JP2004251475A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2004251475A
JP2004251475A JP2003039379A JP2003039379A JP2004251475A JP 2004251475 A JP2004251475 A JP 2004251475A JP 2003039379 A JP2003039379 A JP 2003039379A JP 2003039379 A JP2003039379 A JP 2003039379A JP 2004251475 A JP2004251475 A JP 2004251475A
Authority
JP
Japan
Prior art keywords
heat
medium passage
heat exchanger
heat medium
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003039379A
Other languages
Japanese (ja)
Other versions
JP3772150B2 (en
Inventor
Noboru Yano
騰 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003039379A priority Critical patent/JP3772150B2/en
Publication of JP2004251475A publication Critical patent/JP2004251475A/en
Application granted granted Critical
Publication of JP3772150B2 publication Critical patent/JP3772150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05333Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/16Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger providing high heat exchanging efficiency in a heat exchanging core part and sufficiently meeting the demand on the improvement of performance, and the reduction of its size and weight. <P>SOLUTION: Heat medium passages units 2 are formed by arranging a plurality of metallic extra fine pipes 6 in a closely disposed state in parallel to each other in one direction, and a number of heat medium passage units 2 are arranged in parallel at specific intervals along the direction orthogonal to the arrangement direction of a group of extra fine pipes 6 to constitute the heat exchanging core part 10. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、カーエアコン用コンデンサやエンジン冷却用ラジエータを始めとする熱交換器に関する。
【0002】
【従来の技術】
従来、カーエアコン用コンデンサとして、小型軽量で且つ高性能であるという利点から、所謂マルチフロータイプの積層型熱交換器が汎用されている。この積層型熱交換器は、例えば図8に示すように、熱媒通路とする多数本の偏平チューブ(21)…が相互間にコルゲートフィン(22)を介在して並列配置して熱交換コア部を構成し、これら偏平チューブ(21)…の両端部が筒状の一対のヘッダー(23)(23)に連通接続され、且つ両ヘッダー(23)(23)の内部が仕切り壁(24)によって複数の室に区画された構造を有しており、入口(25)より流入した熱交換媒体が偏平チューブ(21)…群を蛇行状に流通して出口(26)より流出するようになされている。
【0003】
そして、上記の偏平チューブ(21)としては、熱媒通路の流体直径を小さくして熱伝導性を高めるために、内部を複数の平行流路に分割したもの、とりわけ図9(イ)〜(ニ)に示すように四角形、円形、縦長楕円形、縦長長方形等の幅方向に並列する複数の流路孔(27)を設けたアルミ押出材からなる多孔チューブが多用されている(特許文献1、円形流路孔…特許文献2)。
【0004】
【特許文献1】
特許第3313086号公報
【特許文献2】
特開平5−215482号公報)
【0005】
【発明が解決しようとする課題】
近年においては、熱交換器の更なる高性能化及び小型軽量化が希求されており、これに伴って前記の偏平チューブとしてより熱交換効率の高いものが必要になっている。しかしながら、前記の押出材からなる多孔チューブでは、押出加工技術上から薄型化及び薄肉化に限界があり、厚さ2〜3mm程度、肉厚0.25〜0.3mm程度が下限となるため、内外の熱伝導性を充分に高められない上、構造的に熱交換相手となる外部流体との接触面積が小さく、熱交換効率の向上には限界があった。
【0006】
この発明は、上述の事情に鑑みて、熱交換コア部での高い熱交換効率が得られ、高性能化及び小型軽量化の要望に充分に対処できる熱交換器を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成するために、この発明の熱交換器は、複数本の金属製極細パイプが一方向に密接状態で平行配列して熱媒通路ユニットを形成し、この熱媒通路ユニットの多数が前記パイプ群の配列方向に対して直交する方向に沿って一定間隔置きに平行配置して熱交換コア部を構成してなるものとしている。
【0008】
この発明の熱交換器では、熱媒通路ユニットが複数本の金属製極細パイプが一方向に密接状態で平行配列したものであるから、熱媒通路ユニットとしての外部表面積が偏平チューブ形態に比較して大きくなる上、極細パイプの外径が熱媒通路ユニットの厚みになるが、パイプ径は押出材からなる多孔チューブの厚み限界よりも格段に小さく設定できるから、この厚さの薄い熱媒通路ユニットを狭い間隔で高密度に平行配置することにより、熱交換コア部全体としての外側熱交換面積を極めて大きく設定できる。
【0009】
また、このような熱交換器としては、前記極細パイプが外径0.5〜2mmのアルミ押出材からなるものが好適である。すなわち、パイプ形態のアルミ押出加工においては、金型の中子にピアノ線あるいは超硬金属線を用いることにより、多孔チューブの限界厚みよりも格段に小径のパイプの複数本を同時に高精度で製作できる。しかして、パイプ外径を2mm以下とすることにより、一定寸法の熱交換コア部に多数の熱媒通路ユニットを配列できるが、パイプ外径0.5mm未満のものは製作困難である。
【0010】
更に、各熱媒通路ユニットは、極細パイプ同士が接合一体化した帯板状をなす構成とするのがよく、これによって熱媒通路ユニットとしての強度を確保できると共に、熱交換器の組立製作における取扱い性が良くなる。
【0011】
一方、平行配置した熱媒通路ユニット間には積層型熱交換器として伝熱フィンを介装するの一般的であるが、この発明では、両側縁に各々熱媒通路ユニットの極細パイプに嵌合する複数の凹円弧部を有する板状の伝熱フィンを用いることが推奨される。このような伝熱フィンによれば、該伝熱フィンが両側の熱媒通路ユニットの極細パイプ群に嵌合することから、熱交換コア部が安定して高強度になると共に、凹円弧部が各極細パイプの周面に接するため、当該伝熱フィンと熱媒通路ユニットとの間の伝熱性が良好となる。
【0012】
しかして、上記の伝熱フィンとして、各凹円弧部の周縁に、熱媒通路ユニットの極細パイプ周面に接合する突縁部を有するものが特に好適である。すなわち、この突縁部により、伝熱フィンと両側の熱媒通路ユニットとの嵌合状態の安定性が増し、熱交換コア部の強度がより増大すると共に、当該伝熱フィンと熱媒通路ユニットとの間の伝熱性がより向上することになる。
【0013】
【発明の実施の形態】
図1(A)は、この発明の一実施形態として、カークーラー用の凝縮器として好適に使用しうるマルチフロータイプの熱交換器を示す。この熱交換器は、左右一対の縦筒状をなすアルミ製のヘッダー(1)(1)間に、それぞれ両端を両ヘッダー(1)(1)に連通接続する多数の熱媒通路ユニット(2)が上下方向に一定間隔置きに平行配置して熱交換コア部(10)を構成している。そして、両ヘッダー(1)(1)の内部は仕切り壁(3)によって複数の室に区画されており、入口(4)より流入した熱交換媒体が熱媒通路ユニット(2)…群を通して蛇行状に流通して出口(5)より流出する過程で、熱交換コア部(10)において熱交換媒体と熱媒通路ユニット(2)…群の隙間を流通する空気等の外部流体との間で熱交換が行われるようになされている。
【0014】
各熱媒通路ユニット(2)は、図1(ロ)に示すように、一方向に密接状態で平行配列した多数本(図では17本)のアルミ押出材からなる極細パイプ(6)より構成されており、これら極細パイプ(6)同士が相互に接合一体化帯板状をなし、その板面方向を水平にして両ヘッダー(1)(1)間に架設されている。また、各熱媒通路ユニット(2)の両端に位置する極細パイプ(6a)は、外部からの衝撃に対する強度向上をはかるため、外側の肉厚を増大した偏肉パイプが用いられている。そして、隣接する熱媒通路ユニット(2)(2)の間には、図2でも示すように、板面を垂直にして前後方向に沿う多数枚の板状の伝熱フィン(7)が一定間隔置きに並列配置している。
【0015】
各伝熱フィン(7)は、図3に示すように、両側縁が多数の凹円弧部(7a)を連ねた形状になっており、熱媒通路ユニット(2)の幅に対応する長さを有している。そして、これら凹円弧部(7a)は、熱媒通路ユニット(2)の極細パイプ(6)の外径に対応する曲率半径に設定されており、図1(イ)及び図4に示すように、熱交換器の組立状態において各々極細パイプ(6)の外周に密接嵌合している。
【0016】
一方、両ヘッダー(1)(1)の周面の互いに対向する側には、図5(イ)に示すように、熱媒通路ユニット(2)に対応する幅を有するスリット状の開口部(11)が全長にわたって形成されると共に、この開口部(11)の両側が突縁(12)をなしている。しかして、熱媒通路ユニット(2)…群は、図5(ロ)に示すように、隣接する当該ユニット(2)(2)の各々端部間にアルミ製のスペーサー(8)を介して積層した状態として、図5(イ)の如くヘッダー(1)の開口部(11)に挿嵌することにより、両ヘッダー(1)(1)に対して両端部を連結している。
【0017】
スペーサー(8)は、図5(ハ)に示すように、長辺側が熱媒通路ユニット(2)の幅に対応する長さの矩形板状であり、両側主面にそれぞれ、幅方向(短辺方向)に沿う断面凹円弧状の多数の溝(8a)が密に平行状に設けられ、長辺側の端面形状が伝熱フィン(7)と一致するように設定されており、これら溝(8a)に各々熱媒通路ユニット(2)の極細パイプ(6)が密接嵌合するようになっている。なお、図示を省略したが、最上位と最下位に配置するスペーサー(8)には片側主面が平坦なものを用い、その平坦面をヘッダー(1)の上下端の蓋板(13)の平坦な内面に密接させ、もってヘッダー(1)の開口部(11)の全体が外部に対して封止されるようにしている。
【0018】
ここで、極細パイプ(6)としては、外径が0.5〜2mm程度で、内径が外径の1/2〜1/4程度のものが好適に使用される。すなわち、パイプ外径を2mm以下とすることにより、一定寸法の熱交換コア部(10)に多数の熱媒通路ユニット(2)を配列でき、これによって熱交換器を小型で高性能なものとなし得る。しかるに、パイプ外径が0.5mm未満のものは製作困難である。
【0019】
なお、熱交換器の組立製作においては、各部材相互の接合部にロウ材を介在させて仮組みし、この仮組み状態で炉中ロウ付けを行うことにより、全部の接合部を一括して接合固着する方法が一般的に採用される。このロウ材としては独立したものを用いてもよいが、通常は接合部の片側又は両側に予めロウ材層を塗布形成したものを使用し、また伝熱フィン(7)にはブレージングシートを用いればよい。
【0020】
上記構成の熱交換器にあっては、熱媒通路ユニット(2)が多数本の極細パイプ(6)を平行配列したものであるから、該ユニット(2)としての外部表面積が同じ幅及び厚さの偏平チューブ形態に比較して大きくなる。また、極細パイプ(6)の外径が熱媒通路ユニット(2)の厚みになるが、パイプ外径は従来の押出材からなる多孔チューブの厚み限界よりも格段に小さくできるから、この厚さの薄い熱媒通路ユニット(2)が狭い間隔で高密度に平行配置していることにより、熱交換コア部(10)全体としての外側熱交換面積が極めて大きくなり、もって従来の多孔チューブを用いた熱交換器に比して遙かに高い熱交換効率が得られる。
【0021】
因みに、図8に示すような従来の積層型熱交換器では、図9(イ)〜(ハ)のような幅方向両端が半円形をなす多孔性チューブ(21)として限界に近いサイズのもの、例えば幅16mmで厚み3mmのものを用いる場合は、一般的にチューブ(21)(21)同士の間隔が8mm程度(ピッチ=8+3=11mm)に設定されるが、1本の該チューブ(21)の周長は約35.4mm(13×2+3π)になる。これに対し、この発明の熱交換器では、例えば熱媒通路ユニット(2)として外径1mmの極細パイプ(6)の16本が一体化されたもの(幅16mm)を用い、該ユニット(2)(2)相互間の間隔を1mmに設定した場合、前記従来の熱交換器におけるピッチ11mmの間に5.5枚の該ユニット(2)が配置することになる。
【0022】
すなわち、この発明の熱交換器の上記例示構成では、一枚のユニット(2)の周長がパイプ16本で16πmm、パイプ同士の接合部で2割程度を減じるとしても該周長は14.8πmmになるから、熱交換コア部(10)の上下幅11mm当たりの総周長は約221mm(14.8π×5.5)となり、外側熱交換面積は従来構成に対して約6倍強(221÷35.4)に達する。従って、この発明の熱交換器によれば、ある程度のロスを見込んでも、同サイズの従来構成の熱交換器に比して数倍の熱交換効率が容易に得られる。
【0023】
なお、熱媒通路ユニット(2)の極細パイプ(6)としては、上記実施形態ではアルミ押出材を用いているが、他の金属からなるものも使用可能である。但し、パイプ形態のアルミ押出加工においては、金型の中子にピアノ線あるいは超硬金属線を用いることにより、従来の熱交換器に用いる多孔チューブの限界厚みよりも格段に小径のパイプの複数本を同時に高精度で製作できることから、品質及びコストの両面でアルミ押出材からなるものが推奨される。また、このような極細パイプ(6)は個々に独立した状態でも使用可能であるが、前記実施形態のように相互に接合一体化したの帯板状の熱媒通路ユニット(2)とすることにより、該ユニット(2)としての強度を確保できると共に、熱交換器の組立製作における取扱い性が良くなるという利点がある。
【0024】
更に、熱媒通路ユニット(2)の幅方向両側端の極細パイプ(6)については、熱交換コア部(10)の表面に露呈し、熱交換器の運搬や所用部位への組み付け等の取扱い中ならびに使用中に他の物品と接触し易いことから、その破損を防止するために、断面が熱交換コア部(10)の幅方向に長い楕円形のものとしたり、中空部が同幅方向の内側へ偏在したものとすることにより、中空部と同幅方向の外側との間を厚肉にして耐衝撃強度を向上させてもよい。
【0025】
伝熱フィン(7)は、図6に示すように、各凹円弧部(7a)の周縁に、熱媒通路ユニット(2)の極細パイプ(6)周面に接合する突縁部(7b)を有するものが好適である。すなわち、この突縁部(7b)によって当該伝熱フィン(7)と両側の熱媒通路ユニット(2)との当接面積が大きくなるから、両者(7)(2)の嵌合状態の安定性が増し、熱交換コア部(10)の強度がより増大すると共に、両者(7)(2)間の伝熱性がより向上することになる。
【0026】
しかして、このような突縁部(7b)は、各凹円弧部(7a)の周縁に沿い、図7(イ)の如く一定間隔置きの半径方向の切り込み(71)や、図7(ロ)の如くミシン目状の切れ目(72)を入れておき、当該伝熱フィン(7)を熱媒通路ユニット(2)(2)間に圧入する際、各凹円弧部(7a)の周縁部が曲がって形成されるようにしてもよいし、図7(ハ)の如く予め形成しておいてもよい。なお、図7(ハ)の構成例では、突縁部(7b)を含めて凹円弧部(7a)の周縁に、一定間隔置きに半径方向の切り込み(73)を設けることにより、当該伝熱フィン(7)を熱媒通路ユニット(2)(2)間に容易に圧入できるようにしている。
【0027】
この発明の熱交換器は、ヘッダー(1)(1)と熱媒通路ユニット(2)の両端部との連結構造、各熱媒通路ユニット(2)の極細パイプ(6)の本数、熱媒通路ユニット(2)の配設間隔、伝熱フィン(7)の形状と配設間隔等、細部構成については実施形態以外に種々設計変更可能である。
【0028】
また、上記の図示実施形態においては、この発明を、カークーラーの冷凍サイクルに用いられる凝縮器としての用途に適する熱交換器を示したが、この発明は、自動車用のラジエータ、その他小型で高い熱交換性能が求められる各種の熱交換器に適用可能なものである。
【0029】
【発明の効果】
請求項1の発明によれば、熱交換器として、複数本の金属製極細パイプが一方向に密接状態で平行配列して熱媒通路ユニットを形成し、この熱媒通路ユニットの多数が平行配置して熱交換コア部を構成しており、熱媒通路ユニットとしての外部表面積が偏平チューブ形態に比較して大きくなる上、パイプ径を押出材からなる多孔チューブの厚み限界よりも格段に小さく設定できるから、この厚さの薄い熱媒通路ユニットを狭い間隔で高密度に平行配置することにより、熱交換コア部全体としての外側熱交換面積が極めて大きく、もって高い熱交換効率が得られ、高性能化及び小型軽量化に適したものが提供される。
【0030】
請求項2の発明によれば、上記の熱交換器における前記極細パイプが特定外径のアルミ押出材からなるため、該パイプを高精度で安価に量産できると共に、定寸法の熱交換コア部に多数の熱媒通路ユニットを配列して熱交換効率を高めることができる。
【0031】
請求項3の発明によれば、上記の熱交換器における熱媒通路ユニットが、極細パイプ同士を接合一体化した帯板状をなすことから、強度及び取扱い性に優れるという利点がある。
【0032】
請求項4の発明によれば、上記の熱交換器における熱媒通路ユニット間に、両側縁に各々熱媒通路ユニットの極細パイプに嵌合する複数の凹円弧部を有する板状の伝熱フィンが介装されることから、熱交換コア部が安定して高強度になると共に、凹円弧部が各極細パイプの周面に接するため、当該伝熱フィンと熱媒通路ユニットとの間の伝熱性が良好になる。
【0033】
請求項5の発明によれば、上記の伝熱フィンが各凹円弧部の周縁に熱媒通路ユニットの極細パイプ周面に接合する突縁部を有することから、伝熱フィンと両側の熱媒通路ユニットとの嵌合状態の安定性が増し、熱交換コア部の強度がより増大すると共に、当該伝熱フィンと熱媒通路ユニットとの間の伝熱性がより向上し、もって熱交換効率がより高くなる。
【図面の簡単な説明】
【図1】この発明に係る熱交換器の一実施形態を示し、(イ)図は熱交換器全体の正面図、(ロ)図は熱交換コア部の要部の縦断側面図である。
【図2】同熱交換器における熱交換コア部の要部の縦断正面図である。
【図3】同熱交換器に用いる伝熱フィンの正面図である。
【図4】同熱交換器における熱交換コア部の要部の斜視図である。
【図5】同熱交換器におけるヘッダーと熱媒通路ユニット群との連結構造を示し、(イ)図は連結部の横断平面図、(ロ)図は熱媒通路ユニット群の端部の縦断正面図、(ハ)図は熱媒通路ユニット間に介装するスペーサーの斜視図である。
【図6】この発明に係る熱交換器の他の実施形態における熱交換コア部の要部の縦断正面図である。
【図7】上記他の実施形態の熱交換器に使用する伝熱フィンを示し、(イ)〜(ハ)図は各々異なる構成例の伝熱フィンの正面図である。
【図8】従来の熱交換器の構成例を示す正面図である。
【図9】従来の熱交換器に使用される多孔チューブを示し、(イ)〜(ハ)図は各々異なる構成例の多孔チューブの断面図である。
【符号の説明】
1・・・・ヘッダー
2・・・・熱媒通路ユニット
6・・・・極細チューブ
7・・・・伝熱フィン
7a・・・凹円弧部
7b・・・突縁部
10・・・熱交換コア部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat exchanger including a condenser for a car air conditioner and a radiator for cooling an engine.
[0002]
[Prior art]
Conventionally, a so-called multi-flow type laminated heat exchanger has been widely used as a condenser for a car air conditioner because of its small size, light weight, and high performance. As shown in FIG. 8, for example, as shown in FIG. 8, a plurality of flat tubes (21)... Serving as heat medium passages are arranged in parallel with a corrugated fin (22) interposed therebetween. Are connected to a pair of cylindrical headers (23) (23), and the inside of both headers (23) (23) is a partition wall (24). The heat exchange medium flowing from the inlet (25) flows through the flat tubes (21)... In a meandering manner and flows out of the outlet (26). ing.
[0003]
As the flat tube (21), the inside is divided into a plurality of parallel flow paths in order to reduce the fluid diameter of the heat medium passage and increase the thermal conductivity, and in particular, FIGS. As shown in d), a porous tube made of an extruded aluminum material having a plurality of flow passage holes (27) arranged in the width direction such as a square, a circle, a vertically long ellipse, and a vertically long rectangle is frequently used (Patent Document 1). , Circular flow passage hole ... Patent Document 2).
[0004]
[Patent Document 1]
Japanese Patent No. 3313086 [Patent Document 2]
JP-A-5-215482)
[0005]
[Problems to be solved by the invention]
In recent years, further improvement in performance and reduction in size and weight of heat exchangers have been demanded, and accordingly, flat tubes having higher heat exchange efficiency have been required. However, in the porous tube made of the extruded material, there is a limit to thinning and thinning from the viewpoint of extrusion processing technology, and the lower limit is about 2 to 3 mm in thickness and about 0.25 to 0.3 mm in thickness. The heat conductivity between the inside and the outside cannot be sufficiently increased, and the contact area with the external fluid which is a heat exchange partner is small structurally, so that there is a limit in improving the heat exchange efficiency.
[0006]
The present invention has been made in view of the above circumstances, and has as its object to provide a heat exchanger capable of obtaining high heat exchange efficiency in a heat exchange core portion and sufficiently coping with demands for high performance and small size and light weight. .
[0007]
[Means for Solving the Problems]
In order to achieve the above object, in the heat exchanger of the present invention, a plurality of metal ultrafine pipes are closely arranged in parallel in one direction to form a heat medium passage unit. The heat exchange core section is arranged in parallel at regular intervals along a direction orthogonal to the arrangement direction of the pipe groups.
[0008]
In the heat exchanger according to the present invention, since the heat medium passage unit is formed by arranging a plurality of metal ultrafine pipes in parallel in one direction, the external surface area of the heat medium passage unit is smaller than that of the flat tube form. In addition, the outer diameter of the ultrafine pipe becomes the thickness of the heat medium passage unit, but the pipe diameter can be set to be much smaller than the thickness limit of the porous tube made of extruded material. By arranging the units in parallel at a small interval at a narrow interval, the outer heat exchange area as the entire heat exchange core can be set extremely large.
[0009]
Further, as such a heat exchanger, it is preferable that the ultrafine pipe is made of an extruded aluminum material having an outer diameter of 0.5 to 2 mm. In other words, in the case of aluminum extrusion in the form of pipes, a piano wire or a super-hard metal wire is used as the core of the mold to simultaneously produce multiple pipes with a diameter much smaller than the limit thickness of the perforated tube with high precision. it can. Thus, by setting the pipe outer diameter to 2 mm or less, a large number of heat medium passage units can be arranged in a heat exchange core part of a fixed size, but it is difficult to manufacture a pipe having an outer diameter of less than 0.5 mm.
[0010]
Further, each heat medium passage unit is preferably formed in a strip plate shape in which the ultrafine pipes are joined and integrated with each other, whereby the strength as the heat medium passage unit can be secured, and in the assembly and manufacture of the heat exchanger. Handleability is improved.
[0011]
On the other hand, heat transfer fins are generally interposed between the heat medium passage units arranged in parallel as a laminated heat exchanger. It is recommended to use a plate-shaped heat transfer fin having a plurality of concave arc portions. According to such a heat transfer fin, since the heat transfer fin is fitted into the microscopic pipe group of the heat medium passage units on both sides, the heat exchange core portion is stably increased in strength, and the concave arc portion is formed. Since the heat transfer fins and the heat medium passage unit are in contact with each other, the heat transfer between the heat transfer fins and the heat medium passage unit is improved.
[0012]
Thus, as the above-mentioned heat transfer fins, those having a projecting edge portion joined to the peripheral surface of the ultrafine pipe of the heat medium passage unit on the peripheral edge of each concave arc portion are particularly preferable. That is, due to the protruding edge, the stability of the fitted state between the heat transfer fin and the heat transfer passage units on both sides is increased, the strength of the heat exchange core portion is further increased, and the heat transfer fin and the heat transfer passage unit are further increased. And the heat transfer between them is further improved.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1A shows a multi-flow type heat exchanger which can be suitably used as a condenser for a car cooler as one embodiment of the present invention. This heat exchanger has a large number of heat medium passage units (2) having a pair of left and right vertical cylindrical aluminum headers (1) and (1) each having both ends communicating with both headers (1) and (1). ) Are arranged in parallel at regular intervals in the vertical direction to constitute the heat exchange core portion (10). The interior of the headers (1) and (1) is partitioned into a plurality of chambers by partition walls (3), and the heat exchange medium flowing from the inlet (4) meanders through the heat medium passage units (2). In the process of flowing through the outlet (5) and flowing through the outlet (5), the heat exchange medium and the external fluid such as air flowing through the gaps of the heat medium passage units (2) in the heat exchange core (10). Heat exchange is performed.
[0014]
As shown in FIG. 1 (b), each heat medium passage unit (2) is composed of a large number (17 in the figure) of ultra-fine pipes (6) made of extruded aluminum material which are closely arranged in one direction in parallel. The ultrafine pipes (6) are joined to each other in the form of an integrated strip plate, and are placed between the headers (1) (1) with the plate surface direction being horizontal. Further, as the ultrafine pipes (6a) located at both ends of each heat medium passage unit (2), in order to improve the strength against an external impact, an uneven thickness pipe having an increased outside thickness is used. As shown in FIG. 2, between the adjacent heat medium passage units (2) and (2), a large number of plate-like heat transfer fins (7) extending in the front-rear direction with the plate surface being vertical are fixed. They are arranged in parallel at intervals.
[0015]
As shown in FIG. 3, each heat transfer fin (7) has a shape in which both side edges are connected to a large number of concave arc portions (7a), and has a length corresponding to the width of the heat medium passage unit (2). have. These concave arc portions (7a) are set to have a radius of curvature corresponding to the outer diameter of the ultrafine pipe (6) of the heat medium passage unit (2), and as shown in FIGS. In the assembled state of the heat exchangers, each is closely fitted to the outer periphery of the ultrafine pipe (6).
[0016]
On the other hand, as shown in FIG. 5 (a), slit-shaped openings (widths corresponding to the heat medium passage units (2)) are formed on opposite sides of the peripheral surfaces of the headers (1) and (1). 11) is formed over the entire length, and both sides of the opening (11) form a protruding edge (12). As shown in FIG. 5 (b), the heat medium passage units (2)... Are arranged via an aluminum spacer (8) between the ends of the adjacent units (2) and (2). As shown in FIG. 5 (a), both ends are connected to the headers (1) and (1) by being inserted into the openings (11) of the header (1) as shown in FIG.
[0017]
As shown in FIG. 5 (c), the spacer (8) has a rectangular plate shape with a long side corresponding to the width of the heat medium passage unit (2), and has a main surface on both sides in the width direction (short side). A number of grooves (8a) having a concave arc cross section along the side direction) are densely provided in parallel, and the end face shape on the long side is set so as to coincide with the heat transfer fin (7). The ultrafine pipes (6) of the heat medium passage unit (2) are closely fitted to (8a). Although not shown, the spacers (8) disposed at the uppermost and lowermost positions have flat one-side main surfaces, and the flat surfaces are formed on the lid plates (13) at the upper and lower ends of the header (1). The opening (11) of the header (1) is entirely sealed from the outside by making it close to the flat inner surface.
[0018]
Here, as the ultrafine pipe (6), a pipe having an outer diameter of about 0.5 to 2 mm and an inner diameter of about 1/2 to 1/4 of the outer diameter is suitably used. That is, by setting the pipe outer diameter to 2 mm or less, a large number of heat medium passage units (2) can be arranged in the heat exchange core part (10) of a fixed size, thereby making the heat exchanger small and high performance. I can do it. However, it is difficult to manufacture a pipe having an outer diameter of less than 0.5 mm.
[0019]
In the assembling and manufacturing of the heat exchanger, brazing is interposed at the joints between the members and temporarily assembled, and brazing is performed in a furnace in this temporarily assembled state, so that all the joints are collectively assembled. A method of bonding and fixing is generally adopted. As the brazing material, an independent brazing material may be used, but usually, a brazing material layer is applied and formed on one or both sides of the joint portion in advance, and a brazing sheet is used for the heat transfer fins (7). Just fine.
[0020]
In the heat exchanger having the above configuration, since the heat medium passage unit (2) is formed by arranging a large number of ultrafine pipes (6) in parallel, the external surface area of the unit (2) has the same width and thickness. Size is larger than that of a flat tube. Further, the outer diameter of the ultrafine pipe (6) becomes the thickness of the heat medium passage unit (2). However, since the outer diameter of the pipe can be significantly smaller than the thickness limit of a conventional porous tube made of extruded material, Since the heat medium passage units (2) having a small thickness are arranged in parallel at a high density at a narrow interval, the outer heat exchange area of the heat exchange core (10) as a whole becomes extremely large. A much higher heat exchange efficiency can be obtained as compared to a conventional heat exchanger.
[0021]
By the way, in the conventional laminated type heat exchanger as shown in FIG. 8, a porous tube (21) having a semicircular shape at both ends in the width direction as shown in FIGS. For example, when a tube having a width of 16 mm and a thickness of 3 mm is used, the interval between the tubes (21) and (21) is generally set to about 8 mm (pitch = 8 + 3 = 11 mm). ) Is about 35.4 mm (13 × 2 + 3π). On the other hand, in the heat exchanger of the present invention, for example, as the heat medium passage unit (2), an integrated unit (16 mm in width) of 16 ultrafine pipes (6) having an outer diameter of 1 mm is used, and the unit (2) is used. (2) When the distance between the units is set to 1 mm, 5.5 units (2) are arranged at a pitch of 11 mm in the conventional heat exchanger.
[0022]
That is, in the above-described exemplary configuration of the heat exchanger of the present invention, even if the circumference of one unit (2) is reduced by 16πmm for 16 pipes and about 20% at the joint between the pipes, the circumference is 14.3 mm. Since it is 8π mm, the total perimeter per 11 mm of the vertical width of the heat exchange core part (10) is about 221 mm (14.8π × 5.5), and the outer heat exchange area is about six times more than the conventional configuration ( 221 ÷ 35.4). Therefore, according to the heat exchanger of the present invention, even if a certain amount of loss is expected, a heat exchange efficiency several times higher than that of the heat exchanger having the same size and the conventional configuration can be easily obtained.
[0023]
Although the extruded aluminum is used in the above embodiment as the ultrafine pipe (6) of the heat medium passage unit (2), a pipe made of another metal can be used. However, in the case of aluminum extrusion in the form of a pipe, the use of a piano wire or a cemented metal wire as the core of the mold makes it possible to use a plurality of pipes with a diameter much smaller than the limit thickness of the perforated tube used in the conventional heat exchanger. Since books can be manufactured with high precision at the same time, those made of extruded aluminum are recommended in terms of both quality and cost. Further, such an ultra-fine pipe (6) can be used in an independent state, but it should be a strip-shaped heat medium passage unit (2) joined and integrated with each other as in the above embodiment. Thereby, there is an advantage that the strength as the unit (2) can be ensured, and the handleability in assembling and manufacturing the heat exchanger is improved.
[0024]
Furthermore, the ultra-fine pipes (6) at both ends in the width direction of the heat medium passage unit (2) are exposed on the surface of the heat exchange core (10), and handling such as transporting the heat exchanger and assembling the heat exchanger at a required site. Since it is easy to come into contact with other articles during and during use, in order to prevent its breakage, the cross section should be an elliptical shape that is long in the width direction of the heat exchange core part (10), or the hollow part should be in the same width direction. The thickness between the hollow portion and the outside in the same width direction may be increased in thickness to improve the impact resistance by being unevenly distributed inward.
[0025]
As shown in FIG. 6, the heat transfer fin (7) has a projecting edge (7b) joined to the periphery of each concave arc portion (7a) and the periphery of the ultrafine pipe (6) of the heat medium passage unit (2). Are preferred. That is, since the contact area between the heat transfer fin (7) and the heat medium passage units (2) on both sides is increased by the protruding edge (7b), the fitting state of the two (7) (2) is stabilized. As a result, the strength of the heat exchange core portion (10) is further increased, and the heat transfer between the two (7) and (2) is further improved.
[0026]
Thus, such a protruding edge portion (7b) extends along the periphery of each concave circular arc portion (7a), as shown in FIG. ), And when the heat transfer fins (7) are press-fitted between the heat medium passage units (2) and (2), the peripheral edge of each concave arc portion (7a) is formed. May be formed to be bent, or may be formed in advance as shown in FIG. In the configuration example of FIG. 7 (c), the heat transfer is performed by providing radial cuts (73) at regular intervals on the periphery of the concave arc portion (7a) including the protruding edge portion (7b). The fin (7) can be easily press-fitted between the heat medium passage units (2) and (2).
[0027]
The heat exchanger according to the present invention has a connection structure between the headers (1) and (1) and both ends of the heat medium passage unit (2), the number of ultrafine pipes (6) in each heat medium passage unit (2), and a heat medium. The design details of the passage unit (2), the spacing between the passage units (2), the shape and the spacing of the heat transfer fins (7), and the like can be variously changed in addition to the embodiment.
[0028]
Further, in the above-described illustrated embodiment, the present invention shows a heat exchanger suitable for use as a condenser used in a refrigeration cycle of a car cooler. However, the present invention provides a radiator for automobiles and other small and high radiators. It can be applied to various heat exchangers requiring heat exchange performance.
[0029]
【The invention's effect】
According to the first aspect of the present invention, as the heat exchanger, a plurality of metal ultrafine pipes are arranged in parallel in one direction in a close state to form a heat medium passage unit, and a large number of the heat medium passage units are arranged in parallel. The external surface area of the heat medium passage unit is larger than that of the flat tube type, and the pipe diameter is set to be much smaller than the thickness limit of the porous tube made of extruded material. Therefore, by arranging the heat medium passage units having a small thickness in parallel at a small interval at a high density, the outer heat exchange area of the entire heat exchange core portion is extremely large, and thus a high heat exchange efficiency is obtained. What is suitable for performance improvement and size reduction is provided.
[0030]
According to the invention of claim 2, since the ultrafine pipe in the heat exchanger is made of an extruded aluminum material having a specific outer diameter, the pipe can be mass-produced with high precision at a low cost, and the heat exchange core portion having a fixed size can be formed. A large number of heat medium passage units can be arranged to increase the heat exchange efficiency.
[0031]
According to the third aspect of the present invention, since the heat medium passage unit in the heat exchanger has a strip shape in which the ultrafine pipes are joined and integrated, there is an advantage that the strength and handleability are excellent.
[0032]
According to the invention of claim 4, between the heat medium passage units in the heat exchanger, plate-shaped heat transfer fins having a plurality of concave arc portions fitted on the micro pipes of the heat medium passage unit on both side edges. Since the heat exchange core portion is interposed, the heat exchange core portion becomes stable and high in strength, and the concave arc portion contacts the peripheral surface of each microfine pipe, so that the heat transfer between the heat transfer fin and the heat medium passage unit is performed. Thermal properties are improved.
[0033]
According to the fifth aspect of the present invention, the heat transfer fin and the heat transfer medium on both sides are provided since the heat transfer fin has a protruding edge portion on the periphery of each concave arc portion which is joined to the peripheral surface of the ultrafine pipe of the heat transfer medium passage unit. The stability of the fitting state with the passage unit is increased, the strength of the heat exchange core portion is further increased, and the heat transfer between the heat transfer fins and the heat medium passage unit is further improved, so that the heat exchange efficiency is improved. Higher.
[Brief description of the drawings]
FIG. 1 shows an embodiment of a heat exchanger according to the present invention. FIG. 1A is a front view of the entire heat exchanger, and FIG. 1B is a longitudinal side view of a main part of a heat exchange core.
FIG. 2 is a vertical sectional front view of a main part of a heat exchange core in the heat exchanger.
FIG. 3 is a front view of a heat transfer fin used in the heat exchanger.
FIG. 4 is a perspective view of a main part of a heat exchange core in the heat exchanger.
5A and 5B show a connection structure between a header and a heat medium passage unit group in the heat exchanger, wherein FIG. 5A is a cross-sectional plan view of the connection portion, and FIG. 5B is a longitudinal section of an end of the heat medium passage unit group. FIG. 3C is a perspective view of a spacer interposed between the heat medium passage units.
FIG. 6 is a longitudinal sectional front view of a main part of a heat exchange core in another embodiment of the heat exchanger according to the present invention.
FIG. 7 shows heat transfer fins used in the heat exchanger of the other embodiment, and FIGS. 7A to 7C are front views of heat transfer fins having different configurations.
FIG. 8 is a front view showing a configuration example of a conventional heat exchanger.
FIG. 9 shows a perforated tube used in a conventional heat exchanger. FIGS. 9A to 9C are cross-sectional views of perforated tubes having different configurations.
[Explanation of symbols]
1 Header 2 Heat medium passage unit 6 Ultrafine tube 7 Heat transfer fin 7a Concave arc 7b Protrusion 10 Heat exchange Core

Claims (5)

複数本の金属製極細パイプが一方向に密接状態で平行配列して熱媒通路ユニットを形成し、この熱媒通路ユニットの多数が前記パイプ群の配列方向に対して直交する方向に沿って一定間隔置きに平行配置して熱交換コア部を構成してなる熱交換器。A plurality of metal ultrafine pipes are closely arranged in parallel in one direction to form a heat medium passage unit, and a large number of the heat medium passage units are fixed along a direction orthogonal to the arrangement direction of the pipe group. A heat exchanger comprising a heat exchange core portion arranged in parallel at intervals. 前記極細パイプが外径0.5〜2mmのアルミ押出材からなる請求項1記載の熱交換器。2. The heat exchanger according to claim 1, wherein the ultrafine pipe is made of extruded aluminum having an outer diameter of 0.5 to 2 mm. 各熱媒通路ユニットは、極細パイプ同士が接合一体化した帯板状をなす請求項1又は2に記載の熱交換器。The heat exchanger according to claim 1, wherein each of the heat medium passage units has a strip shape in which ultrafine pipes are joined and integrated. 平行配置した熱媒通路ユニット間に、両側縁に各々熱媒通路ユニットの極細パイプに嵌合する複数の凹円弧部を有する板状の伝熱フィンが介装されてなる請求項1〜3のいずれかに記載の熱交換器。4. A heat transfer fin according to claim 1, wherein plate heat transfer fins having a plurality of concave arc portions fitted to the micro pipes of the heat transfer passage unit on both side edges are interposed between the heat transfer passage units arranged in parallel. The heat exchanger according to any one of the above. 前記伝熱フィンの各凹円弧部の周縁に、熱媒通路ユニットの極細パイプ周面に接合する突縁部を有してなる請求項4記載の熱交換器。The heat exchanger according to claim 4, further comprising a projecting edge joined to a peripheral surface of the ultrafine pipe of the heat medium passage unit on a peripheral edge of each concave arc portion of the heat transfer fin.
JP2003039379A 2003-02-18 2003-02-18 Heat exchanger Expired - Fee Related JP3772150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003039379A JP3772150B2 (en) 2003-02-18 2003-02-18 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003039379A JP3772150B2 (en) 2003-02-18 2003-02-18 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2004251475A true JP2004251475A (en) 2004-09-09
JP3772150B2 JP3772150B2 (en) 2006-05-10

Family

ID=33023577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003039379A Expired - Fee Related JP3772150B2 (en) 2003-02-18 2003-02-18 Heat exchanger

Country Status (1)

Country Link
JP (1) JP3772150B2 (en)

Also Published As

Publication number Publication date
JP3772150B2 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
JP3814917B2 (en) Stacked evaporator
US20030178188A1 (en) Micro-channel heat exchanger
JP2004144460A (en) Heat exchanger
JP2004225961A (en) Multi-flow type heat exchanger
JPH05312492A (en) Heat exchanger
JP2004037073A (en) Multilayer heat exchanger
JPS63271099A (en) Heat exchanger
KR20150030201A (en) Heat transfer pipe for fin-and-tube type heat exchanger, and fin-and-tube type heat exchanger
JP2010121925A (en) Heat exchanger
JP2528121B2 (en) Heat exchanger
US6209629B1 (en) Beaded plate for a heat exchanger and method of making same
JP2009074772A (en) Heat exchanger
JPH10111086A (en) Heat exchanger
JP2007127347A (en) Tank structure for heat exchanger
JP3403544B2 (en) Heat exchanger
JP2005180714A (en) Heat exchanger and inner fin used by it
CN212058426U (en) Heat exchanger
JPH03117887A (en) Heat exchanger
JPH10170184A (en) Heat exchanger
JP3772150B2 (en) Heat exchanger
JP2005351520A (en) Heat exchanger
JPH0195288A (en) Heat exchanger
KR20070064938A (en) Heat exchanger
JP2005061778A (en) Evaporator
JPH0694327A (en) Heat-exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20051028

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20051108

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Effective date: 20060213

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

LAPS Cancellation because of no payment of annual fees