JP2004250832A - Spindle-cooling structure - Google Patents

Spindle-cooling structure Download PDF

Info

Publication number
JP2004250832A
JP2004250832A JP2003043490A JP2003043490A JP2004250832A JP 2004250832 A JP2004250832 A JP 2004250832A JP 2003043490 A JP2003043490 A JP 2003043490A JP 2003043490 A JP2003043490 A JP 2003043490A JP 2004250832 A JP2004250832 A JP 2004250832A
Authority
JP
Japan
Prior art keywords
spindle
main shaft
shaft
motor
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003043490A
Other languages
Japanese (ja)
Other versions
JP3756883B2 (en
Inventor
Noriaki Hashimoto
憲明 橋本
Naoki Kani
直紀 可児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LEXUS CO
Original Assignee
LEXUS CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LEXUS CO filed Critical LEXUS CO
Priority to JP2003043490A priority Critical patent/JP3756883B2/en
Publication of JP2004250832A publication Critical patent/JP2004250832A/en
Application granted granted Critical
Publication of JP3756883B2 publication Critical patent/JP3756883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spindle-cooling structure capable of effectively cooling a contact part of a main shaft 44 of a spindle with inner rings of bearings 42 and 43 in the spindle-cooling structure for cooling the main shaft 44 of the spindle connected to a shaft 29 of a motor 20 by a cooling air blowing out from an air outlet 22c of a motor housing 21 through the interior of the motor housing 21. <P>SOLUTION: A cooling air blown out from the air outlet 22c is made to flow from two air inlet holes 44c into a hollow part 44a of the interior of the main shaft 44 of the spindle and is made to flow through a through-hole 44e of the main shaft 44 of the spindle, a recessed part 45a of an inner ring collar, a vertical groove 44f of the main shaft 44 of the spindle and a space between the front end face of the main shaft 44 of the spindle and a front cover 49 to the outside of a spindle case 41. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、モータのシャフトに連結されるスピンドルの主軸を、モータのハウジングの中を通ってハウジングから吹き出るモータ冷却エアーを利用して冷却するスピンドル冷却構造に関する。
【0002】
【従来の技術】
従来、この種のスピンドル冷却構造はスピンドルの主軸を回転可能に支持するベアリングを内蔵したスピンドルの主軸ケースのモータシャフトとの接続部近辺にエアー入口穴を設け、モータハウジングのシャフトが突出する端面に設けたエアー出口から吹き出るモータ冷却エアーを、エアー入口穴からスピンドルケース中に導入してスピンドルケースの内部を冷却している。
【0003】
【発明が解決しようとする課題】
上記した従来のスピンドル冷却構造ではスピンドルケース内に導入された冷却エアーはベアリングの外輪近傍を流れながら周囲の熱を奪ってケース内部を冷却する。
しかしながら、スピンドルの主軸と直接接触して発熱部となるベアリングの内輪とスピンドルの主軸の接触部はエアーが流れないため、冷却効果が不十分であり、そのため内輪が発熱により焼き付いて作動不良を生じ易い。
本発明はかかる問題点に鑑み、スピンドルの主軸とベアリングの内輪との接触部を効果的に冷却できるスピンドル冷却構造を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記目的を達成するため本発明は、モータのシャフトに連結されるスピンドルの主軸を、前記モータのハウジングの中を通ってハウジングのエアー出口から吹き出るモータ冷却エアーで冷却するスピンドル冷却構造であって、前記スピンドルの主軸を筒構造に形成するとともにスピンドルの主軸内部の中空部を前記シャフトに連結される端面に開口させ、かつスピンドルの主軸の内外を連通する貫通穴をスピンドルの主軸に形成し、前記モータ冷却エアーがスピンドルの主軸の前記開口からスピンドルの主軸内部に流入し、前記貫通穴を通ってスピンドルの主軸外部に流出するように構成したことを特徴とする。
そして、好ましくは前記開口が前記シャフトの嵌合する連結用穴と、前記モータ冷却エアーをスピンドルの主軸内部へ導入するためのエアー入口穴から成り、前記シャフトの外周部に溝をシャフトの軸心方向に沿って形成し、前記連結用穴の内周部に溝をスピンドルの主軸の軸心方向に沿って形成し、連結用穴にシャフトを嵌合するとともに、シャフトの溝とスピンドルの主軸の溝に共通の連結ピンを嵌合させることによりシャフトとスピンドルの主軸を連結する。
【0005】
【発明の作用・効果】
本発明によれば、スピンドルの主軸を筒構造に形成して、冷却エアーがスピンドルの主軸内部を流れるようにしたので、スピンドルの主軸を内部から冷却できる。このためスピンドルの主軸とベアリングの内輪との接触部を効果的に冷却でき、接触部における焼き付けを防止しスピンドルの主軸の耐久寿命を大幅に高めることができる。
モータのシャフト外周部とスピンドルの主軸の嵌合穴に溝を形成し、両方の溝に連結ピンを嵌合させることでシャフトとスピンドルの主軸を連結するので、スピンドルの主軸を筒構造にしたにもかかわらず、簡易な構成でシャフトとスピンドルの主軸を連結でき、組み付けの作業性が良い。
【0006】
【発明の実施の形態】
以下に本発明を図面に基づき説明するに、図1には本発明の一実施形態に係るスピンドル冷却構造10が示されている。当該冷却構造10はブラシレスモータ20と、ブラシレスモータ20に連結されるスピンドル装置40を備えている。
【0007】
図1及び図2に示すように、ブラシレスモータ10のハウジング21はモータケース22とモータカバー23からなり、モータカバー23をモータケース22に0リング24を介して嵌着してモータケース22の後端面開口を気密に覆蓋し、モータカバー23に電源供給シールド線25と冷却エアー供給ホース26を接続している。モータケース22内には前後一対のベアリング27,28が内蔵され、同ベアリング27,28でモータシャフト29を回転可能に支持している。前側のベアリング28はモーターケース22の前面内側に設けた嵌合穴に嵌着され、後側のベアリング27はブラケット30の嵌合穴に嵌着されている。ブラケット30はモータケース22の後端面開口に装着され、開口内側にねじ付けたリング31で抜け止めされている。ブラケット30の反ベアリング側には回路基盤32がボルト33で固定され、電源供給シールド線25がモータケース22の後端面開口にねじ付けたエンドカバー34を貫通して回路基盤32に接続されている。
【0008】
モータシャフト29の中間部に磁石35が固着され、シャフト29の後端部に磁極回転子36を固着してローターを構成している。モーターケース22にはシャフト29に固着した磁石35を取り囲むようにコイル37を巻回した鉄心38が配置されている。この鉄心38は筒型ケース39に装填され、筒型ケース39はモータケース22にブラケット30で固定されている。また、ブラケット30にはシャフト29に固定した磁極回転子36の磁極を検知してシャフト29の回転位置を検知するためのセンサーが回転子36に対向する部位に固定されている。図3に示すように、モーターシャフト29のモータケース22から外に突出する端部の外周部には二つの断面半円形の半円溝が軸心対称位置に配置され、軸心方向に沿って形成されている。
【0009】
モータカバー23を被せたモータケース22の端部外周には複数本の縦溝22aと複数個の貫通穴22bが形成され、各溝22aが対応する貫通穴22bに連通している。鉄心38を装填した筒型ケース39の外周部に複数個の貫通穴39aと複数本の縦溝39bが形成され、縦溝39bがモーターケース22の貫通穴22bに連通している。また、モーターケース22の底部には上下2個のエアー出口穴22cが貫通して形成され、図3に示すように底面外側に開口している。ホース26から供給される冷却エアーはモータカバー23とエンドカバー34で区画される空間に流入し、モーターカバー22の縦溝22aと貫通穴22bを通り、さらに筒型ケース39の貫通穴39aと縦溝39bを通ってモーターケース22の内部空間に流入し、鉄心38やベアリング27,28を冷却した後、ケース22の底部の出口穴22cから吹き出る。
【0010】
図1及び図4に示すように、スピンドル装置40はスピンドルケース41を備え、該ケース41に内蔵した前後一対のベアリング42,43でスピンドルの主軸44を回転可能に支持している。両ベアリング42,43はスピンドルの主軸44に装着した内輪カラー45と外輪カラー46、スピンドルの主軸44の後端部にねじ付けたベアリング固定ナット47、スピンドルケース41の前側開口端面の内側にねじ付けたリング状のホールドネジ48によってスピンドルケース41内部の所定位置に固定されている。
【0011】
スピンドルの主軸44は内部に軸心方向に延びる中空部44aを有する筒状に形成され、中空部44aはスピンドルの主軸44の前後両端面に開口している。図5に示すように、スピンドルの主軸44の後端面の開口はモータシャフト29が嵌合する連結用穴44bと、左右一対のエアー入口穴44cと、上下一対の断面半円形の半円溝44dから成り、連結用穴44bの内周面にエアー入口穴44c及と半円溝44dがスピンドルの主軸の軸心を対称点として配置され、各穴44b,44c中空部に連通している。半円溝44dはシャフト29の半円溝29aと同じ径の断面半円形に形成されている。スピンドルの主軸44の前端部にはスピンドルの主軸44と一体回転するようにフロントカバー49がねじ付けられ、スピンドルケース41の前面開口を覆っている。スピンドルケース41の前面開口端面とフロントカバー49の間にはエアーの通る隙間が形成されている。スピンドルの主軸44の中間部にはスピンドルの主軸44の中空部44aとスピンドルの主軸44の外部を連通する複数個の貫通穴44eが形成されている。また、貫通穴44eより前側よりのスピンドルの主軸外周部に複数本の縦溝44fが形成され、各縦溝44fが前側ベアリング43の内輪43aの下を通って隙間に通じている。一方、内輪カラー45にはスピンドルの主軸44の貫通穴44eと縦溝44dとを連通する凹部45aがリング状に形成されている。フロントカバー49から突出するスピンドルの主軸44の前端部には刃具50を着脱可能に固定するコレット51とナット52が組み付けられている。スピンドルの主軸44とモータシャフト29は、モータシャフト29の2本の半円溝29aの各々に断面円形の連結ピン53を嵌合し、モータシャフト29をスピンドルの主軸44の連結用穴44bに挿入して、各連結ピン53をスピンドルの主軸44の半円溝44dに嵌合させ、スピンドルケース41をモータケース22の前面開口の外周部にねじ付けることにより一体回転するように連結される。
【0012】
本実施形態に係るスピンドルの冷却構造10は以上の通りであって、電源供給シールド線25からコイル37に通電するとモータシャフト29が高速回転し、連結ピン53で連結されたスピンドルの主軸44がモータシャフト29と一体に回転する。ホース26から送風される冷却エアーは図1に矢印で示すようにモータカバー23とエンドカバー34で区画される空間に流入し、モータケース22の縦溝22aと貫通穴22bを通り、さらに筒型ケース39の貫通穴39aと縦溝39bを通って筒型ケース39の内部に流入し、鉄心38やベアリング27,28を冷却した後、ケース22底部の出口穴22cから吹き出る。さらに、吹き出た冷却エアーは2箇所のエアー入口穴44cからスピンドルの主軸44内部の中空部44aに流入し、スピンドルの主軸44の貫通穴44e、内輪カラーの凹部45a、スピンドルの主軸44の縦溝44f、スピンドルの主軸44の前端面とフロントカバー49との隙間を通ってスピンドルケース41の外部に流出する。
【0013】
本実施形態に係るスピンドル冷却構造10によれば、スピンドルの主軸44を筒状に形成して、冷却エアーがスピンドルの主軸44内部の中空部44aを流れるようにしたので、スピンドルの主軸44を内側から冷却できる。このためスピンドルの主軸44とベアリング42,43の内輪との接触部を効果的に冷却でき、接触部における焼き付けを防止しスピンドル装置40の耐久寿命を大幅に高めることができる。とりわけ、本実施例ではスピンドルの主軸44外周部の縦溝44fがベアリング43の内輪43aの下を通っているので、内輪43aをより一層効果的に冷却できる。
【0014】
モータ20のシャフト29外周部とスピンドルの主軸44の嵌合穴44bの内周部に半円溝29a,44dを形成し、両方の半円溝29a,44dに連結ピン53を嵌合させることでシャフト29とスピンドルの主軸44を連結するので、スピンドルの主軸44を筒構造にしたにもかかわらず、簡易な構成でシャフト29とスピンドルの主軸44を連結でき、モータ20とスピンドル装置40の組み付け作業を能率的に行うことができる。
【0015】
次ぎに本発明の他の実施形態に係るスピンドル冷却構造を図6に示す。前述した実施例ではスピンドルの主軸44に貫通穴44eと縦溝44dを形成するとともに内輪カラー45に凹部45aを形成して冷却エアーをスピンドルの主軸44内部の中空部44aを流れるようにしたが、本実施例では、スピンドルの主軸44の前側ベアリング43の直前位置に貫通孔44gを形成し、スピンドルの主軸44の中を流れる冷却エアーが貫通孔44gを通って隙間から外部へ流出するように構成している。その他の構成は図1に示す実施例10と同じであるので、同一の構成要素には同一の符号を付して説明を省略する。
本実施例によれば、スピンドルの主軸44の穴開けや縦溝の加工を省略するので製造コストを低減できる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係るスピンドル冷却構造を示す断面図である。
【図2】同スピンドル冷却構造のモータを示す正面図である。
【図3】同モータの右側面図である。
【図4】同スピンドル冷却構造のスピンドルの主軸装置を示す正面図である。
【図5】同スピンドルの主軸装置の左側面図である。
【図6】本発明の他の実施形態に係るスピンドル冷却構造を示す断面図である。
【符号の説明】
10…スピンドル冷却構造、20…モータ、21…モータハウジング、22c…エアー出口穴、29…モータシャフト、29a…半円溝、40…スピンドル装置、42,43…ベアリング、44…スピンドルの主軸、44a…中空部、44c…エアー入口穴、44d…半円溝、44e,44g…貫通穴、53…連結ピン。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spindle cooling structure that cools a main shaft of a spindle connected to a shaft of a motor by using motor cooling air blown out of the housing through the housing of the motor.
[0002]
[Prior art]
Conventionally, this type of spindle cooling structure is provided with an air inlet hole in the vicinity of the connection portion of the spindle main shaft case with a built-in bearing that rotatably supports the main shaft of the spindle to the motor shaft, and on the end surface from which the shaft of the motor housing protrudes. Motor cooling air blown from the provided air outlet is introduced into the spindle case from the air inlet hole to cool the inside of the spindle case.
[0003]
[Problems to be solved by the invention]
In the conventional spindle cooling structure described above, the cooling air introduced into the spindle case cools the inside of the case by removing the surrounding heat while flowing in the vicinity of the outer ring of the bearing.
However, because the air does not flow between the inner ring of the bearing that directly contacts the spindle spindle and generates heat, and the contact area of the spindle spindle does not flow, the cooling effect is insufficient. easy.
The present invention has been made in view of such a problem, and an object of the present invention is to provide a spindle cooling structure capable of effectively cooling a contact portion between a spindle main shaft and a bearing inner ring.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a spindle cooling structure for cooling a spindle main shaft coupled to a motor shaft with motor cooling air blown from an air outlet of the housing through the motor housing, The spindle main shaft is formed in a cylindrical structure, a hollow portion inside the spindle main shaft is opened at an end face connected to the shaft, and a through hole communicating with the inside and outside of the spindle main shaft is formed in the spindle main shaft, The motor cooling air is configured to flow into the spindle main shaft from the opening of the spindle main shaft and to flow out of the spindle main shaft through the through hole.
Preferably, the opening includes a coupling hole into which the shaft is fitted, and an air inlet hole for introducing the motor cooling air into the spindle main shaft, and a groove is formed in the outer periphery of the shaft. And a groove is formed in the inner periphery of the connecting hole along the axial direction of the spindle main shaft, the shaft is fitted into the connecting hole, and the shaft groove and the spindle main shaft The shaft and the spindle main shaft are connected by fitting a common connecting pin into the groove.
[0005]
[Operation and effect of the invention]
According to the present invention, since the spindle main shaft is formed in a cylindrical structure so that the cooling air flows inside the spindle main shaft, the spindle main shaft can be cooled from the inside. For this reason, the contact portion between the spindle main shaft and the bearing inner ring can be effectively cooled, and seizure at the contact portion can be prevented, so that the durable life of the spindle main shaft can be greatly increased.
A groove is formed in the motor shaft outer periphery and the spindle main shaft fitting hole, and the shaft and spindle main shaft are connected by fitting a connecting pin in both grooves, so the spindle main shaft has a cylindrical structure. Nevertheless, the shaft and spindle spindle can be connected with a simple structure, and the assembly workability is good.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to the drawings. FIG. 1 shows a spindle cooling structure 10 according to an embodiment of the present invention. The cooling structure 10 includes a brushless motor 20 and a spindle device 40 connected to the brushless motor 20.
[0007]
As shown in FIGS. 1 and 2, the housing 21 of the brushless motor 10 includes a motor case 22 and a motor cover 23, and the motor cover 23 is fitted to the motor case 22 via an O-ring 24 so that the rear of the motor case 22. The end face opening is hermetically covered, and a power supply shield line 25 and a cooling air supply hose 26 are connected to the motor cover 23. A pair of front and rear bearings 27 and 28 are built in the motor case 22, and the motor shaft 29 is rotatably supported by the bearings 27 and 28. The front bearing 28 is fitted into a fitting hole provided inside the front surface of the motor case 22, and the rear bearing 27 is fitted into the fitting hole of the bracket 30. The bracket 30 is attached to the opening of the rear end surface of the motor case 22 and is prevented from coming off by a ring 31 screwed inside the opening. The circuit board 32 is fixed to the opposite bearing side of the bracket 30 with a bolt 33, and the power supply shield line 25 is connected to the circuit board 32 through an end cover 34 screwed to the rear end surface opening of the motor case 22. .
[0008]
A magnet 35 is fixed to an intermediate portion of the motor shaft 29, and a magnetic pole rotor 36 is fixed to a rear end portion of the shaft 29 to constitute a rotor. The motor case 22 is provided with an iron core 38 around which a coil 37 is wound so as to surround the magnet 35 fixed to the shaft 29. The iron core 38 is loaded in a cylindrical case 39, and the cylindrical case 39 is fixed to the motor case 22 with a bracket 30. Further, a sensor for detecting the magnetic position of the magnetic pole rotor 36 fixed to the shaft 29 and detecting the rotational position of the shaft 29 is fixed to the bracket 30 at a portion facing the rotor 36. As shown in FIG. 3, two semicircular grooves having a semicircular cross section are arranged at axially symmetrical positions on the outer peripheral portion of the end portion of the motor shaft 29 that protrudes outward from the motor case 22, along the axial direction. Is formed.
[0009]
A plurality of vertical grooves 22a and a plurality of through holes 22b are formed on the outer periphery of the end of the motor case 22 covered with the motor cover 23, and each groove 22a communicates with a corresponding through hole 22b. A plurality of through holes 39 a and a plurality of vertical grooves 39 b are formed in the outer peripheral portion of the cylindrical case 39 loaded with the iron core 38, and the vertical grooves 39 b communicate with the through holes 22 b of the motor case 22. Further, two upper and lower air outlet holes 22c are formed through the bottom of the motor case 22 and open to the outside of the bottom as shown in FIG. Cooling air supplied from the hose 26 flows into a space defined by the motor cover 23 and the end cover 34, passes through the vertical grooves 22 a and the through holes 22 b of the motor cover 22, and further passes through the vertical holes 39 a of the cylindrical case 39. After flowing into the inner space of the motor case 22 through the groove 39b and cooling the iron core 38 and the bearings 27 and 28, the air blows out from the outlet hole 22c at the bottom of the case 22.
[0010]
As shown in FIGS. 1 and 4, the spindle device 40 includes a spindle case 41, and a spindle main shaft 44 is rotatably supported by a pair of front and rear bearings 42 and 43 built in the case 41. Both bearings 42, 43 are screwed inside the front opening end surface of the spindle case 41, an inner ring collar 45 and an outer ring collar 46 mounted on the spindle main shaft 44, a bearing fixing nut 47 screwed to the rear end portion of the spindle main shaft 44. The ring-shaped hold screw 48 is fixed at a predetermined position inside the spindle case 41.
[0011]
The spindle main shaft 44 is formed in a cylindrical shape having a hollow portion 44 a extending in the axial direction inside, and the hollow portion 44 a is open at both front and rear end surfaces of the spindle main shaft 44. As shown in FIG. 5, the opening on the rear end surface of the spindle main shaft 44 has a connecting hole 44b into which the motor shaft 29 is fitted, a pair of left and right air inlet holes 44c, and a pair of upper and lower semicircular grooves 44d having a semicircular cross section. The air inlet hole 44c and the semicircular groove 44d are arranged on the inner peripheral surface of the connecting hole 44b with the axis of the spindle main shaft as a symmetry point, and communicate with the hollow portions of the holes 44b and 44c. The semicircular groove 44 d is formed in a semicircular cross section having the same diameter as the semicircular groove 29 a of the shaft 29. A front cover 49 is screwed to the front end portion of the spindle main shaft 44 so as to rotate integrally with the spindle main shaft 44, and covers the front opening of the spindle case 41. A gap through which air passes is formed between the front opening end face of the spindle case 41 and the front cover 49. A plurality of through holes 44e are formed in the middle portion of the spindle main shaft 44 to communicate the hollow portion 44a of the spindle main shaft 44 with the outside of the spindle main shaft 44. A plurality of vertical grooves 44f are formed on the outer periphery of the main spindle of the spindle from the front side of the through hole 44e, and each vertical groove 44f passes under the inner ring 43a of the front bearing 43 and communicates with the gap. On the other hand, the inner ring collar 45 is formed with a recess 45a in a ring shape that communicates the through hole 44e of the spindle main shaft 44 and the vertical groove 44d. A collet 51 and a nut 52 for removably fixing the cutting tool 50 are assembled to the front end portion of the spindle main shaft 44 protruding from the front cover 49. The spindle main shaft 44 and the motor shaft 29 are fitted with a connecting pin 53 having a circular cross section in each of the two semicircular grooves 29a of the motor shaft 29, and the motor shaft 29 is inserted into the connecting hole 44b of the spindle main shaft 44. Then, each connecting pin 53 is fitted into the semicircular groove 44d of the spindle main shaft 44, and the spindle case 41 is connected to the outer peripheral portion of the front opening of the motor case 22 so as to rotate integrally.
[0012]
The spindle cooling structure 10 according to the present embodiment is as described above. When the coil 37 is energized from the power supply shield wire 25, the motor shaft 29 rotates at a high speed, and the spindle main shaft 44 connected by the connecting pin 53 is the motor. It rotates integrally with the shaft 29. The cooling air blown from the hose 26 flows into the space defined by the motor cover 23 and the end cover 34 as shown by the arrows in FIG. 1, passes through the vertical groove 22a and the through hole 22b of the motor case 22, and is further cylindrical. After flowing into the cylindrical case 39 through the through hole 39a and the longitudinal groove 39b of the case 39, the iron core 38 and the bearings 27 and 28 are cooled, and then blown out from the outlet hole 22c at the bottom of the case 22. Further, the blown cooling air flows into the hollow portion 44a in the spindle main shaft 44 from the two air inlet holes 44c, and passes through the through hole 44e in the spindle main shaft 44, the recess 45a in the inner ring collar, and the vertical groove in the spindle main shaft 44. 44 f flows out of the spindle case 41 through the gap between the front end surface of the spindle main shaft 44 and the front cover 49.
[0013]
According to the spindle cooling structure 10 according to the present embodiment, the spindle main shaft 44 is formed in a cylindrical shape so that the cooling air flows through the hollow portion 44a inside the spindle main shaft 44. Can be cooled from. For this reason, the contact portion between the spindle main shaft 44 and the inner rings of the bearings 42 and 43 can be effectively cooled, and seizure at the contact portion can be prevented, so that the durability life of the spindle device 40 can be greatly increased. In particular, in this embodiment, the vertical groove 44f on the outer periphery of the spindle main shaft 44 passes under the inner ring 43a of the bearing 43, so that the inner ring 43a can be cooled more effectively.
[0014]
Semicircular grooves 29a and 44d are formed in the outer peripheral portion of the shaft 29 of the motor 20 and the inner peripheral portion of the fitting hole 44b of the spindle main shaft 44, and the connecting pin 53 is fitted in both the semicircular grooves 29a and 44d. Since the shaft 29 and the spindle main shaft 44 are connected, the shaft 29 and the spindle main shaft 44 can be connected with a simple configuration, although the spindle main shaft 44 has a cylindrical structure, and the motor 20 and the spindle device 40 are assembled. Can be performed efficiently.
[0015]
Next, FIG. 6 shows a spindle cooling structure according to another embodiment of the present invention. In the embodiment described above, the through hole 44e and the vertical groove 44d are formed in the spindle main shaft 44, and the recess 45a is formed in the inner ring collar 45 so that the cooling air flows through the hollow portion 44a inside the spindle main shaft 44. In the present embodiment, a through hole 44g is formed immediately before the front bearing 43 of the spindle main shaft 44, and cooling air flowing through the spindle main shaft 44 flows out of the gap through the through hole 44g. is doing. Since the other configuration is the same as that of the tenth embodiment shown in FIG. 1, the same components are denoted by the same reference numerals and the description thereof is omitted.
According to this embodiment, the manufacturing cost can be reduced because the drilling of the spindle 44 and the machining of the longitudinal grooves are omitted.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a spindle cooling structure according to an embodiment of the present invention.
FIG. 2 is a front view showing a motor of the spindle cooling structure.
FIG. 3 is a right side view of the motor.
FIG. 4 is a front view showing a spindle device of a spindle having the same spindle cooling structure.
FIG. 5 is a left side view of the spindle device of the spindle.
FIG. 6 is a cross-sectional view showing a spindle cooling structure according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Spindle cooling structure, 20 ... Motor, 21 ... Motor housing, 22c ... Air outlet hole, 29 ... Motor shaft, 29a ... Semicircular groove, 40 ... Spindle device, 42, 43 ... Bearing, 44 ... Spindle spindle, 44a ... hollow part, 44c ... air inlet hole, 44d ... semicircular groove, 44e, 44g ... through hole, 53 ... connecting pin.

Claims (2)

モータのシャフトに連結されるスピンドルの主軸を、前記モータのハウジングの中を通ってハウジングのエアー出口から吹き出るモータ冷却エアーで冷却するスピンドル冷却構造であって、前記スピンドルの主軸を筒構造に形成するとともにスピンドルの主軸内部の中空部を前記シャフトに連結される端面に開口させ、かつスピンドルの主軸の内外を連通する貫通穴をスピンドルの主軸に形成し、前記モータ冷却エアーがスピンドルの主軸の前記開口からスピンドルの主軸内部に流入し、前記貫通穴を通ってスピンドルの主軸外部に流出するように構成したことを特徴とするスピンドル冷却構造。A spindle cooling structure for cooling a spindle main shaft coupled to a motor shaft with motor cooling air blown from an air outlet of the housing through the motor housing, wherein the spindle main shaft is formed into a cylindrical structure. In addition, a hollow portion inside the spindle main shaft is opened at an end face connected to the shaft, and a through hole communicating with the inside and outside of the spindle main shaft is formed in the spindle main shaft, and the motor cooling air is opened in the spindle main shaft. The spindle cooling structure is configured to flow into the main spindle of the spindle from the inside and out of the main spindle of the spindle through the through hole. 前記開口が前記シャフトの嵌合する連結用穴と、前記モータ冷却エアーをスピンドルの主軸内部へ導入するためのエアー入口穴から成り、前記シャフトの外周部に溝をシャフトの軸心方向に沿って形成し、前記連結用穴の内周部に溝をスピンドルの主軸の軸心方向に沿って形成し、連結用穴にシャフトを嵌合するとともに、シャフトの溝とスピンドルの主軸の溝に共通の連結ピンを嵌合させることによりシャフトとスピンドルの主軸を連結することを特徴とする請求項1に記載のスピンドル冷却構造。The opening includes a coupling hole into which the shaft is fitted, and an air inlet hole for introducing the motor cooling air into the spindle main shaft. Forming a groove in the inner peripheral portion of the connecting hole along the axial direction of the spindle main shaft, fitting the shaft into the connecting hole, and common to the shaft groove and the spindle main shaft groove. The spindle cooling structure according to claim 1, wherein the shaft and the spindle main shaft are coupled by fitting a coupling pin.
JP2003043490A 2003-02-21 2003-02-21 Spindle cooling structure Expired - Fee Related JP3756883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003043490A JP3756883B2 (en) 2003-02-21 2003-02-21 Spindle cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003043490A JP3756883B2 (en) 2003-02-21 2003-02-21 Spindle cooling structure

Publications (2)

Publication Number Publication Date
JP2004250832A true JP2004250832A (en) 2004-09-09
JP3756883B2 JP3756883B2 (en) 2006-03-15

Family

ID=33026464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003043490A Expired - Fee Related JP3756883B2 (en) 2003-02-21 2003-02-21 Spindle cooling structure

Country Status (1)

Country Link
JP (1) JP3756883B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10052732B2 (en) 2015-02-16 2018-08-21 Nsk Ltd. Spindle device and machine tool
WO2023073796A1 (en) * 2021-10-26 2023-05-04 株式会社ジェイテクト Spindle device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102371364B (en) * 2011-09-16 2013-04-24 安阳斯普机械有限公司 Tooling spindle of gear grinding machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10052732B2 (en) 2015-02-16 2018-08-21 Nsk Ltd. Spindle device and machine tool
WO2023073796A1 (en) * 2021-10-26 2023-05-04 株式会社ジェイテクト Spindle device

Also Published As

Publication number Publication date
JP3756883B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
CN100435452C (en) Motor-driven tool
CN109327113B (en) Oil cooling motor cooling device
JP5448559B2 (en) Motor cooling structure
JP5373936B1 (en) Controller-integrated rotating electrical machine
JP3137543U (en) Spindle unit
JP2001304189A (en) Blower
JPH02231939A (en) Penetrating motor
JP2010221360A (en) Machine tool
JP5013751B2 (en) Electric motor
JP3756883B2 (en) Spindle cooling structure
JPH0727270U (en) Cooling structure of internal liquid-cooled motor
CN101870071A (en) Built-in cooling device of high-speed rotary main shaft
JP2009081953A (en) Rotating electric machine
JP7164962B2 (en) Cooling structure of bearing device
US20030039560A1 (en) Fan in which motor yoke is mounted by caulking or spot welding and the mounting method thereof
JPH0279746A (en) Liquid-cooled type motor
KR20140079881A (en) Coolant supplying and collecting apparatus and motor comprising thr same
WO1994027353A1 (en) Electric motor having cooling means
TW202034610A (en) Rotary electric machine
CN112350515A (en) Motor with fan
JP2009303379A (en) Spindle device and method of manufacturing spindle device
JPH05103443A (en) Cooling device for motor
JP2546402Y2 (en) Air cooling device for electric motor
JP6827198B2 (en) Brushless motors and power tools
JP2006315107A (en) Power tool

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3756883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees