JP2004248653A - Flow-type electrode device for electroporation and method for introducing substance into cell by using the same - Google Patents

Flow-type electrode device for electroporation and method for introducing substance into cell by using the same Download PDF

Info

Publication number
JP2004248653A
JP2004248653A JP2003092708A JP2003092708A JP2004248653A JP 2004248653 A JP2004248653 A JP 2004248653A JP 2003092708 A JP2003092708 A JP 2003092708A JP 2003092708 A JP2003092708 A JP 2003092708A JP 2004248653 A JP2004248653 A JP 2004248653A
Authority
JP
Japan
Prior art keywords
flow path
electrode
electrodes
tube
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003092708A
Other languages
Japanese (ja)
Inventor
Minoru Seki
実 関
Morio Fukui
森夫 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003092708A priority Critical patent/JP2004248653A/en
Publication of JP2004248653A publication Critical patent/JP2004248653A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/02Electrical or electromagnetic means, e.g. for electroporation or for cell fusion

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To conduct electroporation by making an electric field which is impressed on a target cell uniform as much as possible, in such a simple system that only a constant-voltage power source is used in the system without requiring a pulse generater. <P>SOLUTION: In the system, a suspension containing the target cell and an objective introduced substance is flown in the direction from a flow path 15 to another flow path 16 and, simultaneously, electrodes 12 and 13 are impressed with a direct-current voltage, and therefore a constant electric field is formed inside a flow path between the electrodes 12 and 13, so that the pulsed electric field of a square wave shape is impressed on the target cell which flows in the flow path between the electrodes 12 and 13. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は細胞に対する物質の導入に際して用いる装置に関するものであり,さらに詳しくはエレクトロポレーションに関するものである。
【0002】
【従来の技術】
一般に細胞に対して物質を導入する手法としては,マイクロインジェクション法・エレクトロポレーション法・パーティクルガン法といった物理的手法,リン酸カルシウム法・リポフェクション法といった化学的手法,レトロウィルス・アデノウィルスといったウィルスベクターを利用した生物的手法がある。
【0003】
しかしマイクロインジェクション法・エレクトロポレーション法・リポフェクション法を除く手法では遺伝子以外の物質を導入することはできず,マイクロインジェクション法は操作が困難,リポフェクション法は導入効率が低いといった問題点がある。
【0004】
またエレクトロポレーション法は遺伝子以外の物質も導入することができる上,簡便で再現性が高いという利点がある一方で,高価なパルスジェネレータが必要,装置の発熱による細胞に対する悪影響,目的物質導入のための最適条件の検討が煩雑といった問題点がある。
【0005】
さらに微小チャネル内で電極間に細胞を流しながら前記電極間に電圧を印加することにより細胞の形質転換を可能とする流通型エレクトロポレーション法があるが,この方法はパルスジェネレータが不要であり,界面−体積比が大きいために発熱の影響が軽減されるといった利点がある一方で,印加される電場やサンプルの流速が不均一であり,また微小チャネルに電気分解によって生じる気泡がサンプルの流れを阻害するといった問題点がある。
【0006】
【発明が解決しようとする課題】
本発明は上記のような従来技術の問題点に鑑みて,パルスジェネレータを必要とせず,定電圧電源のみを用いた簡便なシステムでのエレクトロポレーションを可能とする流通型エレクトロポレーション用電極装置を提供することを目的とするものである。
【0007】
また,本発明は細胞に対して印加される電場やサンプルの流速が均一である流通型エレクトロポレーション用電極装置を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明のうち請求項1に記載の発明は,所定の方向に延長される流体流路を形成する管と,前記流路壁あるいは前記流路内部において前記流路の方向に対し一定の間隔を置いて存在する複数の電極を有し,前記流路に標的細胞および目的導入物質の懸濁液を流すと同時に,前記電極に対して直流電圧を印加することによって前記流路の延長方向に対して平行な電場を前記流路内に形成し,前記流路を流れていく前記標的細胞に対して矩形波のパルス電場を印加する手段を備えたことを特徴とする,流通型エレクトロポレーション用電極装置,を提供するものである。
【0009】
したがって本発明のうちの請求項1に記載の発明によれば,直流電圧を印加することによって標的細胞に対してパルス電場を印加することができるため,パルスジェネレータを必要とせずに定電圧電源のみを電源として用いることによってエレクトロポレーションによる細胞への物質導入が可能となる。
【0010】
ここで標的細胞としては,細菌,酵母,真菌,動物細胞あるいは植物細胞などがあるが,これらがすべてではなく,またこれらに限定されるものではない。また導入する物質としては,核酸,アミノ酸,ポリペプチド,蛋白質,あるいは薬剤などが挙げられるが,これらがすべてではなく,またこれらに限定されるものではない。
【0011】
また本発明のうち請求項2に記載の発明は,前記電極間に絶縁体からなるスペーサーを備え,前記管,前記電極,前記スペーサー,前記電極,前記管を順につないで密着させるとともに固定化する支持体を有することを特徴とする,請求項1に記載の流通型エレクトロポレーション用電極装置,を提供するものである。
【0012】
したがって本発明のうちの請求項2に記載の発明によれば,前記スペーサーの厚さを変更するによって前記電極間距離を自由に決定することが可能となる。
【0013】
ここでスペーサーとは,前記流体が流れることのできるだけの貫通孔をもち,表面が絶縁体で構成されたものであればいかなるものでも良い。具体的には,例えばリング状のポリスチレンなどを使用することができる。
【0014】
また本発明のうち請求項3に記載の発明は,前記管の一部あるいは全体が導体で構成され,かつ前記管の導体部分と前記電極が接している構造を有し,前記管と電源を接続することにより前記電極に電圧が印加され,前記電極間にのみ電場を形成する手段を備えたことを特徴とする,請求項2に記載の流通型エレクトロポレーション用電極装置,を提供するものである。
【0015】
したがって本発明のうちの請求項3に記載の発明によれば,前記電極に直接電源を繋ぐことなく前記電極間に電場を形成可能となる。
【0016】
また本発明のうち請求項4に記載の発明は,前記管が前記電極を兼ねている構造を有する,請求項3に記載の流通型エレクトロポレーション用電極装置,を提供するものである。
【0017】
したがって本発明のうちの請求項4に記載の発明によれば,前記管,前記スペーサー,前記管を順につないで密着させるとともに前記支持体によって固定化することにより,前記管の間に電場を形成可能となる。
【0018】
また本発明のうち請求項5に記載の発明は,微小径の貫通孔を多数もつ平板導体を前記流路の伸長方向に対して垂直に,流路の断面をすべて覆う状態で複数設置したものを前記電極として用いることにより,前記電極間における電場の均一化および流体の整流化を可能とすることを特徴とする,請求項2,請求項3のいずれか一項に記載の流通型エレクトロポレーション用電極装置,を提供するものである。
【0019】
したがって本発明のうちの請求項5に記載の発明によれば,前記電極間において印加される定電場や前記流路を流れる流体の流速の乱れを抑制し,前記標的細胞に対して印加される前記矩形波パルス電場の強度やパルス幅を均一にすることが可能となる。
【0020】
ここで微小径の貫通孔を多数もつ平板導体とは,前記標的細胞が通過するのに十分な大きさの貫通孔を多数もち,表面が導体で構成された平板なものであればいかなるものを用いても良い。
【0021】
また本発明のうち請求項6に記載の発明は,前記スペーサーの幅,前記印加電圧,前記標的細胞および目的導入物質懸濁液の流速,前記電極の数のいずれかあるいはすべてを変化させることにより,前記矩形波パルス電場の強度,パルス幅およびパルスの印加回数を制御可能であることを特徴とする,請求項2,請求項3,請求項4,請求項5のいずれか一項に記載の流通型エレクトロポレーション用電極装置,を提供するものである。
【0022】
【発明の効果】
上記のように構成された本発明の流通型エレクトロポレーション用装置によれば,直流定電圧を印加することによって標的細胞に対してパルス電場を印加することができるため,パルスジェネレータを必要とせずに定電圧電源のみを電源として用いることによってエレクトロポレーションによる細胞への物質導入が可能となる。
【0023】
なお,微小径の貫通孔を多数もつ平板導体を前記流路の伸長方向に対して垂直に,前記流路の断面をすべて覆う状態で複数設置したものを前記電極として用いたときは,前記電極間において印加される定電場や前記流路を流れる流体の流速の乱れを抑制し,前記標的細胞に対して印加される前記矩形波パルス電場の強度やパルス幅を均一にする効果がある。
【0024】
【発明の実施の形態】
図1には本発明の一実施の形態による流通型エレクトロポレーション用電極装置が示されており,図1(a)は装置の電極近傍を示す分解斜視図であり,図1(b)は装置の電極近傍を示す斜視図であり,図1(c)は図1(b)における部分Cの拡大断面図である。
【0025】
この流通型エレクトロポレーション用電極装置は,標的細胞及び目的導入物質の懸濁液が流れるための流路15および16を構成する管10および11と,微小径の貫通孔を持つ電極12および13と,絶縁体からなるスペーサー14と,これらを固定化する支持体20によって構成されている。
【0026】
管10,電極12,スペーサー14,電極13,管11は順に密着してつながっており,支持体20はこれらを覆う形で全体を固定している。標的細胞及び目的導入物質の懸濁液は管10が構成する流路15,電極12の貫通孔17,スペーサー14の貫通孔19,電極13の貫通孔18,管11が構成する流路16を順に流れる。
【0027】
直流電源23と管10は導線21で接続されており,直流電源23と管11は導線22で接続されている。管10は電極12と電気的に接続されており,管11は電極13と電気的に接続されているため,直流電源23によって直流電圧を印加すると電極12と電極13の間,すなわちスペーサー14の貫通孔19が構成する流路内に定電場が形成される。
【0028】
流路内に導入された標的細胞および目的導入物質の懸濁液は,スペーサー14の貫通孔19において形成された定電場を通過する際に,直流電源23の印加電圧を電極12と電極13の間隔,すなわちスペーサー14の厚さで割ったものを電場強度,スペーサー14の貫通孔19が構成する流路における滞留時間をパルス幅とした矩形波パルス電場を受けることになる。この矩形波パルス電場により標的細胞に対するエレクトロポレーションがなされ,目的物質が標的細胞へ導入される。
【0029】
電極12の貫通孔17および電極13の貫通孔18は微小で電極12および13の表面全体に多数存在しており,また電極12および13は流路15および16の延長方向に対して垂直に,流路15および16の断面をすべて覆う状態で設置されている。このため,スペーサー14の貫通孔19が構成する流路において印加される定電場や流路を流れる流体の流速の乱れが抑制され,標的細胞に対して印加される矩形波パルス電場の強度やパルス幅が均一となる。
【0030】
【実施例】
管10,電極12,スペーサー14,電極13,管11を順につなげ,支持体20によってこれらを密着させると共に固定化した。管10および11として外径2.1mm,内径1.5mmのステンレスキャピラリーを,電極12および13として100meshのステンレスメッシュを,スペーサー14として内径1.5mmの単一貫通孔をもつ厚さ110μmのポリスチレン製のリングを,支持体20として外径3.0mm,内径2.0mmのシリコンチューブをそれぞれ用いた。
【0031】
更に流路15および16内を流れる流体が管10および11と支持体20の間から漏れるのを防ぐために,支持体20の端と管10および11が表面に露出している箇所をPDMS(ポリジメチルシロキサン)によってシールした。さらに作製した装置をより強固に固定化するために,支持体20をPDMSによってスライドガラス上に固定化した。管10および11の電極の反対側の端はシリコンチューブを介してテフロンチューブと接続し,管10と接続したテフロンチューブの反対側にはシリコンチューブを介してシリンジを接続した。シリコンチューブと管10および11の境界もPDMSによってシールした。
【0032】
標的細胞としてはE.coli DH5α,目的導入物質としてはpBluescript IISKを用いた。E.coli DH5αは液体LB培地中でOD600=0.5−0.6程度に培養したものを500倍に濃縮し,オートクレーブ滅菌した10%グリセロール水溶液にて懸濁した。細胞濃度は1010/ml程度であった。pBluescript II SKは終濃度5ng/ml程度になるように細胞懸濁液に加えた。
【0033】
標的細胞および目的導入物質の懸濁液はシリンジからシリンジポンプによって送液して装置内の流路を通した後,管11と接続したテフロンチューブの反対側に予め設置した液体LB培地にて回収した。直流電源23によって印加した電圧は200Vであり,標的細胞および目的導入物質の懸濁液の流速は3.89ml/minであった。すなわち標的細胞に対して印加されたパルス電場強度は1.8kV/mm,パルス幅は3.0msであった。なお,電圧をかけて標的細胞および目的導入物質の懸濁液を導入する際には電極装置全体を氷上に設置して0℃程度の温度になるようにした状態で行った。
【0034】
標的細胞および目的導入物質の懸濁液は,回収後液体LB培地上で37℃にて1時間インキュベートした後,アンピシリンを終濃度50μg/mlになるように加えた固体LB培地上で37℃にて1日インキュベートした。インキュベート後に発生した形質転換体のコロニー数から,1μgのプラスミドDNAあたり3.0x10の形質転換体が得られたことが計算された。
【図面の簡単な説明】
【図1】本発明の一実施の形態による流通型エレクトロポレーション用電極装置を示す。図1(a)は装置の電極近傍を示す分解斜視図であり,図1(b)は装置の電極近傍を示す斜視図であり,図1(c)は図1(b)における部分Cの拡大断面図である。
【符号の説明】
10 管
11 管
12 電極
13 電極
14 スペーサー
15 流路
16 流路
17 電極12の貫通孔
18 電極13の貫通孔
19 スペーサー14の貫通孔
20 支持体
21 導線
22 導線
23 直流電源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus used for introducing a substance into cells, and more particularly to electroporation.
[0002]
[Prior art]
In general, physical methods such as microinjection, electroporation and particle gun methods, chemical methods such as calcium phosphate method and lipofection, and virus vectors such as retroviruses and adenoviruses are used to introduce substances into cells. There are biological methods.
[0003]
However, methods other than the microinjection method, electroporation method, and lipofection method cannot introduce substances other than genes, so that the microinjection method is difficult to operate and the lipofection method has low introduction efficiency.
[0004]
The electroporation method can introduce substances other than genes and has the advantage of being simple and highly reproducible. On the other hand, it requires an expensive pulse generator, adverse effects on cells due to heat generated by the apparatus, and the introduction of target substances. However, there is a problem that the examination of the optimum conditions is complicated.
[0005]
Furthermore, there is a flow-type electroporation method in which cells can be transformed by applying a voltage between the electrodes while flowing the cells between the electrodes in the microchannel, but this method does not require a pulse generator, While the effect of heat generation is reduced due to the large interface-volume ratio, the applied electric field and the flow rate of the sample are non-uniform, and bubbles generated by electrolysis in the microchannels block the flow of the sample. There is a problem of inhibition.
[0006]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the prior art, the present invention does not require a pulse generator, and enables a simple system using only a constant-voltage power supply to perform electroporation. The purpose is to provide.
[0007]
Another object of the present invention is to provide a flow-type electroporation electrode device in which an electric field applied to cells and a flow rate of a sample are uniform.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention is characterized in that a pipe forming a fluid flow path extending in a predetermined direction is provided at a predetermined interval in the flow path wall or inside the flow path in the direction of the flow path. It has a plurality of electrodes that are placed in the cell, and simultaneously flows a suspension of target cells and a target substance into the flow channel, and simultaneously applies a DC voltage to the electrodes to extend the flow channel. Characterized by comprising means for forming a parallel electric field in said flow path in said flow path and applying a rectangular wave pulsed electric field to said target cells flowing in said flow path, for flow-type electroporation. An electrode device.
[0009]
Therefore, according to the first aspect of the present invention, since a pulsed electric field can be applied to the target cells by applying a DC voltage, only a constant voltage power supply is required without a pulse generator. As a power source, a substance can be introduced into cells by electroporation.
[0010]
Here, examples of the target cell include bacteria, yeast, fungi, animal cells, and plant cells, but not all of them, and not limited thereto. Examples of the substance to be introduced include, but are not limited to, nucleic acids, amino acids, polypeptides, proteins, and drugs.
[0011]
The invention according to claim 2 of the present invention includes a spacer made of an insulator between the electrodes, and connects the tube, the electrode, the spacer, the electrode, and the tube in order and makes them adhere and fix. 2. A flow-type electroporation electrode device according to claim 1, further comprising a support.
[0012]
Therefore, according to the second aspect of the present invention, the distance between the electrodes can be freely determined by changing the thickness of the spacer.
[0013]
Here, the spacer may be any spacer as long as it has a through hole through which the fluid can flow, and has a surface made of an insulator. Specifically, for example, ring-shaped polystyrene or the like can be used.
[0014]
The invention according to claim 3 of the present invention has a structure in which a part or the whole of the tube is made of a conductor, and the conductor part of the tube and the electrode are in contact with each other. 3. A flow-type electroporation electrode device according to claim 2, further comprising means for applying a voltage to said electrodes when connected, and forming an electric field only between said electrodes. It is.
[0015]
Therefore, according to the third aspect of the present invention, it is possible to form an electric field between the electrodes without directly connecting a power supply to the electrodes.
[0016]
According to a fourth aspect of the present invention, there is provided the electrode device for flow-type electroporation according to the third aspect, wherein the tube has a structure also serving as the electrode.
[0017]
Therefore, according to the invention described in claim 4 of the present invention, the electric field is formed between the tubes by connecting the tubes, the spacers, and the tubes in order and bringing them into close contact with each other and fixing them by the support. It becomes possible.
[0018]
According to a fifth aspect of the present invention, a plurality of flat conductors having a large number of small-diameter through-holes are provided so as to be perpendicular to the direction in which the flow path extends and to cover the entire cross section of the flow path. 4. The flow-type electroporation device according to claim 2, wherein an electric field between the electrodes is made uniform and a fluid is rectified by using the electrodes as the electrodes. And an electrode device for the operation.
[0019]
Therefore, according to the invention as set forth in claim 5 of the present invention, disturbance of the constant electric field applied between the electrodes and the flow velocity of the fluid flowing through the flow path is suppressed, and the applied voltage is applied to the target cells. It is possible to make the intensity and pulse width of the rectangular wave pulse electric field uniform.
[0020]
Here, a flat conductor having a large number of small-diameter through-holes refers to any flat conductor having a large number of through-holes large enough to allow the target cells to pass through and having a surface formed of a conductor. May be used.
[0021]
In the invention according to claim 6 of the present invention, the width of the spacer, the applied voltage, the flow rate of the target cell and the target substance suspension, and / or the number of the electrodes are changed. 6. The method according to claim 2, wherein the intensity, the pulse width, and the number of times of application of the pulse of the rectangular wave pulse electric field are controllable. A flow-type electroporation electrode device.
[0022]
【The invention's effect】
According to the apparatus for flow-type electroporation of the present invention configured as described above, a pulse electric field can be applied to target cells by applying a constant DC voltage, so that a pulse generator is not required. By using only a constant voltage power supply as a power supply, a substance can be introduced into cells by electroporation.
[0023]
In addition, when a plurality of flat conductors having a large number of small diameter through-holes are installed perpendicularly to the direction of extension of the flow path so as to cover the entire cross section of the flow path, when the electrode is used as the electrode, This has the effect of suppressing disturbances in the constant electric field applied between them and the flow velocity of the fluid flowing through the flow path, and making the intensity and pulse width of the rectangular wave pulse electric field applied to the target cells uniform.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an electrode device for flow-type electroporation according to an embodiment of the present invention. FIG. 1 (a) is an exploded perspective view showing the vicinity of an electrode of the device, and FIG. FIG. 1C is a perspective view showing the vicinity of an electrode of the device, and FIG. 1C is an enlarged sectional view of a portion C in FIG. 1B.
[0025]
This flow-type electroporation electrode device comprises tubes 10 and 11 constituting flow paths 15 and 16 through which a suspension of a target cell and a target introduction substance flows, and electrodes 12 and 13 having through holes having a small diameter. And a spacer 14 made of an insulator, and a support 20 for fixing these.
[0026]
The tube 10, the electrode 12, the spacer 14, the electrode 13, and the tube 11 are connected in close contact in this order, and the support 20 is entirely fixed so as to cover them. The suspension of the target cells and the target substance is passed through a flow path 15 formed by the tube 10, a through hole 17 of the electrode 12, a through hole 19 of the spacer 14, a through hole 18 of the electrode 13, and a flow path 16 formed by the tube 11. Flow in order.
[0027]
The DC power supply 23 and the tube 10 are connected by a conductor 21, and the DC power supply 23 and the tube 11 are connected by a conductor 22. Since the tube 10 is electrically connected to the electrode 12 and the tube 11 is electrically connected to the electrode 13, when a DC voltage is applied by the DC power supply 23, the space between the electrode 12 and the electrode 13, that is, A constant electric field is formed in the flow path defined by the through hole 19.
[0028]
When the suspension of the target cells and the target substance introduced into the flow path passes through the constant electric field formed in the through hole 19 of the spacer 14, the applied voltage of the DC power supply 23 is applied to the electrodes 12 and 13. A rectangular wave pulse electric field having a pulse width of the electric field intensity obtained by dividing the interval, that is, the thickness of the spacer 14, and the residence time in the flow path defined by the through hole 19 of the spacer 14 is obtained. Electroporation is performed on the target cells by the square-wave pulse electric field, and the target substance is introduced into the target cells.
[0029]
The through-holes 17 of the electrode 12 and the through-holes 18 of the electrode 13 are minute and exist in large numbers on the entire surface of the electrodes 12 and 13, and the electrodes 12 and 13 are perpendicular to the extending direction of the flow paths 15 and 16, The channels 15 and 16 are installed so as to cover the entire cross section. Therefore, the constant electric field applied in the flow path formed by the through hole 19 of the spacer 14 and the disturbance of the flow velocity of the fluid flowing through the flow path are suppressed, and the intensity and pulse of the square wave pulse electric field applied to the target cell are suppressed. The width becomes uniform.
[0030]
【Example】
The tube 10, the electrode 12, the spacer 14, the electrode 13, and the tube 11 were connected in this order, and these were adhered and fixed by the support 20. 110 μm thick polystyrene having stainless steel capillaries having an outer diameter of 2.1 mm and an inner diameter of 1.5 mm as the tubes 10 and 11, a 100 mesh stainless mesh as the electrodes 12 and 13, and a single through hole having an inner diameter of 1.5 mm as the spacer 14. And a silicon tube having an outer diameter of 3.0 mm and an inner diameter of 2.0 mm was used as the support 20.
[0031]
Further, in order to prevent the fluid flowing in the channels 15 and 16 from leaking from between the tubes 10 and 11 and the support 20, the end of the support 20 and the portion where the tubes 10 and 11 are exposed on the surface are PDMS (Polymer). (Dimethylsiloxane). In order to further firmly fix the manufactured device, the support 20 was fixed on a slide glass by PDMS. The opposite ends of the electrodes of the tubes 10 and 11 were connected to a Teflon tube via a silicon tube, and a syringe was connected to the other side of the Teflon tube connected to the tube 10 via a silicon tube. The interface between the silicon tube and tubes 10 and 11 was also sealed by PDMS.
[0032]
The target cells include E. coli. coli DH5α, and pBluescript IISK + was used as a target substance to be introduced. E. FIG. E. coli DH5α was cultured in a liquid LB medium to an OD600 of about 0.5-0.6, concentrated 500-fold, and suspended in an autoclave-sterilized 10% glycerol aqueous solution. The cell concentration was about 10 10 / ml. pBluescript II SK + was added to the cell suspension to a final concentration of about 5 ng / ml.
[0033]
The suspension of the target cells and the target substance to be introduced is sent from a syringe by a syringe pump, passes through a channel in the device, and is collected in a liquid LB medium previously set on the opposite side of the Teflon tube connected to the tube 11. did. The voltage applied by the DC power supply 23 was 200 V, and the flow rate of the suspension of the target cells and the target substance was 3.89 ml / min. That is, the pulse electric field intensity applied to the target cells was 1.8 kV / mm, and the pulse width was 3.0 ms. In addition, when applying a voltage to introduce the suspension of the target cells and the target substance to be introduced, the entire electrode device was placed on ice to keep the temperature at about 0 ° C.
[0034]
The suspension of the target cells and the substance to be introduced is incubated at 37 ° C. for 1 hour on a liquid LB medium after collection, and then cooled to 37 ° C. on a solid LB medium containing ampicillin at a final concentration of 50 μg / ml. And incubated for 1 day. From the number of transformant colonies generated after the incubation, it was calculated that 3.0 × 10 7 transformants were obtained per μg of plasmid DNA.
[Brief description of the drawings]
FIG. 1 shows a flow-type electroporation electrode device according to an embodiment of the present invention. FIG. 1A is an exploded perspective view showing the vicinity of an electrode of the apparatus, FIG. 1B is a perspective view showing the vicinity of an electrode of the apparatus, and FIG. 1C is a sectional view of a portion C in FIG. It is an expanded sectional view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Tube 11 Tube 12 Electrode 13 Electrode 14 Spacer 15 Flow path 16 Flow path 17 Through hole 18 of electrode 12 Through hole 19 of electrode 13 Through hole 20 of spacer 14 Support 21 Conductor 22 Conductor 23 DC power supply

Claims (6)

所定の方向に延長される流体流路を形成する管と,前記流路壁あるいは前記流路内部において前記流路の方向に対し一定の間隔を置いて存在する複数の電極を有し,これらの電極に対して直流電圧を印加することによって前記流路内の一部区間に流路の延長方向に勾配を有する電場を形成する手段を備えたことを特徴とする流通型エレクトロポレーション用電極装置,および,それを用いた細胞への物質導入方法。A pipe forming a fluid flow path extending in a predetermined direction, and a plurality of electrodes which are present at a predetermined interval in the flow path wall or inside the flow path in the direction of the flow path. An electrode device for flow-type electroporation, comprising: means for applying a DC voltage to an electrode to form an electric field having a gradient in a direction in which the flow path extends in a part of the flow path. , And a method for introducing a substance into cells using the same. 請求項1に記載の前記電極間に絶縁体からなるスペーサーを備え,請求項1に記載の前記管,前記電極,前記スペーサー,前記電極,前記管を順につないで密着させるとともに固定化する支持体を有することを特徴とする,請求項1に記載の装置。A support member comprising a spacer made of an insulator between the electrodes according to claim 1, wherein the tube, the electrode, the spacer, the electrode, and the tube according to claim 1 are sequentially connected and adhered and fixed. The device according to claim 1, comprising: 請求項2に記載の前記管の一部あるいは全体が導体で構成され,かつ前記管の導体部分と請求項2に記載の前記電極が接している構造を有し,前記管と電源を接続することにより前記電極に電圧が印加され,前記電極間にのみ電場を形成する手段を備えたことを特徴とする,請求項2に記載の装置。A part or the whole of the tube according to claim 2 is formed of a conductor, and the tube has a structure in which a conductor part of the tube and the electrode according to claim 2 are in contact with each other, and connects the tube to a power source. 3. The device according to claim 2, further comprising means for applying a voltage to said electrodes and creating an electric field only between said electrodes. 請求項3に記載の前記管が請求項3に記載の前記電極を兼ねている構造を有する,請求項3に記載の装置。The apparatus according to claim 3, wherein the tube according to claim 3 has a structure also serving as the electrode according to claim 3. 微小径の貫通孔を多数もつ平板導体を請求項1に記載の前記流路の伸長方向に対して垂直に,流路の断面をすべて覆う状態で複数設置したものを請求項2,請求項3のいずれか一項に記載の前記電極として用いることにより,前記電極間における電場の均一化および流体の整流化を可能とすることを特徴とする,請求項2,請求項3のいずれか一項に記載の装置。A plurality of flat conductors having a large number of small-diameter through holes are provided perpendicularly to the direction of extension of the flow path according to claim 1 so as to cover the entire cross section of the flow path. 4. The use as the electrode according to any one of claims 1 to 3, wherein the electric field between the electrodes can be made uniform and the fluid can be rectified. An apparatus according to claim 1. 請求項2に記載の前記スペーサーの幅,請求項1に記載の前記印加電圧,請求項1に記載の前記標的細胞および目的導入物質懸濁液の流速,請求項2,請求項3,請求項4,請求項5のいずれか一項に記載の前記電極の数のいずれかあるいはすべてを変化させることにより,請求項1に記載の前記矩形波パルス電場の強度,パルス幅およびパルスの印加回数を制御可能であることを特徴とする,請求項2,請求項3,請求項4,請求項5のいずれか一項に記載の装置。The width of the spacer according to claim 2, the applied voltage according to claim 1, the flow rate of the suspension of the target cells and the target substance according to claim 1, the claims 2, and 3, 4. By changing any or all of the number of the electrodes according to any one of claims 5 and 5, the intensity, the pulse width, and the number of times of pulse application of the rectangular wave pulse electric field according to claim 1 are changed. 6. The device according to claim 2, wherein the device is controllable.
JP2003092708A 2003-02-22 2003-02-22 Flow-type electrode device for electroporation and method for introducing substance into cell by using the same Pending JP2004248653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003092708A JP2004248653A (en) 2003-02-22 2003-02-22 Flow-type electrode device for electroporation and method for introducing substance into cell by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003092708A JP2004248653A (en) 2003-02-22 2003-02-22 Flow-type electrode device for electroporation and method for introducing substance into cell by using the same

Publications (1)

Publication Number Publication Date
JP2004248653A true JP2004248653A (en) 2004-09-09

Family

ID=33028237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003092708A Pending JP2004248653A (en) 2003-02-22 2003-02-22 Flow-type electrode device for electroporation and method for introducing substance into cell by using the same

Country Status (1)

Country Link
JP (1) JP2004248653A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007056027A1 (en) * 2005-11-02 2007-05-18 May-Ruben Technologies, Inc. High impedance system for generating electric fields and method of use
JP2013255474A (en) * 2012-06-14 2013-12-26 Pearl Kogyo Co Ltd Method for transferring selected molecule into target cell and selected molecule transfer device used for the same
JP2016063828A (en) * 2009-12-23 2016-04-28 ズートツッカー アクチェンゲゼルシャフト マンハイム/オクセンフルト Reactor device for electroporation
WO2016108527A1 (en) * 2014-12-28 2016-07-07 Femtofab Co., Ltd. Process for modifying a cell by putting material into the cell
US10131867B2 (en) 2014-12-28 2018-11-20 Femtobiomed Inc. Device for putting material into cell
JP2021501608A (en) * 2017-11-02 2021-01-21 インディー.プロプライエタリー リミテッドIndee.Pty.Ltd. Intracellular delivery and methods for it
CN112770840A (en) * 2018-07-12 2021-05-07 Gpb科学有限公司 Microfluidic method for preparing cells

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007056027A1 (en) * 2005-11-02 2007-05-18 May-Ruben Technologies, Inc. High impedance system for generating electric fields and method of use
JP2009515168A (en) * 2005-11-02 2009-04-09 メイ−ルーベン テクノロジーズ,インク. High impedance system for generating an electric field and method of use
US8221596B2 (en) 2005-11-02 2012-07-17 May-Ruben Technologies, Inc. High impedance system for generating electric fields
US8226811B2 (en) 2005-11-02 2012-07-24 May-Ruben Technologies, Inc. High impedance system for generating electric fields and method of use
JP2016063828A (en) * 2009-12-23 2016-04-28 ズートツッカー アクチェンゲゼルシャフト マンハイム/オクセンフルト Reactor device for electroporation
JP2013255474A (en) * 2012-06-14 2013-12-26 Pearl Kogyo Co Ltd Method for transferring selected molecule into target cell and selected molecule transfer device used for the same
WO2016108527A1 (en) * 2014-12-28 2016-07-07 Femtofab Co., Ltd. Process for modifying a cell by putting material into the cell
US10131867B2 (en) 2014-12-28 2018-11-20 Femtobiomed Inc. Device for putting material into cell
JP2021501608A (en) * 2017-11-02 2021-01-21 インディー.プロプライエタリー リミテッドIndee.Pty.Ltd. Intracellular delivery and methods for it
JP7313363B2 (en) 2017-11-02 2023-07-24 インディー.プロプライエタリー リミテッド Intracellular delivery and methods therefore
US12030052B2 (en) 2017-11-02 2024-07-09 Indee. Pty. Ltd. Microfluidic delivery method utilizing an electric field
CN112770840A (en) * 2018-07-12 2021-05-07 Gpb科学有限公司 Microfluidic method for preparing cells
CN112770840B (en) * 2018-07-12 2022-10-28 Gpb科学有限公司 Microfluidic method for preparing cells

Similar Documents

Publication Publication Date Title
Madison et al. Scalable device for automated microbial electroporation in a digital microfluidic platform
ES2799422T3 (en) Diagnostic and sample preparation methods and devices
Xie et al. Nanostraw–electroporation system for highly efficient intracellular delivery and transfection
Wang et al. Electroporation of mammalian cells in a microfluidic channel with geometric variation
US8133371B2 (en) Scodaphoresis and methods and apparatus for moving and concentrating particles
Geng et al. Transfection of cells using flow-through electroporation based on constant voltage
Zimmerman Electrochemical microfluidics
EP1804908B1 (en) Apparatus for spatially confined electroporation
Wang et al. Microfluidic electroporation for delivery of small molecules and genes into cells using a common DC power supply
EP3164482A1 (en) Microfluidic assay for rapid optimization of cell electroporation
JP2009515168A (en) High impedance system for generating an electric field and method of use
Zu et al. Size specific transfection to mammalian cells by micropillar array electroporation
US20090000948A1 (en) Methods for Improving Efficiency of Cell Electroporation Using Dielectrophoreses
EP3564355A1 (en) Method and device for exosomes electroporation
KR101370931B1 (en) Microfluidic cell culture device equipped with multi-physical stimulations of electrical field, shear stress and substrate rigidity
JP2004248653A (en) Flow-type electrode device for electroporation and method for introducing substance into cell by using the same
US20080138876A1 (en) Transfection in electronically driven continuous flow
Cao et al. Study of high-throughput cell electrofusion in a microelectrode-array chip
Experton et al. Low-voltage flow-through electroporation in gold-microtube membranes
Santra et al. Nanolocalized Single-Cell-Membrane Nanoelectroporation: For higher efficiency with high cell viability
JP6117482B2 (en) Selected molecule introduction device
US11878300B2 (en) Method and device for high field strength electrotransfection of microvescicles and cells
Luo et al. Flow-through electroporation of mammalian cells in decoupled flow streams using microcapillaries
Geng et al. Gene delivery by microfluidic flow-through electroporation based on constant DC and AC field
JP2013255475A (en) Method for transferring selected molecule into target cell and selected molecule transfer device used for the same