JP2004251679A - Electromagnetic field measuring unit - Google Patents

Electromagnetic field measuring unit Download PDF

Info

Publication number
JP2004251679A
JP2004251679A JP2003040599A JP2003040599A JP2004251679A JP 2004251679 A JP2004251679 A JP 2004251679A JP 2003040599 A JP2003040599 A JP 2003040599A JP 2003040599 A JP2003040599 A JP 2003040599A JP 2004251679 A JP2004251679 A JP 2004251679A
Authority
JP
Japan
Prior art keywords
electromagnetic field
modulated
signal
antenna
field measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003040599A
Other languages
Japanese (ja)
Inventor
Tsutomu Chin
陳  強
Kunio Sawatani
邦男 澤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intelligent Cosmos Research Institute
Original Assignee
Intelligent Cosmos Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intelligent Cosmos Research Institute filed Critical Intelligent Cosmos Research Institute
Priority to JP2003040599A priority Critical patent/JP2004251679A/en
Publication of JP2004251679A publication Critical patent/JP2004251679A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce complexity in analysis and to improve instant detection properties in an electromagnetic field measuring unit. <P>SOLUTION: The electromagnetic field measuring unit comprises: a plurality of modulation scattering elements 14 that receive local signals having different frequencies and are arranged on a circumference with a specific radius; a reception antenna 15 for receiving modulation scattered signals, where radiation signals from a radiation source are modulated by the modulation scattering elements 14; and a reference antenna 16 installed at a specific position to generate a reference signal of a signal received by the reception antenna 15. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、電磁界測定装置に関するものであり、特に、漏洩電磁波を測定する電磁界測定装置に関するものである。
【0002】
【従来の技術】
近年、電磁波の利用形態が多様化・一般化し、利用密度も飛躍的に増大する傾向にある。このような状況の中で、昨今電磁環境両立性(EMC:Electro Magnetic Compatibility)に関する問題がある。具体的には、無線端末が送信する電磁波や電子機器から漏洩する不要電磁波が他の装置に干渉して誤動作や通信品質を低下させる障害が発生しているため、重大な社会的影響が懸念されている。
【0003】
これらの不要電波を測定する装置として、互いに180°向き合わせて配置され、二つの校正された電磁界測定プローブと、この電磁界測定プローブを測定対象の電磁波源を中心として180°回転させ、電磁界分布や波原分布を求める電磁界分布測定装置がある(例えば、特許文献1を参照)。
【0004】
【特許文献1】
特開平05−026930号公報(第3−5頁、第1図)
【0005】
【発明が解決しようとする課題】
しかしながら、この電磁界分布測定装置は、電磁波源を取り囲む曲面上の電磁界を測定し、得られた電磁界分布を解析して波源分布を求め、あるいは、電磁波源を含む閉曲面上の電磁界分布を測定し、この電磁界分布から任意の点における電磁界を求める必要があった。したがって、この電磁界分布測定装置は、上述のような複雑な解析を必要とするため、解析に時間がかかるとともに、瞬時探知性に劣るという欠点があった。
【0006】
この発明は、上記に鑑みてなされたものであり、複雑な解析を必要とせず、瞬時探知性に優れた電磁界測定装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上述した課題を解決し、目的を達成するために、この発明にかかる電磁界測定装置にあっては、それぞれに異なる周波数のローカル信号が印加され、所定の半径の円周上に配置される複数の変調散乱素子と、放射源からの放射信号が前記変調散乱素子で変調された変調散乱信号を受信する受信アンテナとを備えたことを特徴とする。
【0008】
この発明によれば、所定の半径の円周上に配置される複数のアンテナ素子は、それぞれに異なる周波数のローカル信号が印加される。また、放射源から放射された放射信号がこれらのアンテナ素子で変調され、受信アンテナは、これらの変調散乱信号を受信する。
【0009】
つぎの発明にかかる電磁界測定装置にあっては、前記受信アンテナが受信した信号の基準信号を生成するために所定の位置に設置される参照アンテナをさらに備えたことを特徴とする。
【0010】
この発明によれば、所定の位置に設置された参照アンテナは、受信アンテナが受信した信号の基準信号を生成するために使用され、電磁界の強度分布だけでなく、位相分布をも求めることができる。
【0011】
【発明の実施の形態】
以下、この発明にかかる電磁界測定装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
【0012】
図1は、この発明の実施の形態にかかる電磁界測定装置の構成を示す概要図である。同図に示す電磁界測定装置は、放射源12を取り囲む所定半径の円周上に配置された多数の変調散乱素子14と、y軸上に設置された受信アンテナ15と、受信アンテナ15から送信された信号の波形を時間領域で記録する時間波形記録装置21と、時間波形記録装置21から送信された信号の波形を解析する波形解析装置22とを備えている。
【0013】
つぎに、図1を用いて、この電磁界測定装置の動作を説明する。複数の変調散乱素子14には、それぞれ異なる周波数のローカル信号が印加されている。一方、放射源12から放射された電磁波は、これらの変調散乱素子14で散乱される。このとき、変調散乱素子14で散乱される散乱波は、それぞれが異なる周波数で変調された変調散乱波となる。y軸上に配置された受信アンテナ15は、この変調散乱波を受信し、この受信信号を時間波形記録装置21に送信する。時間波形記録装置21は、受信アンテナ15から送信された信号を記録する。時間波形記録装置21で記録された信号は、波形解析装置22に送信される。波形解析装置22は、時間領域の信号を周波数領域の信号に変換(例えば、フーリエ変換)するとともに変換された信号を処理して電磁界測定面での電磁界強度分布を作成する。
【0014】
図2は、変調散乱素子として用いられる変調散乱ダイポールアンテナの模式的な構造を示す図である。同図に示すように、ダイポールアンテナの給電端と並列にダイオード17を装荷することによって、変調散乱素子を構成することができる。同図では、ダイオード17に印加するローカル信号を同軸ケーブルで給電する例を示しているが、同軸ケーブルで給電せずにダイポールアンテナに直接VCO(電圧制御発振器)を取り付けてもよい。また、同軸ケーブルで給電する場合、同軸ケーブルとダイポールアンテナとの間のインピーダンス整合を取るために、これらの間にバランを挿入したり、抵抗素子を挿入してもよい。
【0015】
図3は、変調散乱素子の動作を説明するための説明図である。同図において、変調散乱素子14には信号発生器24からローカル信号(周波数fLO)が印加されている。一方、放射源を模擬する送信アンテナ19には信号発生器23からRF信号(周波数fRF)が印加されている。いま、変調散乱素子14にRF信号がRが入射すると、変調散乱素子14に装荷されたダイオードはミキシングダイオードとして動作し、変調散乱素子14からは主な周波数成分としてf=fRF+fLOまたはf=fRF−fLOの周波数の信号が再放射される。
【0016】
図4は、図1に示す電磁界測定装置において、さらに参照アンテナを備えた電磁界測定装置の構成を示す概要図である。同図において、参照アンテナ16は、変調散乱素子14が配置される円周を挟んで受信アンテナ15と対角の位置に設置されている。参照アンテナ16で受信した信号は、位相測定における基準信号となるものである。したがって、図4に示す電磁界測定装置では、電磁界強度分布に加えて位相分布を求めることができる。なお、図4では、参照アンテナ16の位置を変調散乱素子14が配置される円周を挟んで受信アンテナ15と対角の位置に設置しているが、この位置に限られるものではなく、放射源12からの信号が所定のレベルで受信できる任意の位置に設置することができる。
【0017】
(測定結果)
図5は、図1に示す電磁界測定装置の測定系を示す概要図である。同図において、放射源12が座標系の中心に設置され、半径Rの円周上に3つの変調散乱素子14a、14b、14cが設置されている。変調散乱素子14aはx軸上に設置され、変調散乱素子14bはz軸方向から見て時計回りの方向に変調散乱素子14aから素子間隔dだけ離間して設置され、変調散乱素子14cはz軸方向から見て反時計回りの方向に変調散乱素子14aから素子間隔dだけ離間した位置に設置されている。受信アンテナ15は、放射源12の上方(z軸上)に放射源12からλだけ離間した位置に設置されている。参照アンテナ16は、変調散乱素子14の下方にλだけ離間した位置に設置されている。
【0018】
つぎに、電磁界強度分布および位相分布の測定の手順について説明する。まず、変調散乱素子14aのみを設置し、他の変調散乱素子14b、14cを除去した状態で電界強度を測定する。このとき得られた電界強度をPとする。
【0019】
つぎに、変調散乱素子14a、14b、14cの3本を用いて、変調散乱素子14aの場合と同様な条件で電界強度を測定する。この測定で得られた電界強度は、素子間隔dの関数であり、これをP(d)とする。このとき、素子間隔dの変化に対するP(d)/Pの値を評価し、この値が±1dB以内にある素子間隔を選ぶ。測定結果は省略するが、素子間隔が3λ/2以上のときは、P(d)/Pがこの要件を満たすことを確認している。
【0020】
そこで、図5において、二つの変調散乱素子14b、14cを素子間隔d=3λ/2の位置に配置し(すなわち、これらの変調素子間隔は3λとなる。)、放射源12をz軸の周りに回転させ、変調散乱素子14b、14cから散乱される変調散乱波を用いて電磁界強度分布および位相分布を測定する。
【0021】
図6(a)は、この測定によって得られた電磁界強度分布を示すグラフであり、(b)は、この測定によって得られた位相分布を示すグラフである。同図(a)および(b)に示すグラフにおいて、変調散乱法とは、二つの変調散乱素子14b、14cを変調散乱素子として使用し、上述した測定手法に基づいて測定した測定結果であり、直接測定とは、ネットワークアナライザを用いて直接測定した測定結果である。なお、同図(a)および(b)において、θとは、放射源の主放射方向とx軸とのなす角度であり、φとはθ=0°のときに受信された信号の位相を基準とした信号位相を示すものである。
【0022】
測定に使用したその他のパラメータは、放射源12から送信される周波数fRF=1GHz、R=0.6m(2λ)、d=0.45m(3/2λ)、変調散乱素子14bのローカル信号fLO1=80MHz、変調散乱素子14cのローカル信号fLO2=60MHzである。
【0023】
図6(a)および(b)の結果を見れば明らかなように、電磁界強度分布および位相分布ともに精度よく測定されていることが確認できる。なお、図1に示した電磁界測定装置を用いれば、図6(a)の電磁界強度分を測定することができる。
【0024】
なお、この測定では、放射源12を回転させ、円周上に配置した二つの変調散乱素子を用いて電磁界強度分布および位相分布を測定したが、実際には、放射源12の周りに複数の変調散乱素子が配置され、時々刻々と変化する時系列信号を周波数領域信号に変換するだけで、電磁界強度とその位相を短時間に出力することができる。
【0025】
なお、この実施の形態では受信アンテナ15と時間波形記録装置21を信号ケーブルで接続する例を示したが、この例に限られるものではなく、受信アンテナ15で受信した信号を、無線信号で時間波形記録装置21に送信させることも可能である。
【0026】
以上説明したように、この実施の形態の電磁界測定装置によれば、所定の半径の円周上に配置される複数のアンテナ素子は、それぞれに異なる周波数のローカル信号が印加されるとともに、放射源から放射された放射信号がこれらのアンテナ素子で変調され、受信アンテナは、これらの変調散乱信号を受信するようにしているので、複雑な解析を必要とせず、瞬時探知性に優れた電磁界測定装置を提供することができる。
【0027】
また、この実施の形態の電磁界測定装置によれば、受信アンテナが受信した信号の基準信号を生成するために所定の位置に参照アンテナを設置するようにしているので、電磁界の強度分布だけでなく、位相分布をも求めることができる。
【0028】
【発明の効果】
以上説明したとおり、この発明によれば、所定の半径の円周上に配置される複数のアンテナ素子は、それぞれに異なる周波数のローカル信号が印加されるるとともに、放射源から放射された放射信号がこれらのアンテナ素子で変調され、受信アンテナは、これらの変調散乱信号を受信するようにしているので、複雑な解析を必要とせず、瞬時探知性に優れた電磁界測定装置を提供することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態にかかる電磁界測定装置の構成を示す概要図である。
【図2】変調散乱素子として用いられる変調散乱ダイポールアンテナの模式的な構造を示す図である。
【図3】変調散乱素子の動作を説明するための説明図である。
【図4】図1に示す電磁界測定装置において、さらに参照アンテナを備えた電磁界測定装置の構成を示す概要図である。
【図5】図1に示す電磁界測定装置の測定系を示す概要図である。
【図6】(a)は、この測定によって得られた電磁界強度分布を示すグラフであり、(b)は、この測定によって得られた位相分布を示すグラフである。
【符号の説明】
12 放射源
14,14a,14b,14c 変調散乱素子
15 受信アンテナ
16 参照アンテナ
17 ダイオード
19 送信アンテナ
21 時間波形記録装置
22 波形解析装置
23,24 信号発生器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic field measuring apparatus, and more particularly to an electromagnetic field measuring apparatus that measures leaked electromagnetic waves.
[0002]
[Prior art]
In recent years, the use forms of electromagnetic waves have been diversified and generalized, and the use density has been increasing dramatically. Under such circumstances, there has recently been a problem regarding electromagnetic compatibility (EMC). Specifically, there is a concern about serious social impact because electromagnetic waves transmitted by wireless terminals and unwanted electromagnetic waves leaking from electronic devices interfere with other devices and cause malfunctions and degradation of communication quality. ing.
[0003]
As an apparatus for measuring these unnecessary radio waves, two calibrated electromagnetic field measurement probes which are arranged to face each other by 180 °, and this electromagnetic field measurement probe are rotated by 180 ° around the electromagnetic wave source to be measured, There is an electromagnetic field distribution measuring device for obtaining a field distribution and a wave field distribution (see, for example, Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 05-026930 (page 3-5, FIG. 1)
[0005]
[Problems to be solved by the invention]
However, this electromagnetic field distribution measuring device measures the electromagnetic field on the curved surface surrounding the electromagnetic wave source and analyzes the obtained electromagnetic field distribution to obtain the wave source distribution, or the electromagnetic field on the closed curved surface including the electromagnetic wave source. It was necessary to measure the distribution and obtain the electromagnetic field at an arbitrary point from this electromagnetic field distribution. Therefore, this electromagnetic field distribution measuring apparatus requires the complicated analysis as described above, and thus has the disadvantages that it takes time for the analysis and is inferior in instantaneous detectability.
[0006]
The present invention has been made in view of the above, and an object of the present invention is to provide an electromagnetic field measuring apparatus that does not require complicated analysis and has excellent instantaneous detectability.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems and achieve the object, in the electromagnetic field measurement apparatus according to the present invention, a plurality of local signals having different frequencies are applied to each other and arranged on the circumference of a predetermined radius. And a receiving antenna that receives the modulated scattered signal obtained by modulating the radiation signal from the radiation source by the modulated scattering element.
[0008]
According to the present invention, local signals having different frequencies are applied to the plurality of antenna elements arranged on the circumference of a predetermined radius. Further, the radiation signal radiated from the radiation source is modulated by these antenna elements, and the receiving antenna receives these modulated scattered signals.
[0009]
The electromagnetic field measurement apparatus according to the next invention is characterized by further comprising a reference antenna installed at a predetermined position in order to generate a reference signal of a signal received by the reception antenna.
[0010]
According to the present invention, the reference antenna installed at a predetermined position is used to generate a reference signal of the signal received by the receiving antenna, and can obtain not only the electromagnetic field intensity distribution but also the phase distribution. it can.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an electromagnetic field measuring apparatus according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
[0012]
FIG. 1 is a schematic diagram showing a configuration of an electromagnetic field measuring apparatus according to an embodiment of the present invention. The electromagnetic field measuring apparatus shown in FIG. 1 has a large number of modulated scattering elements 14 arranged on a circumference of a predetermined radius surrounding the radiation source 12, a receiving antenna 15 installed on the y-axis, and transmission from the receiving antenna 15. A time waveform recording device 21 that records the waveform of the received signal in the time domain, and a waveform analysis device 22 that analyzes the waveform of the signal transmitted from the time waveform recording device 21.
[0013]
Next, the operation of this electromagnetic field measuring apparatus will be described with reference to FIG. A plurality of local signals having different frequencies are applied to the plurality of modulated scattering elements 14. On the other hand, the electromagnetic waves radiated from the radiation source 12 are scattered by these modulated scattering elements 14. At this time, the scattered waves scattered by the modulated scattering element 14 become modulated scattered waves modulated at different frequencies. The receiving antenna 15 arranged on the y-axis receives this modulated scattered wave and transmits this received signal to the time waveform recording device 21. The time waveform recording device 21 records the signal transmitted from the receiving antenna 15. The signal recorded by the time waveform recording device 21 is transmitted to the waveform analysis device 22. The waveform analyzer 22 converts a time domain signal into a frequency domain signal (for example, Fourier transform) and processes the converted signal to create an electromagnetic field intensity distribution on the electromagnetic field measurement surface.
[0014]
FIG. 2 is a diagram showing a schematic structure of a modulated scattering dipole antenna used as a modulated scattering element. As shown in the figure, a modulated scattering element can be configured by loading a diode 17 in parallel with the feeding end of the dipole antenna. In the figure, an example is shown in which a local signal applied to the diode 17 is fed by a coaxial cable, but a VCO (voltage controlled oscillator) may be directly attached to the dipole antenna without feeding by the coaxial cable. When power is supplied by a coaxial cable, a balun or a resistance element may be inserted between the coaxial cable and the dipole antenna in order to achieve impedance matching.
[0015]
FIG. 3 is an explanatory diagram for explaining the operation of the modulated scattering element. In the figure, a local signal (frequency f LO ) is applied from the signal generator 24 to the modulated scattering element 14. On the other hand, an RF signal (frequency f RF ) is applied from the signal generator 23 to the transmission antenna 19 that simulates the radiation source. Now, when the RF signal R is incident on the modulated scattering element 14, the diode loaded on the modulated scattering element 14 operates as a mixing diode, and f = f RF + f LO or f as a main frequency component from the modulated scattering element 14. A signal with a frequency of = f RF -f LO is re-radiated.
[0016]
FIG. 4 is a schematic diagram showing a configuration of the electromagnetic field measuring apparatus further including a reference antenna in the electromagnetic field measuring apparatus shown in FIG. In the figure, the reference antenna 16 is installed at a position diagonal to the receiving antenna 15 across the circumference where the modulated scattering element 14 is arranged. The signal received by the reference antenna 16 becomes a reference signal in phase measurement. Therefore, the electromagnetic field measuring apparatus shown in FIG. 4 can obtain the phase distribution in addition to the electromagnetic field intensity distribution. In FIG. 4, the position of the reference antenna 16 is set at a position diagonal to the receiving antenna 15 across the circumference where the modulated scattering element 14 is arranged, but the position is not limited to this position, and radiation is performed. It can be installed at any position where the signal from the source 12 can be received at a predetermined level.
[0017]
(Measurement result)
FIG. 5 is a schematic diagram showing a measurement system of the electromagnetic field measuring apparatus shown in FIG. In the figure, the radiation source 12 is installed at the center of the coordinate system, and three modulated scattering elements 14a, 14b, 14c are installed on the circumference of the radius R. The modulated scattering element 14a is installed on the x-axis, the modulated scattering element 14b is installed in the clockwise direction when viewed from the z-axis direction, and is separated from the modulated scattering element 14a by the element interval d, and the modulated scattering element 14c is installed in the z-axis. It is installed at a position spaced apart from the modulated scattering element 14a by an element interval d in a counterclockwise direction when viewed from the direction. The receiving antenna 15 is installed above the radiation source 12 (on the z axis) at a position spaced apart from the radiation source 12 by λ 0 . The reference antenna 16 is installed below the modulation scattering element 14 at a position separated by λ 0 .
[0018]
Next, procedures for measuring the electromagnetic field intensity distribution and the phase distribution will be described. First, the electric field strength is measured with only the modulated scattering element 14a installed and the other modulated scattering elements 14b and 14c removed. The electric field strength obtained at this time is P 0 .
[0019]
Next, the electric field strength is measured under the same conditions as in the case of the modulated scattering element 14a using the three modulated scattering elements 14a, 14b, and 14c. The electric field strength obtained by this measurement is a function of the element interval d, and this is P (d). At this time, the value of P (d) / P 0 with respect to the change of the element interval d is evaluated, and the element interval having this value within ± 1 dB is selected. Measurement results is omitted, element spacing is 3 [lambda] 0/2 or more time, P (d) / P 0 is sure to meet this requirement.
[0020]
Therefore, in FIG. 5, arranged two modulation scattering element 14b, and 14c to the position of the element spacing d = 3λ 0/2 (i.e., these modulation element interval is 3 [lambda] 0.), A radiation source 12 z-axis The electromagnetic field intensity distribution and the phase distribution are measured using modulated scattered waves scattered from the modulated scattering elements 14b and 14c.
[0021]
FIG. 6A is a graph showing the electromagnetic field intensity distribution obtained by this measurement, and FIG. 6B is a graph showing the phase distribution obtained by this measurement. In the graphs shown in FIGS. 4A and 4B, the modulated scattering method is a measurement result measured based on the above-described measurement method using two modulated scattering elements 14b and 14c as modulated scattering elements. The direct measurement is a measurement result directly measured using a network analyzer. In FIGS. 2A and 2B, θ is an angle formed by the main radiation direction of the radiation source and the x axis, and φ is the phase of the signal received when θ = 0 °. It shows the signal phase as a reference.
[0022]
Other parameters used for the measurement are the frequency f RF = 1 GHz transmitted from the radiation source 12, R = 0.6 m (2λ 0 ), d = 0.45 m (3 / 2λ 0 ), the locality of the modulation scattering element 14 b. The signal f LO1 = 80 MHz, and the local signal f LO2 = 60 MHz of the modulated scattering element 14 c.
[0023]
As is apparent from the results of FIGS. 6A and 6B, it can be confirmed that both the electromagnetic field intensity distribution and the phase distribution are accurately measured. If the electromagnetic field measuring apparatus shown in FIG. 1 is used, the electromagnetic field intensity component shown in FIG. 6A can be measured.
[0024]
In this measurement, the radiation source 12 is rotated, and the electromagnetic field intensity distribution and the phase distribution are measured using two modulated scattering elements arranged on the circumference. Thus, the electromagnetic field intensity and its phase can be output in a short time by simply converting a time-series signal that changes every moment into a frequency domain signal.
[0025]
In this embodiment, an example is shown in which the receiving antenna 15 and the time waveform recording device 21 are connected by a signal cable. However, the present invention is not limited to this example. It is also possible to transmit to the waveform recording device 21.
[0026]
As described above, according to the electromagnetic field measurement apparatus of this embodiment, a plurality of antenna elements arranged on the circumference of a predetermined radius are applied with local signals of different frequencies and radiated. The radiated signal radiated from the source is modulated by these antenna elements, and the receiving antenna receives these modulated scattered signals. Therefore, it does not require complicated analysis and has an excellent electromagnetic field detection capability. A measuring device can be provided.
[0027]
Further, according to the electromagnetic field measurement apparatus of this embodiment, since the reference antenna is installed at a predetermined position in order to generate the reference signal of the signal received by the receiving antenna, only the intensity distribution of the electromagnetic field In addition, the phase distribution can be obtained.
[0028]
【The invention's effect】
As described above, according to the present invention, a plurality of antenna elements arranged on the circumference of a predetermined radius are applied with local signals having different frequencies, and the radiation signals radiated from the radiation source are received. Modulated by these antenna elements, and the receiving antenna receives these modulated scattered signals, so that it is possible to provide an electromagnetic field measuring apparatus excellent in instantaneous detectability without requiring complicated analysis. .
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of an electromagnetic field measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing a schematic structure of a modulated scattering dipole antenna used as a modulated scattering element.
FIG. 3 is an explanatory diagram for explaining the operation of a modulated scattering element;
4 is a schematic diagram showing a configuration of an electromagnetic field measuring apparatus further including a reference antenna in the electromagnetic field measuring apparatus shown in FIG. 1. FIG.
5 is a schematic diagram showing a measurement system of the electromagnetic field measuring apparatus shown in FIG.
6A is a graph showing an electromagnetic field intensity distribution obtained by this measurement, and FIG. 6B is a graph showing a phase distribution obtained by this measurement.
[Explanation of symbols]
12 Radiation sources 14, 14a, 14b, 14c Modulation scattering element 15 Reception antenna 16 Reference antenna 17 Diode 19 Transmission antenna 21 Time waveform recording device 22 Waveform analysis device 23, 24 Signal generator

Claims (2)

それぞれに異なる周波数のローカル信号が印加され、所定の半径の円周上に配置される複数の変調散乱素子と、
放射源からの放射信号が前記変調散乱素子で変調された変調散乱信号を受信する受信アンテナと、
を備えたことを特徴とする電磁界測定装置。
A plurality of modulated scattering elements, each of which is applied with a local signal having a different frequency and arranged on a circumference of a predetermined radius;
A receiving antenna for receiving a modulated scattered signal in which a radiation signal from a radiation source is modulated by the modulated scattering element;
An electromagnetic field measuring apparatus comprising:
前記受信アンテナが受信した信号の基準信号を生成するために所定の位置に設置される参照アンテナをさらに備えたことを特徴とする請求項1に記載の電磁界測定装置。The electromagnetic field measurement apparatus according to claim 1, further comprising a reference antenna installed at a predetermined position in order to generate a reference signal of a signal received by the reception antenna.
JP2003040599A 2003-02-19 2003-02-19 Electromagnetic field measuring unit Pending JP2004251679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003040599A JP2004251679A (en) 2003-02-19 2003-02-19 Electromagnetic field measuring unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003040599A JP2004251679A (en) 2003-02-19 2003-02-19 Electromagnetic field measuring unit

Publications (1)

Publication Number Publication Date
JP2004251679A true JP2004251679A (en) 2004-09-09

Family

ID=33024417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003040599A Pending JP2004251679A (en) 2003-02-19 2003-02-19 Electromagnetic field measuring unit

Country Status (1)

Country Link
JP (1) JP2004251679A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100360A1 (en) * 2005-03-23 2006-09-28 Centre National De La Recherche Scientifique (C.N.R.S.) Electromagnetic field acquisition method and system
JP2008107197A (en) * 2006-10-25 2008-05-08 Akita Prefecture System for measuring electromagnetic field
CN109142888A (en) * 2018-09-25 2019-01-04 北京空间飞行器总体设计部 A kind of satellite electromagnetic leakage localization method and system
CN104792456B (en) * 2008-02-29 2024-02-13 斯达威力艾都威乐有限两合公司 Operating device for calibrating torque wrench

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436665A (en) * 1990-06-01 1992-02-06 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic field intensity measuring instrument
US5410324A (en) * 1991-03-14 1995-04-25 Centre National De La Recherche Scientifique Method and apparatus for determining antenna radiation patterns
JP2002026637A (en) * 2000-07-10 2002-01-25 Hiroshi Hata Split strip antenna
JP2002531978A (en) * 1998-11-27 2002-09-24 コミッサリア ア レネルジー アトミーク Ultrasonic contact transducer with multiple elements
WO2003012465A1 (en) * 2001-07-27 2003-02-13 Advantest Corporation Electromagnetic wave measuring apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436665A (en) * 1990-06-01 1992-02-06 Nippon Telegr & Teleph Corp <Ntt> Electromagnetic field intensity measuring instrument
US5410324A (en) * 1991-03-14 1995-04-25 Centre National De La Recherche Scientifique Method and apparatus for determining antenna radiation patterns
JP2002531978A (en) * 1998-11-27 2002-09-24 コミッサリア ア レネルジー アトミーク Ultrasonic contact transducer with multiple elements
JP2002026637A (en) * 2000-07-10 2002-01-25 Hiroshi Hata Split strip antenna
WO2003012465A1 (en) * 2001-07-27 2003-02-13 Advantest Corporation Electromagnetic wave measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100360A1 (en) * 2005-03-23 2006-09-28 Centre National De La Recherche Scientifique (C.N.R.S.) Electromagnetic field acquisition method and system
JP2008107197A (en) * 2006-10-25 2008-05-08 Akita Prefecture System for measuring electromagnetic field
CN104792456B (en) * 2008-02-29 2024-02-13 斯达威力艾都威乐有限两合公司 Operating device for calibrating torque wrench
CN109142888A (en) * 2018-09-25 2019-01-04 北京空间飞行器总体设计部 A kind of satellite electromagnetic leakage localization method and system
CN109142888B (en) * 2018-09-25 2020-12-18 北京空间飞行器总体设计部 Satellite electromagnetic leakage positioning method and system

Similar Documents

Publication Publication Date Title
Shin et al. A distributed FMCW radar system based on fiber-optic links for small drone detection
Horst et al. Design of a compact V-band transceiver and antenna for millimeter-wave imaging systems
CA1143055A (en) Apparatus for measuring microwave electromagnetic fields
US4195262A (en) Apparatus for measuring microwave electromagnetic fields
Yang et al. A passive intermodulation source identification measurement system using a vibration modulation method
JPH05333075A (en) Method and apparatus for automatically calibrating phase array antenna
US10725164B1 (en) System and method for detecting vehicles and structures including stealth aircraft
Pursula et al. Antenna effective aperture measurement with backscattering modulation
JP2004251679A (en) Electromagnetic field measuring unit
RU2685058C1 (en) Electromagnetic screen quality evaluation method
Kazama et al. Adjacent electric field and magnetic field distribution measurement system
Kang et al. Design of a miniaturized printed multi-turn loop antenna for shielding effectiveness measurement
JP2000009775A (en) Current measuring device and specifying method for current generating source
EP1995599A1 (en) Method for determining an antenna parameter
Chen et al. Examination of EMC chamber qualification methodology for applications above 1 GHz using frequency domain mode filtering
Zhang et al. Characterization of millimeter-wave wideband FMCW signals based on a precisely synchronized NVNA for automotive radar applications
Sekine et al. 140–315 GHz spectrum measurement system and application to radiation pattern measurement
Kazama et al. Estimation of current and voltage distributions by scanning coupling probe
O'young et al. Survey of techniques for measuring RF shielding enclosures
Durier et al. Development and validation of a wide band Near Field Scan probe for the investigation of the radiated immunity of Printed Circuit Boards
Kataria et al. Electromagnetic Interference Measurements at the MIT Lincoln Laboratory RF Systems Test Facility
DeRoy et al. Investigation of the Effectiveness of RF Absorbers for Mitigation of Automotive Radiated Emission by Measurement and Simulation
Harima et al. Investigation of radiated immunity testing using white Gaussian noise and multitone signals
US20220229171A1 (en) System and method for microwave imaging
Zeng et al. Measurement quality of a software defined radio system for medical diagnostics

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20041018

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20041228

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Effective date: 20060216

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060323

A625 Written request for application examination (by other person)

Effective date: 20060216

Free format text: JAPANESE INTERMEDIATE CODE: A625

A977 Report on retrieval

Effective date: 20080401

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Effective date: 20090603

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615