JP2004248683A - Magnetic resonance imaging apparatus - Google Patents

Magnetic resonance imaging apparatus Download PDF

Info

Publication number
JP2004248683A
JP2004248683A JP2002230243A JP2002230243A JP2004248683A JP 2004248683 A JP2004248683 A JP 2004248683A JP 2002230243 A JP2002230243 A JP 2002230243A JP 2002230243 A JP2002230243 A JP 2002230243A JP 2004248683 A JP2004248683 A JP 2004248683A
Authority
JP
Japan
Prior art keywords
puncture needle
magnetic resonance
subject
magnetic field
imaging apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002230243A
Other languages
Japanese (ja)
Other versions
JP3971268B2 (en
JP2004248683A5 (en
Inventor
Hidekazu Nakamoto
秀和 仲本
Chikako Iizuka
千賀子 飯塚
Tetsuhiko Takahashi
哲彦 高橋
Shigeru Watabe
滋 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2002230243A priority Critical patent/JP3971268B2/en
Publication of JP2004248683A publication Critical patent/JP2004248683A/en
Publication of JP2004248683A5 publication Critical patent/JP2004248683A5/ja
Application granted granted Critical
Publication of JP3971268B2 publication Critical patent/JP3971268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To continuously indicate and display a puncture needle position in an MR image on a display even outside the body by attaching markers which emit an MR signal, to a puncture needle or a puncture needle fixing appliance. <P>SOLUTION: In this magnetic resonance imaging apparatus constituted so as to repeatedly perform measurement for collecting the measuring data of the region to be measured of a subject at every predetermined measuring cycle, the position and direction of the puncture needle are indicated even outside the body before puncturing by attaching the small markers 401 and 402 emitting the MR signals to the puncture needle 400 or the puncture needle fixing appliance to display a surface including the attached markers on an MR image. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、核磁気共鳴(以下、NMRと記す)現象を利用して被検体の所望部位の断層画像を得る磁気共鳴イメージング装置(以下、MRI装置と記す)に関し、特に、穿刺針等のデバイスが被検体外に在る時にも磁気共鳴画像(以下、MR画像と記す)上に被検体に対するその位置および方向が描出可能な機能を有するMRI装置に関する。
【0002】
【従来の技術】
MRI装置は、NMR現象を利用して被検体中の所望の検査部位における原子核スピン(以下単にスピンと記す)の密度分布、緩和時間分布等を計測して、その計測データから被検体の検査部位の任意の断面を画像表示するものである。
【0003】
そして、MRI装置における、撮像シーケンスとしては、スピンエコー法やグラジエントエコー法などの基本的な撮像シーケンスの他、エコープラナー(EPI:Echo Planar Imaging)法や高速スピンエコー(FSE:Fast Spin Echo)法等の、より高速な撮像シーケンスが知られている。
【0004】
これら高速な撮像シーケンスの応用の一つとして、フルオロスコピー(透視撮像)と呼ばれるリアルタイム動態画像化法が臨床応用されつつある。このフルオロスコピーでは、1秒以下程度の周期で撮像と画像再構成を繰り返すことにより、あたかもX線の透視撮影のように、体内組織の動態画像を生成、表示する。このようなフルオロスコピーは、最近では、特に最小の侵襲(Minimum Invasive)を目的としたインターベンショナルMRI(以下、「IVMR」と記す)と総称される術中撮像への応用が行われつつある。IVMRにおけるフルオロスコピーの用途として、最も期待されているのが、穿刺針やカテーテル等のデバイス、ツールを患部に誘導する際のモニタリングである。このようなフルオロスコピーにおいて、穿刺開始位置及び腫瘍を含む断面を描出するため、従来はまず、スライス位置あるいは角度等を変えて被検体中の腫瘍の位置を確認し、次に穿刺針等に取り付けられた光学位置検出ポインタおよびカメラ等のデバイス位置追従装置等を有するMRI装置の光学位置検出系のデスプレイで穿刺針をモニタしながら穿刺開始位置を確認し、その後穿刺開始位置および腫瘍を含むMR断層像を撮影し、そして穿刺に必要な情報を含むMR断層像が得られるまでこの作業を繰り返した。これは穿刺針が被検体の外に在る時にはMR断層像には現われないため光学的位置検出系のデイスプレイで穿刺針の位置をモニタしているにもかかわらず、穿刺方向の決定に必要なMR断層像を得るのに時間を要すると共にその正確性も十分ではないという問題を生じていた。
【0005】
なお、このような問題点を解決するため、例えば、米国特許第6,026,315号では、MRI装置の撮像空間中の複数の所定位置に発光体およびMR信号発生体を設けたファントムを配置し、光学系画像とMR画像の座標系のずれを事前に較正することを提案している。
【0006】
【発明が解決しようとする課題】
そこで、本発明の目的は穿刺針あるいはその固定具に取り付けられたマーカーを含む任意の撮像断面(位置及び角度)を連続的に描出可能とする機能を備えたMRI装置を提供することである。
【0007】
【課題を解決するための手段】
上記目的を達成するための本発明は、被検体の計測対象領域の計測データを収集する計測を、所定の計測周期毎に繰り返し行うMRI装置において、
上記MR画像上で高信号で描出されるマーカー(比較的短いTIの物質、例えば造影剤、脂肪など)を移動および取り外し自在な構造として穿刺針又は固定具に取り付けることで、体外においても穿刺針位置を描出可能とした。
【0008】
このように構成されたMRI装置では、例えばEPI法によるマルチエコー信号を取得、再構成後、各計測周期において、マーカーを含む任意のMR断層像を連続取得することができるので、従来のように穿刺開始位置と腫瘍位置を別々に計測し、穿刺可能な断面を見つけるのに比べて、短時間で穿刺までのガイディングを行うことができる。
【0009】
なお、本発明でいう計測は、2次元計測および3次元計測のいずれであっても良い。
【0010】
【発明の実施の形態】
以下、本発明の実施例を添付図面に基づいて詳細に説明する。
【0011】
図1は本発明によるMRI装置の全体構成を示すブロック図である。このMRI装置は、静磁場発生磁石2と、傾斜磁場発生系3と、送信系5と、受信系6と、信号処理系7と、シーケンサ4と、中央処理装置(CPU)8とを備えている。
【0012】
静磁場発生磁石2は、被検体1の周りにその体軸方向または体軸と直交する方向に均一な静磁場を発生させるもので、永久磁石方式または常電導方式あるいは超電導方式の磁場発生手段から成る。この静磁場発生磁石2に囲まれる磁場空間内に後述する傾斜磁場発生系3の傾斜磁場コイル9、送信系5の高周波コイル14a、受信系6の高周波コイル14bが設置される。
【0013】
傾斜磁場発生系3は、X,Y,Zの三軸方向に巻かれた傾斜磁場コイル9と、それぞれの傾斜磁場コイル9を駆動する傾斜磁場電源10とから成り、後述のシーケンサ4からの命令に従ってそれぞれのコイルの傾斜磁場電源10を駆動することにより、X,Y,Zの三軸方向の傾斜磁場G,G,Gを被検体1に印加するようになっている。この傾斜磁場の加え方により被検体1に対するスライス面を設定することができる。
【0014】
シーケンサ4は、上記被検体1の生体組織を構成する原子の原子核に核磁気共鳴を起こさせる高周波磁場パルスをある所定のパルスシーケンスで繰り返し生成するもので、CPU8の制御で動作し、被検体1の断層像のデータ収集に必要な種々の命令を、送信系5、傾斜磁場発生系3および受信系6に送るようになっている。
【0015】
送信系5は、上記シーケンサ4の制御により被検体1の生体組織を構成する原子の原子核にNMR現象を起こさせるために高周波磁場を照射するもので、高周波発振器11と変調器12と高周波増幅器13と送信側の高周波コイル14aとから構成される。高周波発振器11から出力された高周波パルスをシーケンサ4の命令にしたがって変調器12で振幅変調し、この振幅変調された高周波パルスを高周波増幅器13で増幅した後に被検体1に近接して配置された高周波コイル14aに供給することにより、電磁波が上記被検体1に照射されるようになっている。
【0016】
受信系6は、被検体1の生体組織の原子核のNMR現象により放出されるエコー信号(NMR信号)を検出するもので、被検体1に近接して配置された受信側の高周波コイル14bと増幅器15と直交位相検波器16と、A/D変換器17とから構成される。高周波コイル14bが検出したエコー信号は、増幅器15及び直交位相検波器16を介してA/D変換器17に入力してディジタル量に変換され、さらにシーケンサ4からの命令によるタイミングで直交位相検波器16によりサンプリングされた二系列の収集データとされ、その信号が信号処理系7に送られる。
【0017】
信号処理系7は、CPU8と、磁気ディスク18及び磁気テープ19等の記録装置と、CRT等のディスプレイ20とから成り、受信系6からの信号をCPU8でフーリエ変換、補正係数計算、画像再構成演算の処理を行い、任意断面の信号強度分布や複数の信号に適当な演算を行って得られた濃度分布等を画像化してディスプレイ20に表示する。
【0018】
光学位置検出装置系22としては、例えば、Northern Digital Instrument社の POLARISなどが利用できる。デバイス位置追従装置23は赤外線カメラで、穿刺針等のデバイスに取りつけられた位置検出光学ポインタ21と基準ポインタを同時に検出する。位置検出装置系には、アクティブ型とパッシブ型がある。アクティブ型は、赤外線発光ダイオードを最低3個医療用のデバイス、ツールにつけ、これらを2個のカメラで検出し、リアルタイムでツールの6次元の動きを表示する。表示速度は、20〜60Hである。位置精度は0.35mm。パッシブ型は、発光ダイオードがカメラ側についており、ツール(位置検出光学ポインタ21)には、直径10mmほどの反射球が3個つく。カメラは球の反射光を検出する。測定精度は、アクティブ型と同等で、ツールに電源供給ラインが不要となるため、IVMRでの使い勝手が良い。パッシブ型には、赤外線反射球が3−4個取り付けてある。反射球の直径は例えば10mmである。基準ポインタは、静磁場中心に対してある特定の固定位置に設置される。光学カメラは、MRI装置の静磁場発生領域の中心から1mから1.5m離れた距離に、アームで吊り下げられており自在に向きや位置を変えられる。
位置検出光学ポインタ21は術者が手に持って移動できる。基準ポインタは、例えばMRI装置のガントリーの上面に取り付けてある。基準ポインタに対する位置検出光学ポインタ21の位置、傾きが、カメラで撮影され、その画像信号を用いてパーソナルコンピュータ26が常にその位置を計算する。データ更新レートは2−20画像/s程度が良い。位置データは、パーソナルコンピュータ26に例えばRS232Cケーブルで送られる。MR画像へのノイズ混入を防ぐには、光ファイバーケーブル27を使うとよい。位置データは、MRIフルオロスコピーシーケンスの撮影断面へ0.5s以内に反映される。撮影シーケンスはグラジエントエコーシーケンスやマルチショットEPIなどのフルオロスコピー用シーケンスである。これらのシーケンスでは、0.5s−4sごとに画像が更新できる。
【0019】
次に上記MRI装置による穿刺針あるいはその固定具に取り付けられたマーカーを含む任意の撮像断面(位置及び角度)を連続的に描出する方法を説明する。まず被検体を静磁場磁石内の測定空間に配置し、目的とする撮像領域について連続撮像を行う。
【0020】
上記の連続撮像において、穿刺開始位置及び腫瘍を含む断面を短時間で描出する方法として、図2に示すような穿刺針400にMR信号を放出するマーカー401,402(中心が空洞でストッパーがついたMR信号を発する円形物質)を複数個取り付け、更に光学デバイス追従装置405とデバイス検出用光学マーカー404を用いることで現在位置を把握し、光学デバイス追従装置405で取得した位置情報をMRI装置にフィードバックさせることで、穿刺針あるいはその固定具に取り付けられたマーカーを含む任意の撮像断面(位置及び角度)を連続的に描出することが可能となる。これにより、穿刺針が体外にある場合においても穿刺針位置を画面(画像)上で確認しながら、腫瘍403を探索することが容易になる。また、MR信号を放出するマーカー401,402は移動および取り外し自在で、穿刺を始めた時は状況に応じて脱着が可能である。
【0021】
本発明の第二の実施例として、図3に示すようなシース内にMR信号を発する物質を組み込んだ例を示す。MR信号を放出する物質を用いて製作したシース501に穿刺針500を通す。更に光学デバイス追従装置504とデバイス用光学マーカー503を用いることで現在位置を把握し、光学デバイス追従装置504で取得した位置情報をMRI装置にフィードバックさせることで、穿刺針あるいはその固定具に取り付けられたマーカーを含む任意の撮像断面(位置及び角度)を連続的に描出することが可能となる。これにより、穿刺針位置を画面(画像)上で確認しながら、腫瘍502を探索することが容易になる。第一の実施例と比べて、MR信号を放出するマーカー501を取り外す必要がなく、体内おいてもコントラスト差から存在位置を確認できるメリットもある。
【0022】
また、上記MR信号を発するマーカー及びシースはT1,T2の比較的短い物質(例えば、造影剤、脂肪、シリコン)又はT1,T2の比較的長い物質(例えば、水)で構成されており、適用部位、撮像シーケンスなどによって画像コントラストが異なるので、条件によって使い分けることも可能である。
【0023】
その他、以上の説明では基礎となる計測データとして二次元計測データの場合を説明したが、三次元計測データであっても同様に任意の多種のデータ取得が可能であり、同様の効果を得ることができる。
【0024】
【発明の効果】
以上説明したMR信号を発するマーカーを穿刺針又はその固定具に取り付け、穿刺針に取り付けられた光学デバイス追従装置を用いることで、マーカー及び穿刺針を含む断面(位置および角度)を体外においてもMR画像上で確認することができる。
【図面の簡単な説明】
【図1】本発明が適用されるMRI装置の全体構成を示すブロック図。
【図2】本発明の第一の実施例による体外の穿刺針と腫瘍との関係を説明する図。
【図3】本発明の第二の実施例による体外の穿刺針と腫瘍との関係を説明する図。
【符号の説明】
1 ・・・被検体
2 ・・・静磁場発生磁石
3 ・・・傾斜磁場発生系
4 ・・・シーケンサ
5 ・・・送信系
6 ・・・受信系
7 ・・・信号処理系
8 ・・・CPU
9 ・・・傾斜磁場コイル
10 ・・・傾斜磁場電源
14a ・・・送信側の高周波コイル
14b ・・・受信側の高周波コイル
16 ・・・直交位相検波器
17 ・・・A/D変換器
18 ・・・磁気ディスク
19 ・・・磁気テープ
20 ・・・ディスプレイ
21 ・・・デバイス位置検出光学ポインタ
22 ・・・光学位置検出装置系
23 ・・・光学デバイス位置追従装置
24 ・・・モデム
25 ・・・モデム
26 ・・・パーソナルコンピュータ(PC)
27 ・・・光ファイバーケーブル
400,500 ・・・穿刺針
401,402,501 ・・・MR信号放出マーカ
403,502 ・・・腫瘍
404,503 ・・・デバイス用光学マーカ
405,504 ・・・光学カメラ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a magnetic resonance imaging apparatus (hereinafter, referred to as an MRI apparatus) for obtaining a tomographic image of a desired site of a subject by utilizing a nuclear magnetic resonance (hereinafter, referred to as an NMR) phenomenon, and particularly to a device such as a puncture needle. The present invention relates to an MRI apparatus having a function of delineating its position and direction with respect to a subject on a magnetic resonance image (hereinafter, referred to as an MR image) even when the device is outside the subject.
[0002]
[Prior art]
The MRI apparatus measures a nuclear spin (hereinafter simply referred to as spin) density distribution, relaxation time distribution, and the like at a desired examination site in the subject by utilizing the NMR phenomenon, and uses the measured data to determine the inspection site of the subject. Are displayed as images.
[0003]
As an imaging sequence in the MRI apparatus, in addition to a basic imaging sequence such as a spin echo method and a gradient echo method, an echo planar (EPI: Echo Planar Imaging) method and a fast spin echo (FSE: Fast Spin Echo) method For example, higher-speed imaging sequences are known.
[0004]
As one application of these high-speed imaging sequences, a real-time dynamic imaging method called fluoroscopy (fluoroscopic imaging) is being clinically applied. In this fluoroscopy, a dynamic image of a body tissue is generated and displayed as if by X-ray fluoroscopy by repeating imaging and image reconstruction at a cycle of about 1 second or less. Such fluoroscopy has recently been applied to intraoperative imaging, which is collectively referred to as interventional MRI (hereinafter, referred to as “IVMR”) for the purpose of minimum invasiveness (Minimum Invasive). The most promising use of fluoroscopy in IVMR is monitoring when guiding devices and tools such as puncture needles and catheters to the affected area. In such a fluoroscopy, in order to depict the puncture start position and the cross section including the tumor, conventionally, the position of the tumor in the subject is first checked by changing the slice position or angle, and then attached to a puncture needle or the like. A puncture start position is confirmed while monitoring a puncture needle with a display of an optical position detection system of an MRI apparatus having a detected optical position detection pointer and a device position tracking device such as a camera, and then an MR tomogram including a puncture start position and a tumor The image was taken and this operation was repeated until an MR tomogram containing the information necessary for puncturing was obtained. This is necessary for determining the puncture direction even though the position of the puncture needle is monitored by the display of the optical position detection system because the puncture needle does not appear in the MR tomographic image when it is outside the subject. There has been a problem that it takes time to obtain an MR tomographic image and its accuracy is not sufficient.
[0005]
In order to solve such a problem, for example, in US Pat. No. 6,026,315, a phantom in which a light emitter and an MR signal generator are provided at a plurality of predetermined positions in an imaging space of an MRI apparatus is arranged. Then, it is proposed to calibrate in advance the deviation between the coordinate systems of the optical system image and the MR image.
[0006]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide an MRI apparatus having a function of continuously drawing an arbitrary imaging section (position and angle) including a marker attached to a puncture needle or a fixture thereof.
[0007]
[Means for Solving the Problems]
The present invention for achieving the above object is an MRI apparatus that repeatedly performs measurement for collecting measurement data of a measurement target region of a subject every predetermined measurement cycle,
By attaching a marker (a substance having a relatively short TI, for example, a contrast medium, fat, etc.) drawn with a high signal on the MR image to a puncture needle or a fixing device as a movable and detachable structure, the puncture needle can be used outside the body. The position can be drawn.
[0008]
In the MRI apparatus configured as described above, for example, after acquiring and reconstructing a multi-echo signal by the EPI method, an arbitrary MR tomographic image including a marker can be continuously acquired in each measurement cycle. Guidance up to puncturing can be performed in a shorter time as compared with measuring the puncturing start position and the tumor position separately and finding a punctuable cross section.
[0009]
The measurement in the present invention may be either two-dimensional measurement or three-dimensional measurement.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0011]
FIG. 1 is a block diagram showing the overall configuration of the MRI apparatus according to the present invention. This MRI apparatus includes a static magnetic field generating magnet 2, a gradient magnetic field generating system 3, a transmitting system 5, a receiving system 6, a signal processing system 7, a sequencer 4, and a central processing unit (CPU) 8. I have.
[0012]
The static magnetic field generating magnet 2 generates a uniform static magnetic field around the subject 1 in the body axis direction or in a direction orthogonal to the body axis. The static magnetic field generating magnet 2 uses a permanent magnet type, a normal conduction type, or a superconducting type magnetic field generating means. Become. In the magnetic field space surrounded by the static magnetic field generating magnet 2, a gradient magnetic field coil 9 of the gradient magnetic field generating system 3, a high frequency coil 14a of the transmitting system 5, and a high frequency coil 14b of the receiving system 6, which will be described later, are installed.
[0013]
The gradient magnetic field generating system 3 includes a gradient magnetic field coil 9 wound in three axes of X, Y and Z, and a gradient magnetic field power supply 10 for driving the respective gradient magnetic field coils 9. By driving the gradient magnetic field power supplies 10 of the respective coils in accordance with the following formulas, gradient magnetic fields G X , G Y , and G Z in three axes of X, Y, and Z are applied to the subject 1. The slice plane with respect to the subject 1 can be set by how to apply the gradient magnetic field.
[0014]
The sequencer 4 repeatedly generates a high-frequency magnetic field pulse for causing nuclear magnetic resonance in the nuclei of the atoms constituting the living tissue of the subject 1 in a predetermined pulse sequence. Various commands necessary for data collection of the tomographic image are transmitted to the transmission system 5, the gradient magnetic field generation system 3 and the reception system 6.
[0015]
The transmission system 5 irradiates a high-frequency magnetic field to cause the nuclei of the atoms constituting the living tissue of the subject 1 to cause an NMR phenomenon under the control of the sequencer 4, and includes a high-frequency oscillator 11, a modulator 12, and a high-frequency amplifier 13 And a transmission-side high-frequency coil 14a. The high-frequency pulse output from the high-frequency oscillator 11 is amplitude-modulated by the modulator 12 in accordance with a command of the sequencer 4, and the high-frequency pulse subjected to the amplitude modulation is amplified by the high-frequency amplifier 13, and thereafter, the high-frequency pulse is disposed close to the subject 1. By supplying the electromagnetic wave to the coil 14a, the subject 1 is irradiated with the electromagnetic wave.
[0016]
The receiving system 6 detects an echo signal (NMR signal) emitted by the NMR phenomenon of the nucleus of the living tissue of the subject 1, and includes a high-frequency coil 14 b on the receiving side, which is disposed close to the subject 1, and an amplifier. 15, a quadrature detector 16 and an A / D converter 17. The echo signal detected by the high-frequency coil 14b is input to an A / D converter 17 via an amplifier 15 and a quadrature detector 16 and is converted into a digital quantity, and is further converted into a digital signal at a timing according to a command from the sequencer 4. The sampled data is converted into two series of collected data by the sampling unit 16, and the signal is sent to the signal processing system 7.
[0017]
The signal processing system 7 includes a CPU 8, a recording device such as a magnetic disk 18 and a magnetic tape 19, and a display 20 such as a CRT. The signal from the receiving system 6 is subjected to Fourier transform, correction coefficient calculation, image reconstruction by the CPU 8. The arithmetic processing is performed, and a signal intensity distribution of an arbitrary cross section, a density distribution obtained by performing an appropriate operation on a plurality of signals, and the like are imaged and displayed on the display 20.
[0018]
As the optical position detecting device system 22, for example, POLARIS manufactured by Northern Digital Instrument can be used. The device position tracking device 23 is an infrared camera, and simultaneously detects the position detection optical pointer 21 and the reference pointer attached to a device such as a puncture needle. The position detecting system includes an active type and a passive type. The active type attaches at least three infrared light emitting diodes to a medical device or tool, detects them with two cameras, and displays the six-dimensional movement of the tool in real time. Display speed is a 20~60H Z. Position accuracy is 0.35mm. In the passive type, a light emitting diode is provided on the camera side, and three reflecting spheres having a diameter of about 10 mm are attached to the tool (position detection optical pointer 21). The camera detects the reflected light of the sphere. The measurement accuracy is the same as that of the active type, and the power supply line is not required for the tool, so that the usability in the IVMR is good. The passive type has 3-4 infrared reflecting spheres attached. The diameter of the reflecting sphere is, for example, 10 mm. The reference pointer is set at a specific fixed position with respect to the center of the static magnetic field. The optical camera is suspended by an arm at a distance of 1 m to 1.5 m from the center of the static magnetic field generation region of the MRI apparatus, and can be freely changed in direction and position.
The operator can move the position detection optical pointer 21 while holding it in his hand. The reference pointer is attached, for example, to the upper surface of the gantry of the MRI apparatus. The position and inclination of the position detection optical pointer 21 with respect to the reference pointer are photographed by a camera, and the personal computer 26 always calculates the position using the image signal. The data update rate is preferably about 2-20 images / s. The position data is sent to the personal computer 26 via, for example, an RS232C cable. In order to prevent noise from being mixed into the MR image, an optical fiber cable 27 is preferably used. The position data is reflected on an imaging section of the MRI fluoroscopy sequence within 0.5 seconds. The imaging sequence is a fluoroscopy sequence such as a gradient echo sequence or a multi-shot EPI. In these sequences, the image can be updated every 0.5s-4s.
[0019]
Next, a method for continuously drawing an arbitrary imaging section (position and angle) including a marker attached to a puncture needle or a fixture thereof by the MRI apparatus will be described. First, a subject is placed in a measurement space in a static magnetic field magnet, and continuous imaging is performed on a target imaging area.
[0020]
In the above continuous imaging, as a method of rapidly delineating a puncture start position and a cross section including a tumor, markers 401 and 402 that emit an MR signal to a puncture needle 400 as shown in FIG. The optical device tracking device 405 and the device detection optical marker 404 are used to grasp the current position, and the position information acquired by the optical device tracking device 405 is transmitted to the MRI apparatus. By performing the feedback, an arbitrary imaging cross section (position and angle) including the puncture needle or the marker attached to the fixing tool can be continuously drawn. Thus, even when the puncture needle is outside the body, it is easy to search for the tumor 403 while confirming the puncture needle position on the screen (image). The markers 401 and 402 that emit MR signals can be freely moved and removed, and when puncturing is started, they can be removed according to the situation.
[0021]
As a second embodiment of the present invention, an example in which a substance that emits an MR signal is incorporated in a sheath as shown in FIG. The puncture needle 500 is passed through a sheath 501 manufactured using a substance that emits an MR signal. Further, the current position is grasped by using the optical device tracking device 504 and the device optical marker 503, and the position information obtained by the optical device tracking device 504 is fed back to the MRI device, so that the device can be attached to the puncture needle or its fixing device. It is possible to continuously depict any imaging cross section (position and angle) including the marker. This makes it easy to search for the tumor 502 while confirming the puncture needle position on the screen (image). Compared with the first embodiment, there is no need to remove the marker 501 that emits the MR signal, and there is an advantage that the presence position can be confirmed from the contrast difference even in the body.
[0022]
In addition, the marker and the sheath that emit the MR signal are made of a relatively short substance of T1 and T2 (for example, contrast agent, fat, silicon) or a relatively long substance of T1 and T2 (for example, water). Since the image contrast varies depending on the region, the imaging sequence, and the like, it is possible to use the image contrast properly depending on the conditions.
[0023]
In addition, in the above description, the case where two-dimensional measurement data is used as the basic measurement data has been described. However, it is possible to obtain any kind of data even with three-dimensional measurement data, and obtain the same effect. Can be.
[0024]
【The invention's effect】
By attaching the marker that emits the MR signal described above to the puncture needle or its fixture and using the optical device following device attached to the puncture needle, the cross section (position and angle) including the marker and the puncture needle can be MR outside the body. It can be confirmed on the image.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an overall configuration of an MRI apparatus to which the present invention is applied.
FIG. 2 is a view for explaining the relationship between an extracorporeal puncture needle and a tumor according to the first embodiment of the present invention.
FIG. 3 is a view for explaining the relationship between an extracorporeal puncture needle and a tumor according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Subject 2 ... Static magnetic field generating magnet 3 ... Gradient magnetic field generating system 4 ... Sequencer 5 ... Transmission system 6 ... Receiving system 7 ... Signal processing system 8 ... CPU
9 Gradient magnetic field coil 10 Gradient magnetic field power supply 14a High frequency coil 14b on the transmitting side High frequency coil 16 on the receiving side Quadrature detector 17 A / D converter 18 ··· Magnetic disk 19 ··· Magnetic tape 20 ··· Display 21 ··· Device position detecting optical pointer 22 ··· Optical position detecting device system 23 ··· Optical device position tracking device 24 ··· Modem 25 · ..Modem 26 Personal computer (PC)
27 optical fiber cables 400, 500 puncture needles 401, 402, 501 MR signal emission markers 403, 502 tumors 404, 503 device optical markers 405, 504 optical camera

Claims (4)

被検体に静磁場を与える静磁場発生手段と、該被検体に傾斜磁場を与える傾斜磁場発生手段と、上記被検体の生体組織を構成する原子の原子核に核磁気共鳴を起こさせる高周波パルスをある所定のパルスシーケンスで繰り返し生成するシーケンサと、このシーケンサからの高周波パルスにより被検体の生体組織の原子核に核磁気共鳴を起こさせるために高周波磁場を照射する送信系と、上記の核磁気共鳴により放出されるエコー信号を検出する受信系と、得られたエコー信号を用いて画像再構成演算を行う信号処理系と、得られた画像を表示する手段とを備える磁気共鳴イメージング装置において、磁気共鳴信号を発するマーカーを穿刺針又はその固定具に複数個取り付け、取り付けたマーカーを含む面を磁気共鳴画像上において描出することで、被検体外においても穿刺針位置及び方向を認識し、該穿刺針を含む断面を磁気共鳴画像上に描出可能とする機能を備えたことを特徴とする磁気共鳴イメージング装置。A static magnetic field generating means for applying a static magnetic field to the subject; a gradient magnetic field generating means for applying a gradient magnetic field to the subject; and a high-frequency pulse for causing nuclear magnetic resonance in nuclei of atoms constituting the living tissue of the subject. A sequencer that is repeatedly generated in a predetermined pulse sequence, a transmission system that irradiates a high-frequency magnetic field to cause nuclear magnetic resonance in an atomic nucleus of a living tissue of a subject by a high-frequency pulse from the sequencer, and emits by the above-described nuclear magnetic resonance A magnetic resonance imaging apparatus comprising: a reception system that detects an echo signal to be obtained; a signal processing system that performs image reconstruction operation using the obtained echo signal; and a unit that displays an obtained image. A plurality of markers that emit the puncture are attached to the puncture needle or its fixture, and the surface including the attached marker is drawn on the magnetic resonance image. In, also recognizes the puncture needle position and direction in the outer subject, the magnetic resonance imaging apparatus characterized by having a function that allows visualization of a section including a puncture needle on the magnetic resonance image. 上記マーカーは、上記穿刺針またはその固定具に対して移動および取り外し自在に構成したことを特徴とする請求項1に記載の磁気共鳴イメージング装置。The magnetic resonance imaging apparatus according to claim 1, wherein the marker is configured to be movable and detachable with respect to the puncture needle or a fixture thereof. 上記マーカーは、穿刺針をガイドするシースまたは穿刺針の固定具自体を磁気共鳴信号を発する物質で構成することを特徴とする請求項1に記載の磁気共鳴イメージング装置。2. The magnetic resonance imaging apparatus according to claim 1, wherein the marker comprises a sheath for guiding the puncture needle or a puncture needle fixture itself made of a substance that emits a magnetic resonance signal. 上記マーカーを取り付けられた穿刺針またはその固定具は光学位置検出装置系によってその位置を追従されることを特徴とする請求項1に記載の磁気共鳴イメージング装置。2. The magnetic resonance imaging apparatus according to claim 1, wherein the position of the puncture needle to which the marker is attached or the fixture thereof is tracked by an optical position detection system.
JP2002230243A 2002-08-07 2002-08-07 Magnetic resonance imaging system Expired - Fee Related JP3971268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002230243A JP3971268B2 (en) 2002-08-07 2002-08-07 Magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002230243A JP3971268B2 (en) 2002-08-07 2002-08-07 Magnetic resonance imaging system

Publications (3)

Publication Number Publication Date
JP2004248683A true JP2004248683A (en) 2004-09-09
JP2004248683A5 JP2004248683A5 (en) 2005-09-22
JP3971268B2 JP3971268B2 (en) 2007-09-05

Family

ID=33018686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230243A Expired - Fee Related JP3971268B2 (en) 2002-08-07 2002-08-07 Magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP3971268B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509918A (en) * 2011-04-07 2014-04-24 コーニンクレッカ フィリップス エヌ ヴェ Shaft magnetic resonance guidance to target area
JP2016538957A (en) * 2013-12-02 2016-12-15 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Determination of coordinate transformation between optical motion tracking system and magnetic resonance imaging scanner
JP2019058461A (en) * 2017-09-27 2019-04-18 株式会社日立製作所 Magnetic resonance imaging apparatus, device position detection method using the same, device, and image-guided intervention support apparatus
JPWO2018193932A1 (en) * 2017-04-21 2020-02-27 ソニー株式会社 Information processing apparatus, surgical tool, information processing method and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014509918A (en) * 2011-04-07 2014-04-24 コーニンクレッカ フィリップス エヌ ヴェ Shaft magnetic resonance guidance to target area
US9968277B2 (en) 2011-04-07 2018-05-15 Koninklijke Philips N.V. Magnetic resonance guidance of a shaft to a target zone
US10251579B2 (en) 2011-04-07 2019-04-09 Koninklijke Philips N.V. Magnetic resonance guidance of a shaft to a target zone
JP2016538957A (en) * 2013-12-02 2016-12-15 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Determination of coordinate transformation between optical motion tracking system and magnetic resonance imaging scanner
JPWO2018193932A1 (en) * 2017-04-21 2020-02-27 ソニー株式会社 Information processing apparatus, surgical tool, information processing method and program
JP7040520B2 (en) 2017-04-21 2022-03-23 ソニーグループ株式会社 Information processing equipment, surgical tools, information processing methods and programs
JP2019058461A (en) * 2017-09-27 2019-04-18 株式会社日立製作所 Magnetic resonance imaging apparatus, device position detection method using the same, device, and image-guided intervention support apparatus

Also Published As

Publication number Publication date
JP3971268B2 (en) 2007-09-05

Similar Documents

Publication Publication Date Title
JP3440114B2 (en) Tracking system for monitoring instrument position and orientation using multiple magnetic resonance detection
JP3996359B2 (en) Magnetic resonance imaging system
CN106659423B (en) Positioning of magnetic resonance imaging antennas in uniform field regions
RU2580189C2 (en) Motion-compensated interventional magnetic resonance imaging
JP6397026B2 (en) Magnetic resonance coil assembly for reference markers
US20150335316A1 (en) Mri system for robotically assisted breast biopsy
JPH0614905A (en) System and method for tracking position of apparatus by magnetic resonance detection of sample in apparatus
JPWO2002022012A1 (en) Magnetic resonance imaging system
JP2003144414A (en) Magnetic resonance imaging device
US20120259201A1 (en) System and Method for Inertial Magnetic Resonance Elastography Driver for Use With Interventional Medical Device
JP4011340B2 (en) Surgery support system
US20040092813A1 (en) Magnetic resonance imaging apparatus
US11789099B2 (en) System and method for guiding an invasive device
JP4110457B2 (en) Medical diagnostic imaging equipment
JP3971268B2 (en) Magnetic resonance imaging system
WO2016021440A1 (en) Magnetic resonance imaging device
JP3911602B2 (en) Magnetic resonance imaging device
JP2002085419A (en) Puncture needle insertion control system using medical image diagnosing device
JPH08317915A (en) Magnetic resonance imaging device
JP3300895B2 (en) Magnetic resonance imaging apparatus and table control method thereof
JP4118119B2 (en) Magnetic resonance imaging system
JP4532139B2 (en) Magnetic resonance imaging system
JPH11225994A (en) Image display method of see-through photographing using magnetic resonance imaging device
JP2004141269A (en) Magnetic resonance imaging apparatus
JP4074513B2 (en) Magnetic resonance imaging system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees