JP2004249220A - Supercritical reaction apparatus, method for recovering supercritical fluid, and method for producing electro-optical panel using the same - Google Patents

Supercritical reaction apparatus, method for recovering supercritical fluid, and method for producing electro-optical panel using the same Download PDF

Info

Publication number
JP2004249220A
JP2004249220A JP2003042502A JP2003042502A JP2004249220A JP 2004249220 A JP2004249220 A JP 2004249220A JP 2003042502 A JP2003042502 A JP 2003042502A JP 2003042502 A JP2003042502 A JP 2003042502A JP 2004249220 A JP2004249220 A JP 2004249220A
Authority
JP
Japan
Prior art keywords
gas
supercritical fluid
pressure
reaction
supercritical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003042502A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yajima
広幸 矢嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003042502A priority Critical patent/JP2004249220A/en
Publication of JP2004249220A publication Critical patent/JP2004249220A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supercritical reaction apparatus by which the recovery rate of a supercritical fluid is elevated. <P>SOLUTION: The supercritical reaction apparatus 100 has a washing vessel 14 connected to a pipe L2 for leading the supercritical fluid supplied from a pressure tank 10, a gas-liquid separation part 20 which reduces the pressure of an inflow material containing the supercritical fluid introduced with the completion of reaction treatment in the vessel 14 and separates the fluid into gas and liquid, and a change-over part 30 which leads the inflow material to the pressure tank 10 through a pipe L4 not through the gas-liquid separation part 20 after a prescribed point of time in a reaction period in the vessel 14. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、超臨界反応装置、超臨界流体の回収方法、およびこれを用いた電気光学パネルの製造方法に関する。
【0002】
【従来の技術】
現在、工業用に超臨界流体による洗浄、液体分離または液体分解などの各種反応装置(以下、超臨界反応装置と称する)が用いられている。この超臨界流体としては、二酸化炭素、水、亜酸化窒素、アンモニア、またはエタノール等が用いられる。この中で、例えば、二酸化炭素は31℃かつ7.4MPa、また、水は374℃かつ22MPaにそれぞれすることで、超臨界の状態へと変化させることができる。
このような超臨界反応装置では、従来、超臨界流体を反応させる反応槽内に溜まった超臨界流体や分離された気液などの混合物を、低圧状態に保った気液分離槽で、気体および液体へと分離する。超臨界反応装置では、この分離した気体を、超臨界流体を生成する流体供給部に供給する。これにより、超臨界流体における二酸化炭素や水などを、再利用することができる(例えば、特許文献1など)。
【0003】
【特許文献1】
特開平10−94767号公報
【0004】
【発明が解決しようとする課題】
従来のこのような超臨界反応装置における流体回収機構においては、低圧にした気液分離槽で超臨界流体を気体へと変化させ、流体供給部でこの気体を再び超臨界流体へと変化させることで再利用していた。このような回収機構では、気液分離槽で分離された気体は、その全てを回収することは容易ではなく、気体の再利用率(回収率)はそれほど高いものではなかった。さらには、ある程度の気体の再利用は図れても、超臨界反応装置全体として超臨界流体自体の有効利用という点においては、必ずしも効率的ではなかった。
【0005】
本発明は上述した課題に鑑みてなされ、その目的は、超臨界流体の回収率を高めた超臨界反応装置、超臨界流体の回収方法、およびこれを用いた電気光学パネルの製造方法を提供することにある。
【0006】
【課題を解決するための手段】
(1)上述課題を解決するため、本発明の超臨界反応装置は、超臨界流体を供給する流体供給手段と、前記流体供給手段から供給される超臨界流体の反応対象物を設置する反応容器と、前記反応容器における反応処理の完了に伴って流入する超臨界流体を含む流入物を降圧し、気体および液体に分離する気液分離手段と、前記気液分離手段により分離された気体を、前記流体供給手段に導く第1導通手段と、前記反応容器から流入する流入物を、該反応容器における反応処理期間のうち所定時点以後、前記第1導通手段を介さずに、前記流体供給手段に導く第2導通手段とを有することを特徴とする。
これにより、気体を再利用する場合に比して、超臨界流体をそのまま回収し、再利用することができるようになる。
【0007】
(2)また、別の形態にかかる本発明の超臨界反応装置は、超臨界流体を供給する流体供給手段と、前記流体供給手段から供給される超臨界流体の反応対象物を設置する反応容器と、前記反応容器における反応処理の完了に伴って流入する超臨界流体を含む流入物を降圧し、気体および液体に分離する気液分離手段と、前記気液分離手段と前記流体供給手段との間に接続され、前記気液分離手段により分離された気体を保持する保持手段と、前記保持手段の圧力が第1所定値以上か、または前記第1所定値より小さい第2所定値以下かを判定する判定手段と、前記判定手段により前記第1所定値以上の圧力にあると判定されたならば、前記保持手段の圧力を解放することで降圧し、また、前記第2所定値以下にあると判定されたならば、前記流体供給手段から加圧された気体を導くことで前記保持手段の圧力を昇圧する変圧手段とを有することを特徴とする。
これにより、保持手段内の圧力を気圧分離手段に比して所定の低圧状態に保持することができ、気液分離手段で分離した気体を漏れなく回収することができりょうになる。
【0008】
(3)また、別の形態にかかる本発明の超臨界反応装置は、超臨界流体を供給する流体供給手段と、前記流体供給手段から供給される超臨界流体を反応させる反応対象物を設置する反応容器と、前記反応容器における反応処理の完了に伴って流入する超臨界流体を含む流入物を降圧し、気体および液体に分離する気液分離手段と、前記気液分離手段と前記流体供給手段とを接続し、前記気液分離手段により分離された気体を前記流体供給手段に導く第1管と、一端が前記第1管に接続された第2管と、前記第2管の他端に接続され、気体を保持する保持手段と、前記第2管を開閉する第1弁と、前記第1管の圧力が第1所定値以上か否かを判定する第1判定手段と、前記第1判定手段により前記第1所定値以上にあると判定されたならば、前記第1弁を開く制御手段とを有することを特徴とする。
これにより、分離後の気体を流体供給手段に導くための管内の圧力を降圧し、気液分離部20に比して所定の低圧状態に保持することができる。
【0009】
(4)また、本発明は、上記(3)に記載の超臨界反応装置において、前記第1管と前記保持手段とを接続し、前記保持手段に保持された気体を前記第1管に導く第3管と、前記第3管を開閉する第2弁とを有し、前記制御手段は、前記保持手段に気体が保持され、かつ前記第1判定手段により前記第1所定値より小さい第2所定値以下にあると判定されたならば、前記第2弁を開くことを特徴とする。
これにより、分離後の気体を流体供給手段に導くための管内の圧力を所定の低圧状態にまで昇圧し、気液分離部20に比して一定の圧力を保った低圧状態に保持することができる。
【0010】
(5)また、本発明は、上記(1)乃至(4)のいずれかに記載の超臨界反応装置において、前記流体供給手段から供給される超臨界流体は、超臨界二酸化炭素であり、前記反応容器内における反応対象物は電気光学パネルであり、前記反応容器内では前記反応対象物は前記超臨界流体により洗浄されることを特徴とする。
このように、本発明の超臨界反応装置は、電気光学パネルの洗浄装置として用いた場合、反応容器内で洗浄に用いられた超臨界流体の一部をそのまま回収することができる。
【0011】
(6)また、本発明は、超臨界流体を供給する流体供給手段により供給される超臨界流体の気体が、反応対象物が設置された反応容器内における反応対象物の反応処理の完了後に、前記反応容器から流入する超臨界流体を含む流入物を降圧することで気体および液体に分離する気液分離手段を介して、前記流体供給手段に回収される超臨界流体の回収方法において、前記反応容器における反応処理の完了に伴って、該反応容器から流入する超臨界流体を含む流入物を、該反応容器における反応処理期間のうち所定時点以後、前記気液分離手段を介さずに、前記流体供給手段に導くことを特徴とする。
【0012】
(7)また、別の形態の本発明は、超臨界流体を供給する流体供給手段により供給される超臨界流体の気体が、反応対象物が設置された反応容器内における反応対象物の反応処理の完了後に回収される超臨界流体の回収方法において、前記反応容器における反応処理の完了に伴って流入する超臨界流体を含む流入物を降圧し、気体および液体に分離し、該分離した気体が前記流体供給手段に導かれる管に直結して接続され、気体を保持する保持手段における圧力が第1所定値以上か、または前記第1所定値より小さい第2所定値以下にあるかを判定し、該判定により前記第1所定値以上の圧力にあると判定されたならば、前記保持手段の圧力を解放することで降圧し、また、前記前記第2所定値以下の圧力にあると判定されたならば、前記流体供給手段から加圧された気体を導くことで前記保持手段の圧力を昇圧することを特徴とする。
【0013】
(8)また、別の形態の本発明は、超臨界流体を供給する流体供給手段により供給される超臨界流体の気体が、反応対象物が設置された反応容器内における反応対象物の反応処理の完了後に回収される超臨界流体の回収方法において、前記反応容器における反応処理の完了に伴って流入する超臨界流体を含む流入物を降圧し、気体および液体に分離しする第1ステップと、該分離した気体が前記流体供給手段に導かれる第1管における圧力が第1所定値以上か否かを判定する第2ステップと、該判定により前記第1所定値以上の圧力にあると判定されたならば、一端が前記第1管に他端が気体を保持する保持手段に接続された第2管に設けられた第1開閉弁を開け、前記第1管内の気体を前記保持手段に導く第3ステップとを有することを特徴とする。
【0014】
(9)また、本発明は、上記(8)に記載の超臨界流体の回収方法において、前記第2ステップにより前記第1所定値より小さい第2所定値以下の圧力にあると判定されたならば、一端が前記第1管に他端が前記保持手段に接続された第3管に設けられた第2開閉弁を開け、前記保持手段に保持された気体を前記第1管に導くことを特徴とする。
【0015】
(10)また、本発明は、上記(6)乃至(9)のいずれかに記載の超臨界流体の回収方法において、前記反応容器内における反応対象物は電気光学パネルであり、前記反応容器内では前記反応対象物は前記超臨界流体により洗浄されることを特徴とする。
【0016】
(11)また、本発明は、上記(10)に記載の超臨界流体の回収方法を用いて電気光学パネルを製造することを特徴とする。
【0017】
【発明の実施の形態】
以下、図面を用いて、本発明の実施の形態を詳細に説明する。
【0018】
<第1の実施形態>
図1を用いて、本発明にかかる超臨界反応装置100について説明する。
超臨界反応装置100の圧力タンク10は、液化二酸化炭素を臨界圧力以上に昇圧し、さらに臨界温度以上に加熱することで超臨界二酸化炭素を生成する。超臨界反応装置100は、この圧力タンク10で生成した超臨界二酸化炭素を、管L1、および、ポンプ12を介した管L2により、洗浄容器14内の各洗浄槽14−1〜14−3に供給する。この各洗浄槽14−1〜14−3には、例えば、液晶装置の製造工程における洗浄工程において、液晶が封止された一対のガラス基板を有する液晶パネルが洗浄対象として設置されており、この液晶パネルに付着した液晶が、超臨界二酸化炭素により分離される。
【0019】
超臨界反応装置100は、この液晶パネルを洗浄槽14−1〜14−3で順次洗浄する。例えば、洗浄槽14−1で洗浄処理が行われる場合、圧力タンク10からの超臨界二酸化炭素の供給に伴い、弁V1が閉じられる。洗浄槽14−1内での洗浄処理が完了すると、弁V1が開かれると共に、圧力タンク10から供給されている超臨界二酸化炭素の勢いで、液晶パネルの洗浄で用いられた超臨界二酸化炭素や液晶付着物を含む混合物が、管L3に導かれる。
【0020】
切替部30は、この弁V1の開放により発信される開放信号を接続線Pを介して受信する。これにより、切替部30は、管L3を通る混合物を、気液分離部20に導くように管の経路を切替える。
気液分離部20は、内部を5MPaに保ち、この混合物を気体の二酸化炭素と、液晶付着物との相に分離する。この分離された二酸化炭素は、管L5を介してポンプ22に導かれる。ポンプ22は、この二酸化炭素を管L6を介して圧力タンク10へと送り出す。
【0021】
ここで、切替部30は、先の開放信号を受信した時点から所定時間(例えば10分間)経過した時点において、管L3を通過する超臨界二酸化炭素が導かれる先を、管L4へと切替える。これにより、超臨界二酸化炭素は、管L4および管L6を介して圧力タンク10へと導かれる。
【0022】
このように、本形態の超臨界反応装置100は、洗浄容器14における洗浄後の混合物の分離処理に伴って、洗浄容器14を通過する超臨界二酸化炭素を圧力タンクで再利用できる。このため、従来、気体の二酸化炭素を再利用する場合に比して、超臨界反応装置100は、汚れを流出させた後に供給される超臨界二酸化炭素をそのまま回収することができ、圧力タンクで生成した超臨界二酸化炭素をその状態を気体などに変化させることなく、再利用することができる。
【0023】
<第2の実施形態>
次に、図2を用いて、本発明にかかる超臨界反応装置200について説明する。なお、この図2およびこれ以降の図において、図1の超臨界反応装置100で用いた符号と同符号のものについては以下説明を省略する。
【0024】
本形態の超臨界反応装置200は、気液分離部20で分離した二酸化炭素をポンプ22に導くまでの管に直結して、緩衝タンク50が設けられている。気液分離部20で分離された二酸化炭素は、管L5−1を介して緩衝タンク50に保持される。
【0025】
判定部52は、緩衝タンク50内の圧力を随時測定し、緩衝タンク50内の圧力が下限所定値と上限所定値とを定めた所定範囲(例えば、1MPa〜2MPa)において、上限所定値以上か、または下限所定値以下かを判定する。
【0026】
制御部54は、判定部52から、所定範囲内、上限所定値以上または下限所定値以下のいずれかの判定信号を受信する。制御部54は、上限所定値以上を示す判定信号を受信したならば、弁V12を開制御する。これにより、管L12から緩衝タンク50内部の圧力を解放させる。そして、制御部54は、判定部52から上記所定範囲内にあることを示す判定信号を受信したならば、この弁V12を閉制御する。
また、制御部54は、下限所定値以下を示す判定信号を受信したならば、弁V11の開制御を行う。これにより、圧力タンク10から管L11を介して圧力を得る。なお、圧力タンク10に代えて、ポンプ22から管L6を介して圧力タンク10に導かれる気体の圧力を得るようにしてもよい。そして、制御部54は、判定部52から上記所定範囲内にあることを示す判定信号を受信したならば、この弁V11を閉制御する。
【0027】
このように、本形態の超臨界反応装置200は、洗浄容器14における洗浄後の混合物の分離処理に伴い、気液分離部20から分離した二酸化炭素を漏れなく得るために、緩衝タンク50を設け、この緩衝タンク50内の圧力を気液分離部20に比して低圧状態に保持する。このため、本形態の超臨界反応装置200を用いることで、従来、気液分離部20で分離した二酸化炭素を十分に回収できずに無駄になってしまうといった問題を解決することができる。
【0028】
<第3の実施形態>
次に、図3を用いて、本発明にかかる超臨界反応装置300について説明する。
本形態の超臨界反応装置300は、気液分離部20とポンプ22との間の管L5に対して接続された管L21,L22の各他端に緩衝タンク70が設けられている。また、この緩衝タンク70には、他端が外気に通じる管L23が接続されている。管21には弁V21、管L22には弁V22、管L23には弁V23がそれぞれ設けられている。
【0029】
判定部72は、管L5内の圧力を随時測定し、管L5内の圧力が下限所定値と上限所定値とを定めた所定範囲(例えば、1MPa〜2MPa)において、上限所定値以上か、または下限所定値以下かを判定する。
【0030】
制御部74は、判定部72から上限所定値以上を示す判定信号を受信したならば、弁V23を開制御し、緩衝タンク70内を降圧した後にこの弁V23を閉制御し、次に弁V21を開制御する。これにより、管L5内の二酸化炭素が、管L21を介して降圧した緩衝タンク70に導かれる。そして、制御部74は、判定部72から管L5内の圧力が上記所定範囲内にあることを示す判定信号を受信したならば、この弁V21を閉制御する。
また、制御部74は、判定部72から下限所定値以下を示す判定信号を受信したならば、弁V22を開制御する。これにより、緩衝タンク70内に保持された二酸化炭素が、管L22を介して管L5内に導かれる。そして、制御部74は、判定部72から上記所定範囲内にあることを示す判定信号を受信したならば、この弁V22を閉制御する。
【0031】
このように本形態の超臨界反応装置300は、洗浄容器14における洗浄後の混合物の分離処理に伴い、気液分離部20から分離した二酸化炭素を漏れなく得るために、緩衝タンク70を設け、二酸化炭素を導くための管L5内の圧力を、気液分離部20に比して所定の低圧状態に保持する。この緩衝タンク70を設けることで、管L5内の圧力をより早く所定範囲内へと変化させることができるようになる。本形態の超臨界反応装置300を用いることで、従来、気液分離部20で分離した二酸化炭素を十分に回収できずに無駄になってしまうといった問題を解決することができる。
【0032】
<本発明が適用される様々な形態>
なお、上述の実施形態で説明した第1〜3の実施形態における超臨界反応装置は一例であり、本発明は、その趣旨から逸脱しない範囲で様々な形態を採ることが可能である。
上述の第2の実施形態では、弁V11,V12はその開閉のみが制御されるとして説明を進めたが、本発明は、制御部54により、その開閉量が制御されるようにすればさらに細かな圧力調整ができるようになる。
これは、第3の実施形態についても同様である。
【0033】
また、上述の第1〜3の実施形態では、超臨界流体として、超臨界二酸化炭素を用いて説明したが、本発明は、他に、水、亜酸化窒素、アンモニア、またはエタノール等の流体を用いることもできる。
【0034】
また、上述の第1〜3の実施形態では、超臨界反応装置として、具体的に液晶が封止された一対のガラス基板を有する液晶パネルを洗浄する装置として説明を進めたが、本発明は、この他、例えばEL(エレクトロルミネッセンス)装置、プラズマディスプレイ装置、電気泳動表示装置、電界放出表示装置、LED(ライトエミッティングダイオード)表示装置などの電気光学装置の製造工程においても適用することができる。さらに、本発明は、超臨界流体を用いて行われる、排水中の汚染物質の抽出や除去、汚泥の分解、石炭や石油などの分解処理、廃プラスチックの分解、動植物原料からの油脂類、香料、薬効成分の分離精製、人参などの食品エキス中の農薬除去、ポリマーからの未反応モノマーの除去などを行う反応装置にも適用することができる。
【図面の簡単な説明】
【図1】第1実施形態における超臨界反応装置のブロック図である。
【図2】第2実施形態における超臨界反応装置のブロック図である。
【図3】第3実施形態における超臨界反応装置のブロック図である。
【符号の説明】
10…圧力タンク、12…ポンプ、14…洗浄容器、20…気液分離部、30…切替部、50,70…緩衝タンク、52,72…判定部、54,74…制御部、L1〜L6,L11,L12,L21〜L23…管、V1〜V3,V11,V12,V21〜V23…弁、100,200,300…超臨界反応装置。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a supercritical reactor, a method of recovering a supercritical fluid, and a method of manufacturing an electro-optical panel using the same.
[0002]
[Prior art]
At present, various reactors (hereinafter, referred to as supercritical reactors) for washing with a supercritical fluid, liquid separation, or liquid decomposition are used for industrial purposes. As the supercritical fluid, carbon dioxide, water, nitrous oxide, ammonia, ethanol, or the like is used. Among these, for example, by setting carbon dioxide to 31 ° C. and 7.4 MPa and water to 374 ° C. and 22 MPa, it is possible to change to a supercritical state.
In such a supercritical reactor, conventionally, a mixture of a supercritical fluid or a separated gas-liquid stored in a reaction vessel for reacting a supercritical fluid is subjected to gas and liquid separation in a gas-liquid separation tank maintained at a low pressure. Separates into liquid. In the supercritical reactor, the separated gas is supplied to a fluid supply unit that generates a supercritical fluid. Thereby, carbon dioxide, water, and the like in the supercritical fluid can be reused (for example, Patent Document 1).
[0003]
[Patent Document 1]
JP-A-10-94767
[Problems to be solved by the invention]
In the fluid recovery mechanism of such a conventional supercritical reactor, the supercritical fluid is changed into a gas in a low-pressure gas-liquid separation tank, and the gas is converted back into a supercritical fluid in a fluid supply unit. Had been reused. In such a recovery mechanism, it is not easy to collect all of the gas separated in the gas-liquid separation tank, and the gas recycling rate (recovery rate) is not so high. Furthermore, even if a certain amount of gas can be reused, it is not always efficient in terms of effective use of the supercritical fluid itself as a whole of the supercritical reactor.
[0005]
The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a supercritical reactor, a method of recovering a supercritical fluid, and a method of manufacturing an electro-optical panel using the same, in which the recovery rate of a supercritical fluid is increased. It is in.
[0006]
[Means for Solving the Problems]
(1) In order to solve the above-mentioned problems, a supercritical reactor of the present invention includes a fluid supply unit for supplying a supercritical fluid, and a reaction vessel for installing a reaction target of the supercritical fluid supplied from the fluid supply unit. A gas-liquid separation unit that lowers the pressure of an influent including a supercritical fluid that flows with the completion of the reaction process in the reaction vessel, and separates the gas and the liquid into gases and a gas separated by the gas-liquid separation unit. A first conducting means for leading to the fluid supply means, and an inflow flowing from the reaction vessel, after a predetermined time in a reaction processing period in the reaction vessel, without passing through the first conducting means to the fluid supply means. And a second conducting means for guiding.
This makes it possible to recover the supercritical fluid as it is and reuse it as compared with the case where the gas is reused.
[0007]
(2) A supercritical reactor according to another aspect of the present invention includes a fluid supply unit for supplying a supercritical fluid, and a reaction vessel for installing a reaction target of the supercritical fluid supplied from the fluid supply unit. A gas-liquid separation unit that reduces the pressure of an inflow including a supercritical fluid that flows in accordance with the completion of the reaction process in the reaction vessel, and separates the mixture into a gas and a liquid; and the gas-liquid separation unit and the fluid supply unit. A holding unit connected between the holding unit and the gas separated by the gas-liquid separation unit; and When the determination means determines that the pressure is equal to or higher than the first predetermined value, the pressure is reduced by releasing the pressure of the holding means, and the pressure is lower than the second predetermined value. If it is determined that And having a transformer means for stepping up the pressure of the holding means by directing a gas under pressure from the body supply unit.
Accordingly, the pressure in the holding means can be maintained at a predetermined low pressure state as compared with the pressure separating means, and the gas separated by the gas-liquid separating means can be collected without leakage.
[0008]
(3) Further, in a supercritical reactor of the present invention according to another aspect, a fluid supply means for supplying a supercritical fluid and a reaction target for reacting the supercritical fluid supplied from the fluid supply means are provided. A reaction vessel, gas-liquid separation means for reducing the pressure of an inflow containing a supercritical fluid which flows in with the completion of the reaction treatment in the reaction vessel, and separating the gas and liquid, the gas-liquid separation means, and the fluid supply means And a first pipe for guiding the gas separated by the gas-liquid separation means to the fluid supply means, a second pipe having one end connected to the first pipe, and a second pipe connected to the other end of the second pipe. A holding means connected to hold the gas, a first valve for opening and closing the second pipe, a first determination means for determining whether or not the pressure of the first pipe is equal to or higher than a first predetermined value; If the determination means determines that the value is equal to or greater than the first predetermined value, And having a control means for opening the first valve.
Thus, the pressure in the pipe for guiding the separated gas to the fluid supply means can be reduced, and the pressure can be maintained at a predetermined low level as compared with the gas-liquid separation unit 20.
[0009]
(4) Further, according to the present invention, in the supercritical reactor according to the above (3), the first tube is connected to the holding unit, and the gas held in the holding unit is guided to the first tube. A third valve having a second valve that opens and closes the third tube, wherein the control unit is configured to control the second valve, wherein the gas is retained in the retaining unit and the first determination unit determines that the gas is smaller than the first predetermined value. If it is determined that the difference is equal to or less than the predetermined value, the second valve is opened.
Thereby, the pressure in the pipe for guiding the separated gas to the fluid supply means can be increased to a predetermined low pressure state, and maintained in a low pressure state in which a constant pressure is maintained as compared with the gas-liquid separation unit 20. it can.
[0010]
(5) Further, according to the present invention, in the supercritical reactor according to any one of (1) to (4), the supercritical fluid supplied from the fluid supply means is supercritical carbon dioxide, The reaction object in the reaction container is an electro-optical panel, and the reaction object is washed with the supercritical fluid in the reaction container.
Thus, when the supercritical reactor of the present invention is used as a cleaning device for an electro-optical panel, a part of the supercritical fluid used for cleaning in the reaction vessel can be recovered as it is.
[0011]
(6) Further, according to the present invention, the gas of the supercritical fluid supplied by the fluid supply means for supplying the supercritical fluid is supplied after the completion of the reaction processing of the reaction target in the reaction vessel in which the reaction target is installed. A method for recovering a supercritical fluid recovered by the fluid supply means through a gas-liquid separation means that separates a gas and a liquid by reducing the pressure of an influent containing a supercritical fluid flowing from the reaction vessel, With the completion of the reaction process in the vessel, the influent including the supercritical fluid flowing from the reaction vessel is removed from the fluid without passing through the gas-liquid separation means after a predetermined time during the reaction process period in the reaction vessel. It is characterized by being led to a supply means.
[0012]
(7) According to another aspect of the present invention, a gas for a supercritical fluid supplied by a fluid supply unit for supplying a supercritical fluid is used to perform a reaction treatment of a reaction target in a reaction vessel in which the reaction target is installed. In the method for recovering a supercritical fluid recovered after completion of the above, the inflow including the supercritical fluid flowing in with the completion of the reaction treatment in the reaction vessel is reduced in pressure, separated into gas and liquid, and the separated gas is It is determined whether the pressure in the holding means, which is directly connected and connected to the pipe led to the fluid supply means and holds the gas, is equal to or higher than a first predetermined value or equal to or lower than a second predetermined value smaller than the first predetermined value. If it is determined that the pressure is equal to or higher than the first predetermined value, the pressure is reduced by releasing the pressure of the holding unit, and it is determined that the pressure is equal to or lower than the second predetermined value. If the said flow Characterized by boosting the pressure of the holding means by directing pressurized gas from the supply means.
[0013]
(8) Further, according to another aspect of the present invention, a supercritical fluid gas supplied by a fluid supply unit for supplying a supercritical fluid is subjected to a reaction treatment of a reaction target in a reaction vessel in which the reaction target is installed. A method of recovering a supercritical fluid recovered after completion of the first step, in which the pressure of the influent including the supercritical fluid flowing in with the completion of the reaction process in the reaction vessel is reduced, and separated into gas and liquid; A second step of determining whether the pressure in the first pipe through which the separated gas is led to the fluid supply means is equal to or higher than a first predetermined value; and the determination determines that the pressure is equal to or higher than the first predetermined value. Then, a first open / close valve provided on a second pipe connected at one end to the first pipe and at the other end to a holding means for holding a gas is opened, and the gas in the first pipe is guided to the holding means. It has a third step. To.
[0014]
(9) According to the present invention, in the method for recovering a supercritical fluid according to the above (8), if it is determined in the second step that the pressure is equal to or less than a second predetermined value smaller than the first predetermined value. For example, it is possible to open a second on-off valve provided on a third pipe having one end connected to the first pipe and the other end connected to the holding means, and to guide the gas held by the holding means to the first pipe. Features.
[0015]
(10) Further, according to the present invention, in the method for recovering a supercritical fluid according to any one of the above (6) to (9), the reaction object in the reaction container is an electro-optical panel, Preferably, the reaction target is washed with the supercritical fluid.
[0016]
(11) Further, the present invention is characterized in that an electro-optical panel is manufactured by using the method for collecting a supercritical fluid described in the above (10).
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0018]
<First embodiment>
The supercritical reactor 100 according to the present invention will be described with reference to FIG.
The pressure tank 10 of the supercritical reactor 100 generates supercritical carbon dioxide by increasing the pressure of liquefied carbon dioxide to a critical pressure or higher and heating it to a critical temperature or higher. The supercritical reactor 100 transfers the supercritical carbon dioxide generated in the pressure tank 10 to each of the cleaning tanks 14-1 to 14-3 in the cleaning container 14 by the pipe L1 and the pipe L2 via the pump 12. Supply. In each of the cleaning tanks 14-1 to 14-3, for example, in a cleaning step in a manufacturing process of a liquid crystal device, a liquid crystal panel having a pair of glass substrates in which liquid crystals are sealed is installed as a cleaning target. The liquid crystal attached to the liquid crystal panel is separated by the supercritical carbon dioxide.
[0019]
The supercritical reactor 100 sequentially cleans the liquid crystal panels in the cleaning tanks 14-1 to 14-3. For example, when the cleaning process is performed in the cleaning tank 14-1, the valve V1 is closed with the supply of the supercritical carbon dioxide from the pressure tank 10. When the cleaning process in the cleaning tank 14-1 is completed, the valve V1 is opened, and the supercritical carbon dioxide used for cleaning the liquid crystal panel is removed by the supercritical carbon dioxide supplied from the pressure tank 10. The mixture containing the liquid crystal deposit is led to the tube L3.
[0020]
The switching unit 30 receives, via the connection line P, an opening signal transmitted when the valve V1 is opened. Thereby, the switching unit 30 switches the path of the pipe so that the mixture passing through the pipe L3 is guided to the gas-liquid separation unit 20.
The gas-liquid separation section 20 keeps the inside at 5 MPa, and separates this mixture into a phase of gaseous carbon dioxide and a liquid crystal attached matter. The separated carbon dioxide is led to the pump 22 via the pipe L5. The pump 22 sends out the carbon dioxide to the pressure tank 10 via the pipe L6.
[0021]
Here, the switching unit 30 switches the destination where the supercritical carbon dioxide passing through the pipe L3 is guided to the pipe L4 when a predetermined time (for example, 10 minutes) elapses from the time when the opening signal is received. Thereby, the supercritical carbon dioxide is guided to the pressure tank 10 via the pipes L4 and L6.
[0022]
As described above, the supercritical reactor 100 of the present embodiment can reuse the supercritical carbon dioxide passing through the cleaning vessel 14 in the pressure tank with the separation of the mixture after the cleaning in the cleaning vessel 14. For this reason, conventionally, compared with the case where gaseous carbon dioxide is reused, the supercritical reactor 100 can directly recover the supercritical carbon dioxide supplied after the dirt is discharged, and the The generated supercritical carbon dioxide can be reused without changing its state to gas or the like.
[0023]
<Second embodiment>
Next, the supercritical reactor 200 according to the present invention will be described with reference to FIG. Note that, in FIG. 2 and subsequent figures, the description of the same reference numerals as those used in the supercritical reactor 100 of FIG. 1 will be omitted.
[0024]
The supercritical reactor 200 of the present embodiment is provided with a buffer tank 50 that is directly connected to a pipe that leads the carbon dioxide separated by the gas-liquid separation unit 20 to the pump 22. The carbon dioxide separated in the gas-liquid separation unit 20 is held in the buffer tank 50 via the pipe L5-1.
[0025]
The determination unit 52 measures the pressure in the buffer tank 50 as needed, and determines whether the pressure in the buffer tank 50 is equal to or greater than the upper limit predetermined value in a predetermined range (for example, 1 MPa to 2 MPa) in which a lower limit predetermined value and an upper limit predetermined value are defined. Is determined to be equal to or less than the lower limit predetermined value.
[0026]
The control unit 54 receives, from the determination unit 52, a determination signal that is within a predetermined range, is equal to or more than a predetermined upper limit value, or is equal to or less than a predetermined lower limit value. When receiving the determination signal indicating the upper limit predetermined value or more, the control unit 54 controls the opening of the valve V12. Thereby, the pressure inside the buffer tank 50 is released from the pipe L12. Then, when receiving the determination signal indicating that the value is within the above-described predetermined range from the determination unit 52, the control unit 54 controls the valve V12 to close.
When receiving the determination signal indicating the lower limit predetermined value or less, the control unit 54 performs the opening control of the valve V11. Thereby, pressure is obtained from the pressure tank 10 via the pipe L11. In addition, instead of the pressure tank 10, the pressure of the gas guided to the pressure tank 10 from the pump 22 via the pipe L6 may be obtained. Then, when receiving the determination signal indicating that the value is within the above-described predetermined range from the determination unit 52, the control unit 54 controls the valve V11 to close.
[0027]
As described above, the supercritical reactor 200 of the present embodiment is provided with the buffer tank 50 in order to obtain the carbon dioxide separated from the gas-liquid separation unit 20 without leakage with the separation process of the mixture after washing in the washing container 14. The pressure in the buffer tank 50 is maintained at a lower pressure than the gas-liquid separator 20. Therefore, by using the supercritical reactor 200 of the present embodiment, it is possible to solve the problem that conventionally, the carbon dioxide separated in the gas-liquid separation unit 20 cannot be sufficiently recovered and wasted.
[0028]
<Third embodiment>
Next, the supercritical reactor 300 according to the present invention will be described with reference to FIG.
In the supercritical reactor 300 of this embodiment, a buffer tank 70 is provided at each of the other ends of the pipes L21 and L22 connected to the pipe L5 between the gas-liquid separation unit 20 and the pump 22. Further, a pipe L23 whose other end communicates with the outside air is connected to the buffer tank 70. The pipe 21 is provided with a valve V21, the pipe L22 is provided with a valve V22, and the pipe L23 is provided with a valve V23.
[0029]
The determination unit 72 measures the pressure in the pipe L5 as needed, and the pressure in the pipe L5 is equal to or more than an upper limit predetermined value in a predetermined range (for example, 1 MPa to 2 MPa) in which a lower limit predetermined value and an upper limit predetermined value are determined. It is determined whether the value is equal to or less than the lower limit predetermined value.
[0030]
When the control unit 74 receives the determination signal indicating the upper limit predetermined value or more from the determination unit 72, it controls the valve V23 to open, reduces the pressure in the buffer tank 70, closes the valve V23, and then controls the valve V21. To open control. Thereby, the carbon dioxide in the pipe L5 is guided to the buffer tank 70 whose pressure has been reduced via the pipe L21. Then, when receiving the determination signal indicating that the pressure in the pipe L5 is within the above-described predetermined range from the determination unit 72, the control unit 74 controls the valve V21 to close.
Further, when receiving the determination signal indicating the lower limit predetermined value or less from the determination unit 72, the control unit 74 controls the valve V22 to open. Thereby, the carbon dioxide held in the buffer tank 70 is guided into the pipe L5 via the pipe L22. Then, when receiving the determination signal indicating that the value is within the predetermined range from the determination unit 72, the control unit 74 controls the valve V22 to close.
[0031]
As described above, the supercritical reactor 300 of the present embodiment is provided with the buffer tank 70 in order to obtain the carbon dioxide separated from the gas-liquid separation unit 20 without leakage with the separation process of the mixture after the cleaning in the cleaning container 14, The pressure in the pipe L5 for guiding carbon dioxide is maintained at a predetermined low pressure state as compared with the gas-liquid separation unit 20. By providing the buffer tank 70, the pressure in the pipe L5 can be changed to a predetermined range more quickly. By using the supercritical reactor 300 of the present embodiment, it is possible to solve the problem that conventionally, the carbon dioxide separated in the gas-liquid separation unit 20 cannot be sufficiently recovered and wasted.
[0032]
<Various modes to which the present invention is applied>
The supercritical reactors in the first to third embodiments described in the above embodiment are examples, and the present invention can take various forms without departing from the spirit thereof.
In the above-described second embodiment, the description has been given assuming that only the opening and closing of the valves V11 and V12 are controlled. However, the present invention is more detailed if the opening and closing amount is controlled by the control unit 54. Pressure adjustment can be performed.
This is the same for the third embodiment.
[0033]
Further, in the above-described first to third embodiments, supercritical carbon dioxide is used as the supercritical fluid. However, the present invention also includes a fluid such as water, nitrous oxide, ammonia, or ethanol. It can also be used.
[0034]
In the first to third embodiments described above, the supercritical reactor has been specifically described as an apparatus for cleaning a liquid crystal panel having a pair of glass substrates in which liquid crystals are sealed. In addition, the present invention can be applied to a process of manufacturing an electro-optical device such as an EL (electroluminescence) device, a plasma display device, an electrophoretic display device, a field emission display device, and an LED (light emitting diode) display device. . Further, the present invention provides a method for extracting and removing contaminants in wastewater, decomposing sludge, decomposing coal and petroleum, decomposing waste plastic, decomposing waste plastic, oils and fats from animal and plant raw materials, and fragrances, which are performed using a supercritical fluid. The present invention can also be applied to a reactor for separating and purifying medicinal components, removing pesticides in food extracts such as ginseng, and removing unreacted monomers from polymers.
[Brief description of the drawings]
FIG. 1 is a block diagram of a supercritical reactor according to a first embodiment.
FIG. 2 is a block diagram of a supercritical reactor according to a second embodiment.
FIG. 3 is a block diagram of a supercritical reactor according to a third embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Pressure tank, 12 ... Pump, 14 ... Cleaning container, 20 ... Gas-liquid separation part, 30 ... Switching part, 50, 70 ... Buffer tank, 52, 72 ... Judgment part, 54, 74 ... Control part, L1-L6 , L11, L12, L21 to L23 ... tubes, V1 to V3, V11, V12, V21 to V23 ... valves, 100, 200, 300 ... supercritical reactors.

Claims (11)

超臨界流体を供給する流体供給手段と、
前記流体供給手段から供給される超臨界流体の反応対象物を設置する反応容器と、
前記反応容器における反応処理の完了に伴って流入する超臨界流体を含む流入物を降圧し、気体および液体に分離する気液分離手段と、
前記気液分離手段により分離された気体を、前記流体供給手段に導く第1導通手段と、
前記反応容器から流入する流入物を、該反応容器における反応処理期間のうち所定時点以後、前記第1導通手段を介さずに、前記流体供給手段に導く第2導通手段と
を有することを特徴とする超臨界反応装置。
Fluid supply means for supplying a supercritical fluid,
A reaction vessel in which a reaction target of a supercritical fluid supplied from the fluid supply unit is installed,
Gas-liquid separation means for lowering the pressure of the influent including the supercritical fluid flowing in with the completion of the reaction treatment in the reaction vessel, and separating the gas and the liquid,
First conducting means for guiding the gas separated by the gas-liquid separating means to the fluid supply means,
A second conducting means for guiding the inflow from the reaction vessel to the fluid supply means without passing through the first conducting means after a predetermined time during a reaction processing period in the reaction vessel. Supercritical reactor.
超臨界流体を供給する流体供給手段と、
前記流体供給手段から供給される超臨界流体の反応対象物を設置する反応容器と、
前記反応容器における反応処理の完了に伴って流入する超臨界流体を含む流入物を降圧し、気体および液体に分離する気液分離手段と、
前記気液分離手段と前記流体供給手段との間に接続され、前記気液分離手段により分離された気体を保持する保持手段と、
前記保持手段の圧力が第1所定値以上か、または前記第1所定値より小さい第2所定値以下かを判定する判定手段と、
前記判定手段により前記第1所定値以上の圧力にあると判定されたならば、前記保持手段の圧力を解放することで降圧し、また、前記第2所定値以下にあると判定されたならば、前記流体供給手段から加圧された気体を導くことで前記保持手段の圧力を昇圧する変圧手段と
を有することを特徴とする超臨界反応装置。
Fluid supply means for supplying a supercritical fluid,
A reaction vessel in which a reaction target of a supercritical fluid supplied from the fluid supply unit is installed,
Gas-liquid separation means for lowering the pressure of the influent including the supercritical fluid flowing in with the completion of the reaction treatment in the reaction vessel, and separating the gas and the liquid,
Holding means connected between the gas-liquid separation means and the fluid supply means, for holding the gas separated by the gas-liquid separation means,
Determining means for determining whether the pressure of the holding means is equal to or greater than a first predetermined value or equal to or less than a second predetermined value smaller than the first predetermined value;
If the determination means determines that the pressure is equal to or higher than the first predetermined value, the pressure is reduced by releasing the pressure of the holding means, and if it is determined that the pressure is equal to or lower than the second predetermined value. A pressure changing means for increasing the pressure of the holding means by introducing a pressurized gas from the fluid supply means.
超臨界流体を供給する流体供給手段と、
前記流体供給手段から供給される超臨界流体を反応させる反応対象物を設置する反応容器と、
前記反応容器における反応処理の完了に伴って流入する超臨界流体を含む流入物を降圧し、気体および液体に分離する気液分離手段と、
前記気液分離手段と前記流体供給手段とを接続し、前記気液分離手段により分離された気体を前記流体供給手段に導く第1管と、
一端が前記第1管に接続された第2管と、
前記第2管の他端に接続され、気体を保持する保持手段と、
前記第2管を開閉する第1弁と、
前記第1管の圧力が第1所定値以上か否かを判定する第1判定手段と、
前記第1判定手段により前記第1所定値以上にあると判定されたならば、前記第1弁を開く制御手段と
を有することを特徴とする超臨界反応装置。
Fluid supply means for supplying a supercritical fluid,
A reaction vessel for installing a reaction target for reacting a supercritical fluid supplied from the fluid supply means,
Gas-liquid separation means for lowering the pressure of the influent including the supercritical fluid flowing in with the completion of the reaction treatment in the reaction vessel, and separating the gas and the liquid,
A first pipe that connects the gas-liquid separation unit and the fluid supply unit, and guides the gas separated by the gas-liquid separation unit to the fluid supply unit;
A second tube having one end connected to the first tube;
Holding means connected to the other end of the second pipe for holding gas;
A first valve for opening and closing the second pipe;
First determining means for determining whether or not the pressure of the first pipe is equal to or higher than a first predetermined value;
A control means for opening the first valve when the first determination means determines that the value is equal to or greater than the first predetermined value.
請求項3に記載の超臨界反応装置において、
前記第1管と前記保持手段とを接続し、前記保持手段に保持された気体を前記第1管に導く第3管と、
前記第3管を開閉する第2弁とを有し、
前記制御手段は、前記保持手段に気体が保持され、かつ前記第1判定手段により前記第1所定値より小さい第2所定値以下にあると判定されたならば、前記第2弁を開くことを特徴とする超臨界反応装置。
The supercritical reactor according to claim 3,
A third tube that connects the first tube and the holding unit, and guides the gas held by the holding unit to the first tube;
A second valve for opening and closing the third pipe.
The control means may open the second valve if the gas is held in the holding means and the first determination means determines that the gas is equal to or less than a second predetermined value smaller than the first predetermined value. Supercritical reactor characterized.
請求項1乃至4のいずれかに記載の超臨界反応装置において、
前記流体供給手段から供給される超臨界流体は、超臨界二酸化炭素であり、
前記反応容器内における反応対象物は電気光学パネルであり、
前記反応容器内では前記反応対象物は前記超臨界流体により洗浄されることを特徴とする超臨界反応装置。
The supercritical reactor according to any one of claims 1 to 4,
The supercritical fluid supplied from the fluid supply means is supercritical carbon dioxide,
The reaction object in the reaction vessel is an electro-optical panel,
The supercritical reactor, wherein the reaction target is washed with the supercritical fluid in the reaction vessel.
超臨界流体を供給する流体供給手段により供給される超臨界流体の気体が、反応対象物が設置された反応容器内における反応対象物の反応処理の完了後に、前記反応容器から流入する超臨界流体を含む流入物を降圧することで気体および液体に分離する気液分離手段を介して、前記流体供給手段に回収される超臨界流体の回収方法において、
前記反応容器における反応処理の完了に伴って、該反応容器から流入する超臨界流体を含む流入物を、該反応容器における反応処理期間のうち所定時点以後、前記気液分離手段を介さずに、前記流体供給手段に導くことを特徴とする超臨界流体の回収方法。
The gas of the supercritical fluid supplied by the fluid supply means for supplying the supercritical fluid, the supercritical fluid flowing from the reaction vessel after the completion of the reaction treatment of the reaction target in the reaction vessel in which the reaction target is installed Through a gas-liquid separation unit that separates into a gas and a liquid by reducing the pressure of the influent containing, in the method of recovering the supercritical fluid recovered by the fluid supply unit,
With the completion of the reaction process in the reaction vessel, the inflow including the supercritical fluid flowing from the reaction vessel, after a predetermined point in the reaction processing period in the reaction vessel, without passing through the gas-liquid separation means, A method for recovering a supercritical fluid, wherein the method is directed to the fluid supply unit.
超臨界流体を供給する流体供給手段により供給される超臨界流体の気体が、反応対象物が設置された反応容器内における反応対象物の反応処理の完了後に回収される超臨界流体の回収方法において、
前記反応容器における反応処理の完了に伴って流入する超臨界流体を含む流入物を降圧し、気体および液体に分離し、
該分離した気体が前記流体供給手段に導かれる管に直結して接続され、気体を保持する保持手段における圧力が第1所定値以上か、または前記第1所定値より小さい第2所定値以下にあるかを判定し、
該判定により前記第1所定値以上の圧力にあると判定されたならば、前記保持手段の圧力を解放することで降圧し、また、前記前記第2所定値以下の圧力にあると判定されたならば、前記流体供給手段から加圧された気体を導くことで前記保持手段の圧力を昇圧することを特徴とする超臨界流体の回収方法。
In the method for recovering a supercritical fluid, the gas of the supercritical fluid supplied by the fluid supply means for supplying the supercritical fluid is recovered after completion of the reaction processing of the reaction target in the reaction vessel in which the reaction target is installed. ,
The influent including the supercritical fluid flowing in with the completion of the reaction treatment in the reaction vessel is depressurized, separated into gas and liquid,
The separated gas is directly connected and connected to a pipe led to the fluid supply means, and the pressure in the holding means for holding the gas is equal to or more than a first predetermined value or equal to or less than a second predetermined value smaller than the first predetermined value. Judge whether there is
If it is determined that the pressure is equal to or higher than the first predetermined value, the pressure is reduced by releasing the pressure of the holding means, and it is determined that the pressure is equal to or lower than the second predetermined value. Then, a method of recovering a supercritical fluid, wherein the pressure of the holding means is increased by introducing a pressurized gas from the fluid supply means.
超臨界流体を供給する流体供給手段により供給される超臨界流体の気体が、反応対象物が設置された反応容器内における反応対象物の反応処理の完了後に回収される超臨界流体の回収方法において、
前記反応容器における反応処理の完了に伴って流入する超臨界流体を含む流入物を降圧し、気体および液体に分離しする第1ステップと、
該分離した気体が前記流体供給手段に導かれる第1管における圧力が第1所定値以上か否かを判定する第2ステップと、
該判定により前記第1所定値以上の圧力にあると判定されたならば、一端が前記第1管に他端が気体を保持する保持手段に接続された第2管に設けられた第1開閉弁を開け、前記第1管内の気体を前記保持手段に導く第3ステップとを有することを特徴とする超臨界流体の回収方法。
In the method for recovering a supercritical fluid, the gas of the supercritical fluid supplied by the fluid supply means for supplying the supercritical fluid is recovered after completion of the reaction processing of the reaction target in the reaction vessel in which the reaction target is installed. ,
A first step of reducing the pressure of the influent including the supercritical fluid flowing in with the completion of the reaction treatment in the reaction vessel and separating the influent into gas and liquid;
A second step of determining whether the pressure in the first pipe through which the separated gas is led to the fluid supply means is equal to or higher than a first predetermined value;
If it is determined by the determination that the pressure is equal to or higher than the first predetermined value, a first opening / closing provided in a second pipe connected to a holding means for holding one end at one end and the gas at the other end. Opening the valve and guiding the gas in the first pipe to the holding means.
請求項8に記載の超臨界流体の回収方法において、
前記第2ステップにより前記第1所定値より小さい第2所定値以下の圧力にあると判定されたならば、一端が前記第1管に他端が前記保持手段に接続された第3管に設けられた第2開閉弁を開け、前記保持手段に保持された気体を前記第1管に導くことを特徴とする超臨界流体の回収方法。
The method for recovering a supercritical fluid according to claim 8,
If it is determined in the second step that the pressure is equal to or less than a second predetermined value smaller than the first predetermined value, one end is provided in the first tube and the other end is provided in a third tube connected to the holding means. A method for recovering a supercritical fluid, characterized in that a second on-off valve provided is opened, and the gas held in the holding means is led to the first pipe.
請求項6乃至9のいずれかに記載の超臨界流体の回収方法において、
前記反応容器内における反応対象物は電気光学パネルであり、
前記反応容器内では前記反応対象物は前記超臨界流体により洗浄されることを特徴とする超臨界流体の回収方法。
The method for recovering a supercritical fluid according to any one of claims 6 to 9,
The reaction object in the reaction vessel is an electro-optical panel,
The method for recovering a supercritical fluid, wherein the reaction target is washed with the supercritical fluid in the reaction vessel.
請求項10に記載の超臨界流体の回収方法を用いたことを特徴とする電気光学パネルの製造方法。A method for manufacturing an electro-optical panel, comprising using the method for recovering a supercritical fluid according to claim 10.
JP2003042502A 2003-02-20 2003-02-20 Supercritical reaction apparatus, method for recovering supercritical fluid, and method for producing electro-optical panel using the same Pending JP2004249220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003042502A JP2004249220A (en) 2003-02-20 2003-02-20 Supercritical reaction apparatus, method for recovering supercritical fluid, and method for producing electro-optical panel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003042502A JP2004249220A (en) 2003-02-20 2003-02-20 Supercritical reaction apparatus, method for recovering supercritical fluid, and method for producing electro-optical panel using the same

Publications (1)

Publication Number Publication Date
JP2004249220A true JP2004249220A (en) 2004-09-09

Family

ID=33025767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003042502A Pending JP2004249220A (en) 2003-02-20 2003-02-20 Supercritical reaction apparatus, method for recovering supercritical fluid, and method for producing electro-optical panel using the same

Country Status (1)

Country Link
JP (1) JP2004249220A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010125394A (en) * 2008-11-27 2010-06-10 Dai-Dan Co Ltd Component extraction system
US7857939B2 (en) 2006-08-07 2010-12-28 Samsung Electronics Co., Ltd. Apparatus for treating wafers using supercritical fluid
JP2012232310A (en) * 2012-08-22 2012-11-29 Dai-Dan Co Ltd Component extraction system
JP2014237086A (en) * 2013-06-07 2014-12-18 昭和電工ガスプロダクツ株式会社 Supercritical treatment apparatus
CN114018085A (en) * 2021-11-02 2022-02-08 珠海格力绿色再生资源有限公司 Device and method for cleaning air conditioner stamping oil by adopting supercritical technology

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7857939B2 (en) 2006-08-07 2010-12-28 Samsung Electronics Co., Ltd. Apparatus for treating wafers using supercritical fluid
US8951383B2 (en) 2006-08-07 2015-02-10 Samsung Electronics Co., Ltd. Apparatus for treating wafers using supercritical fluid
US9754806B2 (en) 2006-08-07 2017-09-05 Samsung Electronics Co., Ltd. Apparatus for treating wafers using supercritical fluid
JP2010125394A (en) * 2008-11-27 2010-06-10 Dai-Dan Co Ltd Component extraction system
JP2012232310A (en) * 2012-08-22 2012-11-29 Dai-Dan Co Ltd Component extraction system
JP2014237086A (en) * 2013-06-07 2014-12-18 昭和電工ガスプロダクツ株式会社 Supercritical treatment apparatus
CN114018085A (en) * 2021-11-02 2022-02-08 珠海格力绿色再生资源有限公司 Device and method for cleaning air conditioner stamping oil by adopting supercritical technology

Similar Documents

Publication Publication Date Title
WO2009113682A1 (en) Gas-dissolved water supply system
CN205635287U (en) MBR sewage treatment system based on PLC
JP2004249220A (en) Supercritical reaction apparatus, method for recovering supercritical fluid, and method for producing electro-optical panel using the same
CN109336222A (en) Immersion gravity stream ceramic membrane microkinetic ultrafiltration system sewage disposal device and method
JP2004008912A (en) Method and apparatus for treating organic waste
CN111533249A (en) MBR-based water production automatic control system
KR100925502B1 (en) Apparatus For Moving Decanter For Discharging Waste Water Treating Water
CN214734600U (en) Water purification machine reverse osmosis concentrated water recycling device
KR200450243Y1 (en) Excess sludge decrement equipment of a wastewater treatment facility
CN209307171U (en) A kind of processing equipment for incineration plant landfill leachate
KR100280011B1 (en) Bubble separator for manufacturing semiconductor device, liquid supply device using same and driving method thereof
KR101882926B1 (en) Potarble water purification system
JP2004249219A (en) Pressurization treatment apparatus, method for supplying pressurized fluid, and method for producing electro-optical panel using the same
CN208883535U (en) A kind of recyclable device of P containing sludge inhibitor
JP7474524B2 (en) Method and device for recovering humic substances
JPH07204682A (en) Anaerobic water treatment apparatus
CN214078316U (en) Lead cleaning device who drenches jar
CN113382969B (en) Water treatment system and water treatment method
CN209210442U (en) A kind of immersion gravity stream ceramic membrane microkinetic ultrafiltration system sewage disposal device
CN210559539U (en) Landfill leachate treatment system
RU20256U1 (en) SOLUTION SEPARATION INSTALLATION
CN203794714U (en) Intelligent full-automatic integrated automatic control water purification device
CN108467143A (en) A kind of filter device for wastewater from chemical industry
KR20020091961A (en) Facility supplying extinguish water and living water by recycling waste water
RU34527U1 (en) INSTALLATION FOR ION EXCHANGE WATER TREATMENT