal sectional view of still another conventional vacuum interrupter described in Non-Patent Document 1.
[Explanation of symbols]
28, 29 ... Insulating cylinder 30 ... Metal cylinder 31, 32, 50 ... Connection cylinder 33, 34, 51, 52 ... End plates 35, 36 ... Leads 37, 38 ... Electrode 39 ... Bellows 40, 47 ... Arc shields 41-46 ... reinforcement shields 43a, 44a, 45a, 45b, 46a, 46b ... capture pockets 47a ... support portions

Claims (4)

絶縁筒を含んで構成された真空容器内に固定リードと可動リードを対向配置し、各リードの内端にそれぞれ固定電極及び可動電極を取り付けた真空インタラプタにおいて、真空容器内に設けられ、両電極の周囲を覆うアークシールドと、上記リード又は上記電極に取り付けられ、リードの先端部分及び電極の一部を覆い、遮断時に電極からの放出物が絶縁筒の内面に直接到達するのを阻止する強化シールドとを設けたことを特徴とする真空インタラプタ。In a vacuum interrupter in which a fixed lead and a movable lead are arranged to face each other in a vacuum container including an insulating cylinder, and a fixed electrode and a movable electrode are attached to the inner end of each lead, both electrodes are provided in the vacuum container. An arc shield that covers the periphery of the lead and the reinforcement that is attached to the lead or the electrode, covers the tip of the lead and a part of the electrode, and prevents emission from the electrode from directly reaching the inner surface of the insulating cylinder when cut off. A vacuum interrupter comprising a shield and a shield. 強化シールドの外端を外側に曲げ加工して、放出物の捕捉ポケットを形成したことを特徴とする請求項1記載の真空インタラプタ。The vacuum interrupter of claim 1, wherein the outer end of the reinforced shield is bent outward to form an emission trap pocket. 強化シールドの外周面上に、曲げ加工により形成される複数の放出物の捕捉ポケットを設けたことを特徴とする請求項1記載の真空インタラプタ。2. The vacuum interrupter according to claim 1, wherein a plurality of discharge pockets formed by bending are provided on an outer peripheral surface of the reinforcing shield. 金属槽形または中間シールド支持構造としたことを特徴とする請求項1〜3のいずれかに記載の真空インタラプタ。The vacuum interrupter according to any one of claims 1 to 3, wherein the vacuum interrupter has a metal tank type or an intermediate shield supporting structure.
JP2003042541A 2003-02-20 2003-02-20 Vacuum interrupter Pending JP2004253256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003042541A JP2004253256A (en) 2003-02-20 2003-02-20 Vacuum interrupter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003042541A JP2004253256A (en) 2003-02-20 2003-02-20 Vacuum interrupter

Publications (1)

Publication Number Publication Date
JP2004253256A true JP2004253256A (en) 2004-09-09

Family

ID=33025795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003042541A Pending JP2004253256A (en) 2003-02-20 2003-02-20 Vacuum interrupter

Country Status (1)

Country Link
JP (1) JP2004253256A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100988116B1 (en) * 2008-05-22 2010-10-18 엘에스산전 주식회사 Vacuum interrupter and vacuum circuit breaker having the same
EP3229254A1 (en) * 2016-04-05 2017-10-11 LSIS Co., Ltd. Vacuum interrupter for a vacuum circuit breaker

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100988116B1 (en) * 2008-05-22 2010-10-18 엘에스산전 주식회사 Vacuum interrupter and vacuum circuit breaker having the same
EP3229254A1 (en) * 2016-04-05 2017-10-11 LSIS Co., Ltd. Vacuum interrupter for a vacuum circuit breaker
US9972466B2 (en) 2016-04-05 2018-05-15 Lsis Co., Ltd. Vacuum interrupter for a vacuum circuit breaker
EP3229254B1 (en) 2016-04-05 2018-12-05 LSIS Co., Ltd. Vacuum interrupter for a vacuum circuit breaker

Similar Documents

Publication Publication Date Title
US3355564A (en) Vacuum-type circuit interrupter
JPS5840808B2 (en) Shinkuugata Kairosiyadanki
KR102645464B1 (en) Maximizing the wall thickness of Cu-Cr floating central shield components by moving the contact gap away from the central flange axial position.
KR100809200B1 (en) Eximer lamp
EP0138478B1 (en) Vacuum-type circuit interrupters
JP2004235121A (en) Vacuum circuit breaker
US3792214A (en) Vacuum interrupter for high voltage application
JP2004253256A (en) Vacuum interrupter
US9972466B2 (en) Vacuum interrupter for a vacuum circuit breaker
US4020304A (en) Two-material vapor shield for vacuum-type circuit interrupter
JP2009231291A (en) Magnetron
US3590185A (en) Vacuum interrupter with single insulating member having conical exterior attaching surfaces and supporting a floating shield
US3920942A (en) Arc-shield arrangement in a vacuum power circuit breaker
US3612795A (en) Shielding arrangements for vacuum-type circuit interrupters of the two-contact type
KR100548930B1 (en) Ion source
JP3329509B2 (en) Magnetron for microwave oven
US4128748A (en) High-current vacuum switch with reduced contact erosion
US3555222A (en) Vacuum switch with cylindrical guide means and annular field deflector means
JP3995339B2 (en) Discharge tube
CA1104635A (en) Vacuum arc discharge device with tapered rod electrodes
CN109564835B (en) Ceramic insulator for vacuum switch tube
KR100210065B1 (en) Cathode structure of magnetron
EP0200465A2 (en) Vacuum devices
US2612613A (en) Electric discharge device
JP3363619B2 (en) Magnetron