JP2004251893A - Optical encoder - Google Patents

Optical encoder Download PDF

Info

Publication number
JP2004251893A
JP2004251893A JP2004010502A JP2004010502A JP2004251893A JP 2004251893 A JP2004251893 A JP 2004251893A JP 2004010502 A JP2004010502 A JP 2004010502A JP 2004010502 A JP2004010502 A JP 2004010502A JP 2004251893 A JP2004251893 A JP 2004251893A
Authority
JP
Japan
Prior art keywords
light receiving
phase
receiving element
light
photoelectric encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004010502A
Other languages
Japanese (ja)
Other versions
JP4298526B2 (en
Inventor
Yoichi Omura
陽一 大村
Toru Oka
徹 岡
Hajime Nakajima
一 仲嶋
Hirokazu Sakuma
浩和 佐久間
Takashi Okamuro
貴士 岡室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004010502A priority Critical patent/JP4298526B2/en
Publication of JP2004251893A publication Critical patent/JP2004251893A/en
Application granted granted Critical
Publication of JP4298526B2 publication Critical patent/JP4298526B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical encoder which can decrease wraparound components and crosstalk toward a light receiving element and has stable phase difference by eliminating wiring overlap. <P>SOLUTION: A periodic light intensity distribution pattern having a certain pitch (P) is generated by irradiating an emitted light from a light source (102) to a scale (104). A plurality of light receiving element groups which is a group in which a plurality of light elements having the same phase are located to be adjacent to each other and change their position according to the scale are provided. The light receiving element groups are arranged in a line. Each light receiving element group has a certain phase difference. A centroids of areas (28, 29; 38, 39) on the phase axis for the light receiving element groups in which the phase differences thereof have certain relationships with each other are made to agree. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は光電式エンコーダに関し、特に、変位エンコーダースケールを用い、各種工作機械や半導体製造装置等の位置測定、移動物体の移動量検出等に使用される光電式エンコーダに関する。   The present invention relates to a photoelectric encoder, and more particularly, to a photoelectric encoder that uses a displacement encoder scale and is used for position measurement of various machine tools, semiconductor manufacturing apparatuses, and the like, detection of a moving amount of a moving object, and the like.

従来の光電式エンコーダでは、信号ピッチPに対してP/4ずつの位相差を持つA相、B相、/A相、/B相の幅P/2の受光素子をスケール移動方向に対して並設し、これら位相の異なる4個の受光素子を1セットとして、複数セットの受光素子群をスケールの移動方向に配置し、スケールの移動量、即ち、移動物体の移動量、相対位置を検出している。光源はスケールに対して受光素子と反対側に配置されており、スケールのデューティ(DUTY)比は50%としている(例えば、特許文献1参照)。   In a conventional photoelectric encoder, a light-receiving element having a width P / 2 of an A phase, a B phase, a / A phase, and a / B phase having a phase difference of P / 4 with respect to a signal pitch P in a scale moving direction. The four light receiving elements having different phases are arranged as one set, and a plurality of light receiving element groups are arranged in the moving direction of the scale to detect the moving amount of the scale, that is, the moving amount and the relative position of the moving object. are doing. The light source is arranged on the side opposite to the light receiving element with respect to the scale, and the duty (DUTY) ratio of the scale is set to 50% (for example, see Patent Document 1).

他の従来例としては、信号ピッチPに対してP/4ずつの位相差を持つA相、B相、/A相、/B相の受光素子をスケール移動方向に対して3P/4毎の間隔を置いて配置し、スケールの移動量を検出する光電式エンコーダを開示している(例えば、特許文献2参照)。   As another conventional example, light receiving elements of A phase, B phase, / A phase, and / B phase having a phase difference of P / 4 with respect to the signal pitch P are arranged at every 3P / 4 in the scale moving direction. A photoelectric encoder that is arranged at intervals and detects the amount of movement of a scale is disclosed (for example, see Patent Document 2).

ここでピッチPはスケールに形成された複数の光通過用スリットの各間隔であり、信号の周期と同じである。また、本明細書の説明では、所定の位相差を持つA相、B相、/A相、/B相については、/A相はA相の、/B相はB相のそれぞれ反転差動信号(位相差が180度)の相補関係にあることを意味している。   Here, the pitch P is each interval between the plurality of light passing slits formed on the scale, and is the same as the signal period. Further, in the description of the present specification, for the A phase, B phase, / A phase, and / B phase having a predetermined phase difference, the / A phase is the A phase and the / B phase is the B phase inverted differential. This means that the signals have a complementary relationship (the phase difference is 180 degrees).

特開平8−201117号公報(段落0008、図2)JP-A-8-2011117 (paragraph 0008, FIG. 2) 特開2002−236033号公報(段落0067〜0069、図10)JP-A-2002-236033 (paragraphs 0067 to 0069, FIG. 10)

しかしながら、上述のような従来の光電式エンコーダにおいては、ピッチが狭いためクロストーク防止手段を設けるスペースを確保することができず、光信号の受光素子への回り込みや受光素子間のクロストークが発生するといった不都合があった。このようなクロストークを防止する手段を設けるために、受光素子の幅をP/2より小さくすることが考えられるが、このように受光素子の幅を小さくすると信号出力が減少する。   However, in the conventional photoelectric encoder as described above, the pitch is narrow, so that it is not possible to secure a space for providing the crosstalk preventing means, and an optical signal may sneak to the light receiving elements or crosstalk between the light receiving elements may occur. There was an inconvenience of doing it. In order to provide a means for preventing such crosstalk, it is conceivable to make the width of the light receiving element smaller than P / 2. However, if the width of the light receiving element is made smaller in this way, the signal output decreases.

また、従来の光電式エンコーダにおいては配線が複雑で、場所によっては配線同士が重なり、受光素子アレイの製造を困難にしていた。さらに、光源の放射角変動により、各相の位相差に誤差が発生するといった課題があった。   Further, in the conventional photoelectric encoder, the wiring is complicated, and in some places, the wirings overlap each other, which makes it difficult to manufacture the light receiving element array. Further, there is a problem that an error occurs in the phase difference of each phase due to the fluctuation of the radiation angle of the light source.

本発明は、上記課題を解決するためになされたもので、各受光素子間にクロストーク防止手段を設けるスペースを確保し、光信号の受光素子への回り込み成分やクロストークを低減できる光電式エンコーダを提供することを目的とする。また、配線の重なりをなくして配線間のクロストークを低減し、受光素子アレイの製造を容易にすることを目的とする。   SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a photoelectric encoder capable of securing a space for providing a crosstalk preventing means between each light receiving element and reducing a wraparound component of an optical signal to the light receiving element and crosstalk. The purpose is to provide. It is another object of the present invention to reduce the crosstalk between wirings by eliminating the overlapping of the wirings and to facilitate the manufacture of the light receiving element array.

さらに、光源の放射角変動の影響を受けることなく安定した差動増幅を行うことができ、放射角誤差による差動後の位相誤差を低減できる光電式エンコーダを提供することを目的とする。   Further, it is another object of the present invention to provide a photoelectric encoder capable of performing stable differential amplification without being affected by a variation in the radiation angle of a light source and reducing a phase error after differential due to a radiation angle error.

上記目的を達成するために、本発明に係る光電式エンコーダは、光源からの放射光で照射することにより所定ピッチ(P)の周期的な光強度分布パターンを発生するスケールと、スケールと相対変位する複数の受光素子群とを備え、複数の受光素子群それぞれからの所定位相の位相差を有する信号をもとに、移動量を検出する。各受光素子群には複数個の受光素子が配置され、同一位相の複数個の受光素子を隣接させて1つの受光素子群とし、複数の受光素子群を並設したことを特徴とする。   In order to achieve the above object, a photoelectric encoder according to the present invention includes a scale that generates a periodic light intensity distribution pattern having a predetermined pitch (P) by irradiating with a radiation light from a light source, and a relative displacement between the scale and the scale. And a plurality of light receiving element groups for detecting the amount of movement based on signals having a predetermined phase difference from each of the plurality of light receiving element groups. A plurality of light receiving elements are arranged in each light receiving element group, and a plurality of light receiving elements having the same phase are adjacent to each other to form one light receiving element group, and a plurality of light receiving element groups are arranged in parallel.

このように、同位相の受光素子を隣接させ、同位相の複数の受光素子を1セットとして複数組の受光素子群を並設したことにより、比較的狭いピッチでも各受光素子間にクロストーク防止部材を設けるスペースを確保でき、信号光の受光素子への回り込み成分やクロストークを低減できる。さらに、配線の重なりをなくすことができ、受光素子アレイの製造も容易となる。   As described above, the light receiving elements of the same phase are adjacent to each other, and a plurality of light receiving elements of the same phase are arranged as a set, and a plurality of light receiving element groups are arranged in parallel. A space for providing members can be secured, and a signal light sneaking component to the light receiving element and crosstalk can be reduced. Further, the overlapping of the wirings can be eliminated, and the manufacture of the light receiving element array can be facilitated.

以下、添付の図面を参照して本発明の実施の形態について説明する。なお、各図において共通する要素には同一の符号を付し、重複する説明については簡単のために省略している。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the drawings, common elements are denoted by the same reference numerals, and redundant description is omitted for simplicity.

(実施の形態1)
本発明の実施の形態1について図1乃び図2を参照して以下に説明する。図1は本発明の実施の形態1に係る光電式エンコーダの概略構成を示し、図2は、位相を基準に複数組の受光素子を配置した受光素子アレイの拡大図である。
図1において、102はLED等の光源であり、ロータリースケール104を照射する放射光を発生する。103は回転軸108を中心に回転する円板であり、被検物体(不図示)の移動と一体的に回転する。
(Embodiment 1)
Embodiment 1 of the present invention will be described below with reference to FIGS. FIG. 1 shows a schematic configuration of a photoelectric encoder according to Embodiment 1 of the present invention, and FIG. 2 is an enlarged view of a light receiving element array in which a plurality of sets of light receiving elements are arranged on the basis of a phase.
In FIG. 1, reference numeral 102 denotes a light source such as an LED, which generates radiated light for irradiating the rotary scale 104. Reference numeral 103 denotes a disk that rotates around the rotation shaft 108, and rotates integrally with the movement of the test object (not shown).

ロータリースケール104は複数個に分割された光通過用スリットを放射状に形成した構成であり、円板103の回転軸108を中心に円板(回転体)103内に同心円放射状に配置されている。また、ロータリースケール104は光軸と垂直な照射パターンの中心軸線101を有し、スケールのピッチPでデューティ(DUTY)比は50%としている。106は受光素子アレイであり、ロータリースケール104からの透過光を受光して光電変換するフォトダイオード等の受光素子105を複数個配置し、受光素子アレイ106上にはピッチPのスケールパターンが照射されるように構成されている。ここで、スケールの照射パターンの中心軸線101は、受光素子アレイ106の中心軸線(図2を参照して後述する)と一致させている。   The rotary scale 104 has a configuration in which a plurality of divided light-passing slits are formed radially, and are arranged concentrically radially in a disk (rotating body) 103 around a rotation axis 108 of the disk 103. The rotary scale 104 has a central axis 101 of an irradiation pattern perpendicular to the optical axis, and a duty ratio (DUTY) is 50% at a pitch P of the scale. Reference numeral 106 denotes a light receiving element array, in which a plurality of light receiving elements 105 such as photodiodes that receive transmitted light from the rotary scale 104 and perform photoelectric conversion are arranged, and the light receiving element array 106 is irradiated with a scale pattern having a pitch P. It is configured to: Here, the central axis 101 of the irradiation pattern of the scale coincides with the central axis of the light receiving element array 106 (described later with reference to FIG. 2).

図2に示す受光素子アレイ106において、各受光素子の幅がほぼP/2である合計16個の受光素子を配置して、基準のA相(22)に対して90度の位相差を持つB相(24)と、180度の位相差を持つ/A相(23)と、270度の位相差を持つ/B相(25)の4信号を検出するように構成され、4相の信号に対応している。各受光素子の配置位置は、まずA相の受光素子A1を配置し、受光素子の中心間の距離がピッチPとなる位置に2つ目のA相の受光素子A2を配置する。続いてA2から受光素子の中心間の距離が3P/2の位置に/A相の受光素子/A1を配置し、さらに、間隔P毎に/A相の受光素子/A2、/A3、/A4を順次配置した構成としている。   In the light receiving element array 106 shown in FIG. 2, a total of 16 light receiving elements each having a width of substantially P / 2 are arranged, and have a phase difference of 90 degrees with respect to the reference A phase (22). It is configured to detect four signals of a B phase (24), a / A phase (23) having a phase difference of 180 degrees, and a / B phase (25) having a phase difference of 270 degrees. It corresponds to. Regarding the arrangement position of each light receiving element, first, the A-phase light receiving element A1 is arranged, and the second A-phase light receiving element A2 is arranged at a position where the distance between the centers of the light receiving elements is the pitch P. Subsequently, the / A-phase light-receiving element / A1 is disposed at a position where the distance between the center of the light-receiving element and A2 is 3P / 2, and the / A-phase light-receiving elements / A2, / A3, / A4 are provided at every interval P. Are sequentially arranged.

次に、/A4から受光素子の中心間の距離が3P/2の位置にA相の3個目の受光素子A3を配置し、さらに、間隔Pを置いてA相の4番目の受光素子A4を配置している。同様に、受光素子A4から受光素子の中心間の距離が5P/4の位置にB相の受光素子B1を配置し、間隔Pを置いてB相の受光素子B2を配置し、続いてB2から中心間の距離が3P/2の位置に/B相の受光素子/B1を配置し、さらに、間隔P毎に/B相の受光素子/B2、/B3、/B4を順次配置する。さらに、/B4から受光素子の中心間の距離が3P/2の位置にB相の3個目の受光素子B3を配置し、さらに、間隔Pを置いてB相の受光素子B4を配置している。即ち、同一位相の4個の受光素子で各受光素子群を形成し、それぞれの受光素子群において、少なくとも2個の受光素子を隣接して配置している。   Next, the third light receiving element A3 of the A phase is arranged at a position where the distance between the center of the light receiving element from / A4 is 3P / 2, and further, the fourth light receiving element A4 of the A phase is arranged at an interval P. Is placed. Similarly, the B-phase light-receiving element B1 is arranged at a position where the distance between the light-receiving element A4 and the center of the light-receiving element is 5P / 4, the B-phase light-receiving element B2 is arranged at intervals P, and The / B-phase light receiving element / B1 is arranged at a position where the distance between the centers is 3P / 2, and the / B-phase light receiving elements / B2, / B3, / B4 are sequentially arranged at intervals P. Further, the third light receiving element B3 of the B phase is arranged at a position where the distance between / B4 and the center of the light receiving element is 3P / 2, and the light receiving element B4 of the B phase is arranged at an interval P. I have. That is, each light receiving element group is formed by four light receiving elements having the same phase, and in each light receiving element group, at least two light receiving elements are arranged adjacent to each other.

上記構成において、参照番号28はA相および/A相の各受光素子群の位相軸109上における共通の面積重心、29はB相および/B相の各受光素子群の位相軸上における共通の面積重心である。さらに、照射パターンの中心軸線101から上記位相軸上における面積重心28までの位相距離と、中心軸線101から面積重心29までの位相距離が等しくなるように受光素子群を配置している。   In the above configuration, reference numeral 28 denotes a common area centroid on the phase axis 109 of each of the A-phase and / A-phase light receiving element groups, and 29 denotes a common area center of gravity on each of the B-phase and / B-phase light receiving element groups. Area centroid. Further, the light receiving element group is arranged such that the phase distance from the center axis 101 of the irradiation pattern to the area center of gravity 28 on the phase axis is equal to the phase distance from the center axis 101 to the area center of gravity 29.

4つの受光素子群に分割した合計16個の受光素子により、A相22、B相24、/A相23、/B相25の4信号を検出し、A相22と/A相23、B相24と/B相25で差動増幅し、90度位相差の信号(22,23;24,25)を生成する。16個の各隣接受光素子間の空いたスペースに、クロストーク防止用遮断層として共通のダミー層26を設け、ダミー層26に入射した光成分をダミー信号(D)27として検出している。これにより、各受光素子間を遮断するとともに、受光素子間の空いたスペースに一旦入射した光を、ダミー信号27として吸い取ることで、受光素子への回り込みを防止することがてきる。   Fourteen signals of A phase 22, B phase 24, / A phase 23, and / B phase 25 are detected by a total of 16 light receiving elements divided into four light receiving element groups, and A phase 22 and / A phase 23, B The signals are differentially amplified by the phase 24 and the / B phase 25 to generate signals (22, 23; 24, 25) having a phase difference of 90 degrees. A common dummy layer 26 is provided as an intercepting layer for preventing crosstalk in an empty space between each of the 16 adjacent light receiving elements, and a light component incident on the dummy layer 26 is detected as a dummy signal (D) 27. Thereby, while blocking between the light receiving elements, the light that has once entered the space between the light receiving elements is absorbed as the dummy signal 27, thereby preventing the light from entering the light receiving element.

一例として、円板103に形成されたロータリースケール104の回転軸中心Oからの平均半径をr=9.55mm、ロータリースケールの分割数を500とすると、ロータリースケールの平均ピッチPは2πr/500として求められ、略120μmとなる。このときの受光素子間の空きスペースは最小でもP/2(即ち、60μm)となり、ダミー層26を設けるのに充分なスペースを確保している。   As an example, if the average radius of the rotary scale 104 formed on the disk 103 from the rotation axis center O is r = 9.55 mm and the number of divisions of the rotary scale is 500, the average pitch P of the rotary scale is 2πr / 500. It is determined to be approximately 120 μm. At this time, the empty space between the light receiving elements is at least P / 2 (that is, 60 μm), and a sufficient space for providing the dummy layer 26 is secured.

このような構成において、ダミー層26を設けたことにより、各受光素子への回り込み成分や各信号成分間のクロストークを低減できる。また、A相22、B相24、/A相23、/B相25とダミー信号27の配線を重ねることなく各信号成分を検出することができる。さらに、A相22と/A相23、B相24と/B相25において、受光素子群の位相軸上の面積重心が完全に一致させている。   In such a configuration, by providing the dummy layer 26, it is possible to reduce a sneak component to each light receiving element and crosstalk between each signal component. Further, each signal component can be detected without overlapping the wiring of the A phase 22, B phase 24, / A phase 23, / B phase 25 and the dummy signal 27. Further, in the A phase 22 and the / A phase 23, and in the B phase 24 and the / B phase 25, the area centroids on the phase axis of the light receiving element group are completely matched.

即ち、A相の受光素子群A1,A2,A3,A4の面積重心と/A相の受光素子群/A1,/A2,/A3,/A4の面積重心はともに面積重心28であり、B相の受光素子群B1,B2,B3,B4の面積重心と/B相の受光素子群/B1,/B2,/B3,/B4の面積重心はともに面積重心29である。このように受光素子群の位相軸上の面積重心を一致させたことにより、光源の放射角変動などの影響を受けずに、所定の位相を持つ複数の信号間の位相差を安定化させることができる。   That is, the area centroids of the A-phase light receiving element groups A1, A2, A3, and A4 and the area centroids of the / A-phase light receiving element groups / A1, / A2, / A3, and / A4 are both area centroids 28 and B phase The area centroids of the light receiving element groups B1, B2, B3, and B4 of the above and the area centroids of the light receiving element groups / B1, / B2, / B3, and / B4 of the / B phase are both area centroids 29. By matching the area centroids on the phase axis of the light receiving element group in this way, it is possible to stabilize the phase difference between a plurality of signals having a predetermined phase without being affected by variations in the radiation angle of the light source. Can be.

また、照射パターンの中心軸線101から上記位相軸上におけるA相22と/A相23の面積重心28までの位相距離と、B相24と/B相25の面積重心29までの位相距離を等しくしている。このように、所定の位相差を持つ複数の受光素子群において、各受光素子群の位相軸上の面積重心を、光源からの放射光の中心軸(101)に対して軸対称に配置したことにより、光源の放射角変動のうち、軸対称成分の影響を受けずに、所定の位相差を持つ複数の信号間の位相差を安定化させることができる。   Further, the phase distance from the center axis 101 of the irradiation pattern to the area gravity center 28 of the A phase 22 and the / A phase 23 on the phase axis is equal to the phase distance from the area gravity center 29 of the B phase 24 and the / B phase 25. are doing. As described above, in the plurality of light receiving element groups having a predetermined phase difference, the area centroid on the phase axis of each light receiving element group is arranged symmetrically with respect to the center axis (101) of the light emitted from the light source. Accordingly, the phase difference between a plurality of signals having a predetermined phase difference can be stabilized without being affected by the axially symmetric component in the variation of the radiation angle of the light source.

図5は光源からの放射角変動の一例を示す説明図である。同図において、51は光源、52はスケール、53は受光素子アレイ、破線54は正規の放射光、実線55は誤差発生時の放射光であり、例えば、放射角誤差による、差動後の位相差90度の位相誤差が発生した放射角変動例を示している。   FIG. 5 is an explanatory diagram showing an example of a variation in the radiation angle from the light source. In the figure, 51 is a light source, 52 is a scale, 53 is a light receiving element array, 53 is a normal radiated light, and a solid line 55 is a radiated light at the time of occurrence of an error. An example of a radiation angle variation in which a phase error of a phase difference of 90 degrees has occurred is shown.

これに対して本実施の形態1では、図2に示すように、A相22と/A相23、B相24と/B相25の各受光素子群の位相軸上の面積重心位置を一致させたことにより、光源の放射角変動などの影響を受けずに、所定の位相差を持つ複数の信号間の位相差を安定化させることができる。   On the other hand, in the first embodiment, as shown in FIG. 2, the area centroid positions on the phase axis of the light receiving element groups of the A phase 22 and the / A phase 23 and the B phase 24 and the / B phase 25 match. By doing so, it is possible to stabilize the phase difference between a plurality of signals having a predetermined phase difference without being affected by variations in the radiation angle of the light source.

また、面積重心28と面積重心29を、照射パターンの中心軸線101に関して対称位置に配置しているので、光源の放射角変動のうち、軸対称成分の影響を受けずに、所定の位相差を持つ複数の信号間の位相差を安定化させることができる。   Further, since the area center of gravity 28 and the area center of gravity 29 are arranged symmetrically with respect to the central axis 101 of the irradiation pattern, a predetermined phase difference can be obtained without being affected by the axially symmetric component of the radiation angle variation of the light source. It is possible to stabilize the phase difference between the plurality of signals.

(実施の形態2)
本発明の実施の形態2について図3を参照して以下に説明する。図3は本発明の実施の形態2に係る光電式エンコーダの、位相を基準に各受光素子を図示した受光素子アレイ206の拡大図である。
(Embodiment 2)
Embodiment 2 of the present invention will be described below with reference to FIG. FIG. 3 is an enlarged view of the light receiving element array 206 of the photoelectric encoder according to the second embodiment of the present invention, illustrating each light receiving element based on the phase.

図3に示すように、受光素子アレイ206において、各受光素子の配置位置は、A相の受光素子A1からの受光素子の中心間の距離がピッチPとなる位置に2つ目のA相の受光素子A2を配置する。続いてA2から受光素子の中心間の距離が5P/4の位置にB相の受光素子B1を配置し、さらに、間隔P毎にB相の受光素子B2、B3、B4を順次配置した構成としている。   As shown in FIG. 3, in the light-receiving element array 206, the arrangement position of each light-receiving element is such that the distance between the centers of the light-receiving elements from the A-phase light-receiving element A <b> 1 is the pitch P, and the second A-phase The light receiving element A2 is arranged. Subsequently, a B-phase light-receiving element B1 is arranged at a position where the distance between the centers of the light-receiving elements from A2 is 5P / 4, and B-phase light-receiving elements B2, B3, and B4 are sequentially arranged at intervals of P. I have.

次に、B4から受光素子の中心間の距離が7P/4の位置にA相の3個目の受光素子A3を配置し、さらに、間隔Pを置いてA相の4番目の受光素子A4を配置している。同様に、受光素子A4から受光素子の中心間の距離が3P/2の位置に/A相の1番目の受光素子/A1を配置し、間隔Pを置いて2番目の受光素子/A2を配置し、続いて/A2から受光素子の中心間の距離が5P/4の位置に/B相の1番目の受光素子/B1を配置し、さらに、間隔P毎に/B相の受光素子/B2、/B3、/B4を順次配置している。さらに、/B4から受光素子の中心間の距離が7P/4の位置に/A相の3個目の受光素子/A3を配置し、さらに、間隔Pを置いて/A相の4番目の受光素子/A4を配置している。この構成においても、実施の形態1と同様に、同一位相の4個の受光素子で各受光素子群を形成し、それぞれの受光素子群において、少なくとも2個の受光素子を隣接して配置している。   Next, the third light-receiving element A3 of the A-phase is arranged at a position where the distance between the centers of the light-receiving elements from B4 is 7P / 4. Are placed. Similarly, the first light receiving element / A1 of the / A phase is disposed at a position where the distance between the light receiving element A4 and the center of the light receiving element is 3P / 2, and the second light receiving element / A2 is disposed at an interval P. Then, the first light receiving element / B1 of the / B phase is arranged at a position where the distance between the center of the light receiving element and / A2 is 5P / 4, and the light receiving element / B2 of the / B phase is arranged at every interval P. , / B3 and / B4 are sequentially arranged. Further, a third light receiving element / A3 of the / A phase is arranged at a position where the distance between / B4 and the center of the light receiving element is 7P / 4, and a fourth light receiving element of the / A phase is further provided at an interval P. The element / A4 is arranged. Also in this configuration, as in the first embodiment, each light receiving element group is formed by four light receiving elements having the same phase, and in each light receiving element group, at least two light receiving elements are arranged adjacent to each other. I have.

上記構成において、照射パターンの中心軸線101から上記位相軸上におけるA相とB相の面積重心38までの位相距離と、/A相と/B相の面積重心39までの位相距離がほぼ等しくなるように、受光素子群を配置している。   In the above configuration, the phase distance from the center axis 101 of the irradiation pattern to the area gravity center 38 of the A phase and the B phase on the phase axis is substantially equal to the phase distance from the area gravity center 39 of the / A phase and the / B phase. The light receiving element group is arranged as described above.

これら16個の受光素子より、A相32、B相34、/A相33、/B相35の4信号を検出し、A相32と/A相33、B相34と/B相35で差動増幅し、90度位相差の信号を生成する。16個の受光素子間の空いたスペースに、共通のダミー層36を設け、ダミー層36に入射した光成分をダミー信号(D)37として検出している。これにより、各受光素子間を遮断するとともに、受光素子間の空いたスペースに一旦入射した光を、ダミー信号37として吸い取ることで、受光素子への回り込みを防止することがてきる。   From these 16 light receiving elements, four signals of A phase 32, B phase 34, / A phase 33, and / B phase 35 are detected, and A phase 32 and / A phase 33, and B phase 34 and / B phase 35 The signal is differentially amplified to generate a signal having a phase difference of 90 degrees. A common dummy layer 36 is provided in an empty space between the 16 light receiving elements, and a light component incident on the dummy layer 36 is detected as a dummy signal (D) 37. Thus, while blocking between the light receiving elements, the light once entering the space between the light receiving elements is absorbed as the dummy signal 37, thereby preventing the light from sneaking into the light receiving elements.

このような構成において、ダミー層36を設けたことにより、各受光素子への回り込み成分や各信号成分間のクロストークを低減できる。また、A相32、B相34、/A相33、/B相35とダミー信号37の配線を重ねることなく各信号成分を検出することができる。さらに、照射パターンの中心軸線101から上記位相軸上におけるA相32とB相34の面積重心38までの位相距離と、/A相33と/B相35の面積重心39までの位相距離を等しくしているので、放射角変動などの外乱の影響を受けることはなく、安定した差動増幅を行うことができる。   In such a configuration, by providing the dummy layer 36, it is possible to reduce a sneak component to each light receiving element and crosstalk between each signal component. Further, each signal component can be detected without overlapping the wiring of the A phase 32, the B phase 34, the / A phase 33, the / B phase 35 and the dummy signal 37. Further, the phase distance from the center axis 101 of the irradiation pattern to the area center of gravity 38 of the A phase 32 and the B phase 34 on the phase axis is equal to the phase distance from the area center of gravity 39 of the / A phase 33 and the / B phase 35. Therefore, it is possible to perform stable differential amplification without being affected by disturbance such as radiation angle fluctuation.

このように本実施の形態2では、図3に示すように、A相32と/A相33、およびB相34と/B相35の各受光素子群の、図5に示すような放射角誤差による差動後の位相誤差を低減させることができる。   As described above, in the second embodiment, as shown in FIG. 3, the radiation angles of the light receiving element groups of the A phase 32 and the / A phase 33 and the B phase 34 and the / B phase 35 as shown in FIG. Phase error after differential due to error can be reduced.

(実施の形態3)
本発明の実施の形態3について図4を参照して以下に説明する。図4は本発明の実施の形態3に係る光電式エンコーダの、位相を基準に各受光素子を図示した受光素子アレイの拡大図である。
(Embodiment 3)
Embodiment 3 of the present invention will be described below with reference to FIG. FIG. 4 is an enlarged view of a light receiving element array of the photoelectric encoder according to the third embodiment of the present invention, in which each light receiving element is illustrated based on a phase.

図4に示すように、受光素子アレイ306において、各受光素子の配置位置は、まずA相の受光素子A1を配置し、受光素子の中心間の距離がピッチPとなる位置に2つ目のA相の受光素子A2を配置する。続いてA2から受光素子の中心間の距離が5P/4の位置にB相の受光素子B1を配置し、さらに、間隔Pをおいて受光素子B2を配置している。   As shown in FIG. 4, in the light receiving element array 306, the position of each light receiving element is such that the light receiving element A 1 of the A-phase is disposed first, and the second position is the position where the distance between the centers of the light receiving elements is the pitch P. An A-phase light receiving element A2 is arranged. Subsequently, a B-phase light receiving element B1 is arranged at a position where the distance between A2 and the center of the light receiving element is 5P / 4, and furthermore, a light receiving element B2 is arranged at an interval P.

次に、B2から受光素子の中心間の距離が5P/4の位置に/A相の1個目の受光素子/A1を配置し、さらに、間隔Pを置いて受光素子/A2を配置している。/A2から受光素子の中心間の距離が5P/4の位置に/B相の受光素子/B1を配置し、さらに、間隔Pをおいて受光素子/B2を配置した構成としている。   Next, the first light receiving element / A1 of the / A phase is arranged at a position where the distance between the centers of the light receiving elements from B2 is 5P / 4, and the light receiving element / A2 is further arranged at an interval P. I have. A / B phase light receiving element / B1 is arranged at a position where the distance between / A2 and the center of the light receiving element is 5P / 4, and a light receiving element / B2 is arranged at an interval P.

同様に、/B2から受光素子の中心間の距離が5P/4の位置にA相の受光素子A3を配置し、さらに、間隔Pを置いて受光素子A4を配置している。受光素子A4から受光素子の中心間の距離が5P/4の位置にB相の受光素子B3を配置し、間隔Pを置いて受光素子B4を配置している。続いてB4から受光素子の中心間の距離が5P/4の位置に/A相の受光素子/A3を配置し、さらに、間隔Pを置いて受光素子/A4を順次配置し、さらに、/A4から受光素子の中心間の距離が5P/4の位置に/B相の3個目の受光素子/B3を配置し、さらに、間隔Pを置いて受光素子/B4を配置している。このように、上記構成においては、例えば受光素子A2とB1に代表される隣接する各受光素子群の端同士の受光素子中心間の距離は5P/4に設定している。この構成においても、実施の形態1や実施の形態2と同様に、同一位相の4個の受光素子で各受光素子群を形成し、それぞれの受光素子群において、少なくとも2個の受光素子を隣接して配置している。   Similarly, an A-phase light receiving element A3 is arranged at a position where the distance between / B2 and the center of the light receiving element is 5P / 4, and furthermore, a light receiving element A4 is arranged at an interval P. The B-phase light receiving element B3 is disposed at a position where the distance between the light receiving element A4 and the center of the light receiving element is 5P / 4, and the light receiving elements B4 are disposed at intervals P. Subsequently, the / A-phase light receiving element / A3 is arranged at a position where the distance between B4 and the center of the light receiving element is 5P / 4, and the light receiving elements / A4 are sequentially arranged at intervals P, and / A4 is further arranged. , A third light receiving element / B3 of the / B phase is arranged at a position where the distance between the centers of the light receiving elements is 5P / 4, and furthermore, the light receiving element / B4 is arranged at an interval P. Thus, in the above configuration, for example, the distance between the centers of the light receiving elements of the adjacent light receiving element groups represented by the light receiving elements A2 and B1 is set to 5P / 4. Also in this configuration, similarly to the first and second embodiments, each light receiving element group is formed by four light receiving elements having the same phase, and at least two light receiving elements are adjacent to each other in each light receiving element group. Are placed.

これら16個の受光素子より、A相42、B相44、/A相43、/B相45の4信号を検出して差動増幅し、90度位相差の信号を生成する。16個の受光素子間の空いたスペースに、共通のダミー層46をクロストーク防止用に設け、ダミー層46に入射した光成分をダミー信号(不図示)として検出している。これにより、各受光素子間を遮断するとともに、受光素子間の空いたスペースに一旦入射した光を、ダミー信号として吸い取ることで、受光素子への回り込みを防止することがてきる。これにより、受光素子を1つずつ5P/4の間隔ごとに配置した場合に比べて、並設配置とダミー層の配置を維持しつつ、受光素子アレイ全体の面積を小さくできる。   From these 16 light receiving elements, four signals of A-phase 42, B-phase 44, / A-phase 43 and / B-phase 45 are detected and differentially amplified to generate a signal having a phase difference of 90 degrees. A common dummy layer 46 is provided in an empty space between the 16 light receiving elements for preventing crosstalk, and a light component incident on the dummy layer 46 is detected as a dummy signal (not shown). Thus, while blocking between the light receiving elements, the light that has once entered the space between the light receiving elements is absorbed as a dummy signal, thereby preventing the light from sneaking into the light receiving elements. Thus, the area of the entire light receiving element array can be reduced while maintaining the juxtaposed arrangement and the arrangement of the dummy layers, as compared with the case where the light receiving elements are arranged one by one at intervals of 5P / 4.

なお、上述の実施の形態1〜3においては、同一位相の4個の受光素子で各受光素子群を形成し、それぞれの受光素子群において、少なくとも2個の受光素子を隣接して配置しているが、スケールのピッチや光源の照射領域に応じて、各受光素子群の受光素子の数を増やしてもよいし、減らしてもよい。また、受光素子群を構成する受光素子の幅をP/2としているが、この幅を狭めてもよいし広げてもよい。また、各受光素子群の位相差は、実施の形態1〜3のように90度毎の0度、90度、180度、270度とするのが、互いに位相差が180度の信号を差動増幅して90度位相差の2信号を得る点で好ましいが、各受光素子群の位相差は90度以外の位相差であってもよく、例えば45度毎に8個の受光素子群を形成し、互いに位相差が180度の信号を差動増幅して45度位相差の4信号を得る構成とすることで、信号数は増えるが位相検出の精度向上を図ることも可能である。   In the first to third embodiments, each light receiving element group is formed by four light receiving elements having the same phase, and in each light receiving element group, at least two light receiving elements are arranged adjacent to each other. However, the number of light receiving elements in each light receiving element group may be increased or decreased according to the pitch of the scale or the irradiation area of the light source. Further, the width of the light receiving elements constituting the light receiving element group is P / 2, but this width may be narrowed or widened. The phase difference of each light receiving element group is set to 0 degree, 90 degrees, 180 degrees, and 270 degrees every 90 degrees as in the first to third embodiments. Although it is preferable in that two signals having a 90-degree phase difference are obtained by dynamic amplification, the phase difference of each light-receiving element group may be a phase difference other than 90 degrees. For example, eight light-receiving element groups are formed every 45 degrees. By forming the signals and differentially amplifying signals having a phase difference of 180 degrees to obtain four signals having a phase difference of 45 degrees, the number of signals increases, but the accuracy of phase detection can be improved.

また、各受光素子群の位相差が不均一であってもよく、例えば、光源の放射角変動や強度変動の影響を受けやすくなるが、受光素子群の位相差が90度と270度、即ち、受光素子群の位相が0度と90度の2つのみとし、差動増幅を行なわずに90度位相差の2信号を得る構成としてもよい。   Further, the phase difference between the respective light receiving element groups may be non-uniform. For example, the phase difference between the light receiving element groups is 90 ° and 270 °, although the light receiving element group is easily affected by the fluctuation of the radiation angle and the intensity of the light source. Alternatively, the configuration may be such that the light receiving element group has only two phases of 0 ° and 90 °, and two signals having a 90 ° phase difference are obtained without performing differential amplification.

また、所定の位相差を持つ受光素子群の数を4個としているが、所定の位相差を有する受光素子群の数は、2個、3個または8個等いくつでもよい。また、位相差が所定の関係にある複数の受光素子群の、各々の位相軸上における面積重心を完全に一致させることが望ましいが、概ね一致している場合でも、複数の受光素子群の位相差を安定化させる効果が得られる。また、位相差が所定の関係にある複数の受光素子群の、各々の位相軸上における面積重心を、光源からの放射光の中心軸に対して軸対称に配置させることが望ましいが、概ね軸対称である場合でも、複数の受光素子群の位相差を安定化させる効果が得られる。   Further, although the number of light receiving element groups having a predetermined phase difference is four, the number of light receiving element groups having a predetermined phase difference may be any number such as two, three, or eight. Further, it is desirable that the area centers of gravity on the respective phase axes of the plurality of light receiving element groups having a predetermined relationship with respect to the phase difference are completely matched. The effect of stabilizing the phase difference is obtained. In addition, it is preferable that the area centroids on the respective phase axes of the plurality of light receiving element groups having a predetermined relationship with respect to the phase difference are arranged axially symmetrically with respect to the central axis of the light emitted from the light source. Even in the case of symmetry, the effect of stabilizing the phase difference between the plurality of light receiving element groups can be obtained.

また、図6に示すように、ピッチP以上の幅を有する受光素子61と、P/2の幅を有する受光窓62をピッチPで(即ち、同位相で)複数個配置した遮光板63とを組み合わせて、1つの受光素子群を構成することも可能である。また、図6において、受光窓62の幅をP/2としているが、この幅を狭めてもよいし広げてもよい。   As shown in FIG. 6, a light receiving element 61 having a width equal to or greater than the pitch P, and a light shielding plate 63 in which a plurality of light receiving windows 62 having a width of P / 2 are arranged at a pitch P (that is, in the same phase). Can be combined to form one light receiving element group. Further, in FIG. 6, the width of the light receiving window 62 is P / 2, but the width may be narrowed or widened.

また、ロータリースケールにピッチPでデューティ比50%のスケールを用いているが、例えば、ピッチPで正弦波状または三角波状に変化するスケールなど、ピッチPで周期的に変化するものであればよい。また、各隣接受光素子の間に、例えば蒸着膜等による遮光部材を配置して、クロストークを低減させることもできる。また、各受光素子の間に、例えばエッチング等による信号光遮断手段を設け、クロストークを低減させることも可能である。また、上述の実施の形態ではロータリーエンコーダについて説明したが、本発明はリニアエンコーダにも同様に適用可能である。   In addition, although a scale having a duty ratio of 50% is used at the pitch P for the rotary scale, any scale that changes periodically at the pitch P, such as a scale that changes in a sine wave shape or a triangular wave shape at the pitch P, may be used. Further, a light-blocking member such as a vapor-deposited film may be arranged between the adjacent light receiving elements to reduce crosstalk. It is also possible to provide a signal light blocking means, for example, by etching between the light receiving elements, to reduce crosstalk. Further, although the rotary encoder has been described in the above embodiment, the present invention is similarly applicable to a linear encoder.

以上説明したように、本発明によれば、比較的狭いピッチでも各受光素子間にクロストーク防止部材を設けるスペースを確保でき、信号光の受光素子への回り込み成分やクロストークを低減化に活用できる。さらに、配線の重なりをなくすことができ、受光素子アレイの製造も容易化に活用できる。また、A相と/A相、B相と/B相の各受光素子群の面積重心を一致させ、照射パターンの中心軸に対して各面積重心位置を軸対称に配置したことにより、光源の放射角変動などの影響を受けることなく、複数の信号間の位相差を安定させることに活用できる。   As described above, according to the present invention, it is possible to secure a space for providing a crosstalk preventing member between each light receiving element even at a relatively narrow pitch, and to utilize the signal light wraparound component and the crosstalk to the light receiving element. it can. Further, the overlapping of the wirings can be eliminated, and the manufacture of the light receiving element array can be utilized for facilitation. In addition, the area centroids of the light receiving element groups of the A phase and the / A phase, and the B phase and the / B phase are made to coincide with each other, and the positions of the area centroids are arranged axially symmetric with respect to the center axis of the irradiation pattern. It can be used to stabilize the phase difference between a plurality of signals without being affected by radiation angle fluctuation.

本発明に係る実施の形態1に係る光電式エンコーダの概略構成を示す要部斜視図である。FIG. 2 is a perspective view of a principal part showing a schematic configuration of a photoelectric encoder according to Embodiment 1 of the present invention. 図1に示す光電式エンコーダの各受光素子を配置した受光素子アレイの拡大図である。FIG. 2 is an enlarged view of a light receiving element array in which light receiving elements of the photoelectric encoder shown in FIG. 1 are arranged. 本発明に係る実施の形態2に係る光電式エンコーダの各受光素子を配置した受光素子アレイの拡大図である。FIG. 9 is an enlarged view of a light receiving element array in which light receiving elements of a photoelectric encoder according to a second embodiment of the present invention are arranged. 本発明に係る実施の形態3に係る光電式エンコーダの各受光素子を配置した受光素子アレイの拡大図である。FIG. 11 is an enlarged view of a light receiving element array in which light receiving elements of a photoelectric encoder according to Embodiment 3 of the present invention are arranged. 光源からの放射角変動の一例を示す説明図である。FIG. 4 is an explanatory diagram illustrating an example of a variation in radiation angle from a light source. 受光素子群の一例を示す斜視図である。It is a perspective view showing an example of a light sensing element group.

符号の説明Explanation of reference numerals

22,32,42 A相信号、 23,33,43 /A相信号、 24,34,44 B相信号、 25,35,45 /B相信号、 26,36,46 ダミー層、 27,37 ダミー信号、 28,29,38,39 受光素子群の面積重心、 61 受光素子、 62 受光窓、 63 遮光板、 101 中心軸線、 102 光源、 103 円板、 104 ロータリースケール、 105 受光素子、 106,206,306 受光素子アレイ、 108 回転軸
22, 32, 42 A phase signal, 23, 33, 43 / A phase signal, 24, 34, 44 B phase signal, 25, 35, 45 / B phase signal, 26, 36, 46 dummy layer, 27, 37 dummy Signals, 28, 29, 38, 39 Area center of gravity of light receiving element group, 61 light receiving elements, 62 light receiving windows, 63 light shielding plate, 101 central axis, 102 light source, 103 disk, 104 rotary scale, 105 light receiving elements, 106, 206 , 306 light receiving element array, 108 rotation axis

Claims (9)

光源からの放射光で照射することにより所定ピッチ(P)の周期的な光強度分布パターンを発生するスケールと、前記スケールと相対変位する複数の受光素子群とを備え、前記複数の受光素子群それぞれからの所定位相の位相差を有する信号をもとに、移動量を検出する光電式エンコーダにおいて、
複数個の受光素子を同一位相の位置に、少なくとも2個は隣接するように配置し、前記複数個の同一位相の受光素子を1つの受光素子群としたことを特徴とする光電式エンコーダ。
A scale that generates a periodic light intensity distribution pattern of a predetermined pitch (P) by irradiating with a radiation light from a light source; and a plurality of light receiving element groups that are displaced relative to the scale. Based on a signal having a phase difference of a predetermined phase from each, in a photoelectric encoder that detects the amount of movement,
A photoelectric encoder, wherein a plurality of light receiving elements are arranged at the same phase position and at least two light receiving elements are adjacent to each other, and the plurality of light receiving elements having the same phase constitute one light receiving element group.
前記複数の受光素子群は所定の位相差を持ち、互いに位相差が所定の関係にある複数の受光素子群の、各々の位相軸上の面積重心を一致させたことを特徴とする請求項1に記載の光電式エンコーダ。 2. The plurality of light receiving element groups have a predetermined phase difference, and the area centroids on the respective phase axes of the plurality of light receiving element groups having a predetermined phase difference with each other are matched. 2. The photoelectric encoder according to 1. 前記複数の受光素子群は所定の位相差を持ち、互いに位相差が所定の関係にある複数の受光素子群の、各々の位相軸上の面積重心を、前記光源からの放射光の中心軸に対して軸対称に配置したことを特徴とする請求項1に記載の光電式エンコーダ。 The plurality of light receiving element groups have a predetermined phase difference, and the area centroids on the respective phase axes of the plurality of light receiving element groups having a predetermined phase difference with respect to each other are set to the central axis of the radiated light from the light source. 2. The photoelectric encoder according to claim 1, wherein the photoelectric encoder is arranged symmetrically with respect to the axis. 前記複数の受光素子群は、隣接する同一位相の受光素子間の中心距離は前記ピッチPであり、異なる位相の隣接受光素子群の端同士の受光素子間の中心距離は5P/4である請求項1に記載の光電式エンコーダ。 In the plurality of light receiving element groups, a center distance between adjacent light receiving elements having the same phase is the pitch P, and a center distance between light receiving elements at ends of adjacent light receiving element groups having different phases is 5P / 4. Item 2. The photoelectric encoder according to Item 1. 前記複数の受光素子群は、各隣接受光素子の間に、一体構成のクロストーク防止部を設けたことを特徴とする請求項1〜4のいずれか1項に記載の光電式エンコーダ。 The photoelectric encoder according to any one of claims 1 to 4, wherein the plurality of light receiving element groups have an integrated crosstalk prevention unit provided between adjacent light receiving elements. 前記クロストーク防止部は蒸着膜部材である請求項5に記載の光電式エンコーダ。 The photoelectric encoder according to claim 5, wherein the crosstalk prevention unit is a deposited film member. 前記クロストーク防止部はエッチングによる信号光遮断部材である請求項5に記載の光電式エンコーダ。 The photoelectric encoder according to claim 5, wherein the crosstalk prevention unit is a signal light blocking member formed by etching. 前記受光素子群が4つであり、4相の信号に対応し、1つの相を基準としたとき、他の信号の位相が90°、180°、270°となるように配置されている請求項1〜5のいずれか1項に記載の光電式エンコーダ。 There are four light receiving element groups, corresponding to four-phase signals, and arranged such that when one phase is used as a reference, the phases of other signals are 90 °, 180 °, and 270 °. Item 6. The photoelectric encoder according to any one of Items 1 to 5. 前記各受光素子の幅が前記所定ピッチ(P)のほぼ1/2である請求項1〜5のいずれか1項に記載の光電式エンコーダ。
The photoelectric encoder according to claim 1, wherein a width of each of the light receiving elements is approximately の of the predetermined pitch (P).
JP2004010502A 2003-01-31 2004-01-19 Photoelectric encoder Expired - Lifetime JP4298526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004010502A JP4298526B2 (en) 2003-01-31 2004-01-19 Photoelectric encoder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003023232 2003-01-31
JP2004010502A JP4298526B2 (en) 2003-01-31 2004-01-19 Photoelectric encoder

Publications (2)

Publication Number Publication Date
JP2004251893A true JP2004251893A (en) 2004-09-09
JP4298526B2 JP4298526B2 (en) 2009-07-22

Family

ID=33032235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004010502A Expired - Lifetime JP4298526B2 (en) 2003-01-31 2004-01-19 Photoelectric encoder

Country Status (1)

Country Link
JP (1) JP4298526B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540611B (en) * 2009-04-29 2011-05-25 天津理工大学 Fast determining method of coding sequences for recording turn numbers of photoelectric coded disk
JP2017058239A (en) * 2015-09-16 2017-03-23 ハイデンハイン株式会社 Optical rotary encoder
KR20210134478A (en) * 2020-04-30 2021-11-10 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Circular grating structure for photonic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101540611B (en) * 2009-04-29 2011-05-25 天津理工大学 Fast determining method of coding sequences for recording turn numbers of photoelectric coded disk
JP2017058239A (en) * 2015-09-16 2017-03-23 ハイデンハイン株式会社 Optical rotary encoder
KR20210134478A (en) * 2020-04-30 2021-11-10 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Circular grating structure for photonic device
KR102400766B1 (en) 2020-04-30 2022-05-24 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Circular grating structure for photonic device

Also Published As

Publication number Publication date
JP4298526B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
CN102288210B (en) Encoder, servo unit and encoder manufacturing method
JP4938265B2 (en) Method and apparatus for accurately measuring rotation angle
JP5574899B2 (en) Rotary encoder and optical apparatus equipped with the same
AU2002249382B2 (en) Optical displacement sensor
JP2012068124A5 (en) Rotary encoder and optical apparatus equipped with the same
EP2059770A2 (en) Rotary optical encoder employing multiple sub-encoders with common reticle substrate
AU2002249382A1 (en) Optical displacement sensor
WO1997016704A1 (en) Opto-electronic rotary encoder
JP4425220B2 (en) Absolute encoder
US6956200B2 (en) Phase-shift photoelectric encoder
JP2004251893A (en) Optical encoder
JP2007064818A (en) Optical encoder
US20160161295A1 (en) Encoder and motor with encoder
JP4900140B2 (en) Optical encoder
JP5490392B2 (en) Photodiode array for optical encoder, photodiode detection system, and optical encoder
JP6579698B2 (en) Rotary encoder
JP2009085956A5 (en)
JPH067013U (en) Optical encoder
CN106104214A (en) encoder and motor with encoder
JP4380526B2 (en) Photoelectric encoder
JPH08304112A (en) Vernier type absolute encoder
JP2014134540A (en) Single track three-channel encoder with differential index
JP4874647B2 (en) Scanning unit for position measuring device
JP4240266B2 (en) Rotary encoder
TW202035950A (en) Optical rotary encoder, servo motor and actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051109

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4298526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term