JP2004247820A - Frequency multiplier - Google Patents

Frequency multiplier Download PDF

Info

Publication number
JP2004247820A
JP2004247820A JP2003033415A JP2003033415A JP2004247820A JP 2004247820 A JP2004247820 A JP 2004247820A JP 2003033415 A JP2003033415 A JP 2003033415A JP 2003033415 A JP2003033415 A JP 2003033415A JP 2004247820 A JP2004247820 A JP 2004247820A
Authority
JP
Japan
Prior art keywords
frequency
signal
output
phase
multiplier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003033415A
Other languages
Japanese (ja)
Inventor
Shozo Moriya
正三 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2003033415A priority Critical patent/JP2004247820A/en
Publication of JP2004247820A publication Critical patent/JP2004247820A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulation Of Pulses (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a frequency multiplier for generating a clock signal having a frequency as high as possible according to the frequency of a signal inputted from the outside by bringing out the performance of a PLL to its maximum by using a simple configuration. <P>SOLUTION: The frequency multiplier is provided with a magnification measuring device 30 for comparing the frequency of an external clock with the output frequency of a VCO (variable oscillator) 13 to measure magnification; a multiplication ratio setting means 40 for setting a multiplication ratio for a frequency divider 14 of the PLL 10 on the basis of the measurement result of the device 30; and a multiplication ratio control section 50 for temporarily switching the signal to an output signal of a phase delaying means 60 for delaying the phase of an external clock for a phase comparator 11 of the PLL 10, so that the output frequency of the VCO 13 may become the maximum in magnification measurement by the device 30. If a lock signal of the PLL 10 is not detected when a predetermined time elapses after the multiplication ratio N is set, the multiplication ratio N is decreased step by step. If the lock signal is not detected when the decrease in the multiplication ratio is performed predetermined times, the process goes back to the magnification measurement. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は,外部からの入力信号の周波数を逓倍した信号を出力する周波数逓倍装置に関するものである。
【0002】
【従来の技術】
半導体集積回路やオプション基板の処理を高速動作させるため,PLL(Phase Locked Loop)を用いて外部からの入力信号(以下,外部クロックという)を逓倍した信号を生成し,該信号を内部クロックとして当該回路を動作させることが行われている。以下,このようなPLLを用いて前記外部クロックを設定された逓倍率に従って逓倍する装置(回路)のことを,周波数逓倍器(周波数逓倍装置に相当)という。
このような周波数逓倍器において,入力される前記外部クロックの周波数が異なり得る(予め定まっていない)場合であっても,所定の高速性能を維持して内部回路を動作させるためには,できるだけ高い周波数の内部クロックを生成する,即ち,前記外部クロックの周波数に応じてできるだけ高い逓倍率を設定する必要がある。但し,通常,PLLでは出力となる発振周波数の帯域が限られているため,前記外部クロックの周波数×逓倍率がPLLの発振周波数範囲を外れていると動作しない。このため,PLLが発振可能な周波数の範囲内で,可能な限り高い逓倍率を設定することが要求される。
前記外部クロックの周波数が異なる使用環境下においても,逓倍率を外部から設定することなく自動設定できるものとして,特許文献1や特許文献2では,内部に基準クロック(の発振器)を設け,該基準クロックの周波数と前記外部クロックの周波数との比較に基づいて逓倍率を自動設定することが提案されている。
図6は,特許文献1や特許文献2に示される技術に基づく従来の周波数逓倍器Aの構成を表すブロック図である。
図6に示すように,従来の周波数逓倍器Aは,PLL1と,逓倍率Nを設定する際に用いる基準クロック(基準とする信号)を生成する基準発振器2と,該基準発振器2の出力周波数と前記外部クロックの周波数とを比較し,それらの比率(倍率)を測定する倍率測定器3と,該倍率測定器3による測定結果に基づいてできるだけ最大となる逓倍率Nを計算してその逓倍率NをPLL1に対して設定する逓倍率設定手段4とを具備している。
また,PLL1は,2つの入力信号の位相を比較する位相比較器11と,該位相比較器11による位相の比較結果(位相の偏差)を平滑化して電圧出力するループフィルタ12と,該ループフィルタ12の出力電圧に従って(即ち,前記位相比較器11による位相の比較結果に基づいて)出力信号の周波数を調節するVCO13(電圧制御発振器,前記可変発振器の一例)と,該VCO13の出力信号を前記逓倍率設定手段14により設定された逓倍率の逆数に分周する分周器14とを具備し,前記外部クロックと前記分周器14の出力信号とが前記位相比較器に入力されるよう構成されている。
これにより,前記VCO13の出力周波数が,前記位相比較器に入力される2つの入力信号,即ち,前記外部クロック及び前記分周器14の出力信号の位相が同期するように調節される。従って,前記VCO13の出力信号(即ち,内部クロック)が,前記外部クロックの周波数を前記分周器14に設定された逓倍率で逓倍した信号となる。
前記逓倍率設定手段4は,前記VCO13の最大出力周波数近傍の所定の周波数をymax,前記基準発振器2の出力周波数をa,前記倍率測定器3によって測定された前記外部クロックの周波数に対する前記基準発振器2の出力周波数aの倍率をRとしたとき,例えば次の(1)式によって逓倍率Nを計算する。
N=ymax/(a/R) (但し,小数点以下切捨て) …(1)
これにより,前記倍率測定器3による測定結果Rに応じて,即ち,前記外部クロックの周波数に応じて,前記VCO13が出力可能な範囲においてできるだけ最大となる逓倍率Nが計算される。
【0003】
【特許文献1】
特開平10−289032号公報
【特許文献2】
特開2001−135038号公報
【0004】
【発明が解決しようとする課題】
しかしながら,図6に示したように独立した基準クロック(前記基準発振器2の出力)を用いて前記外部クロックの周波数を測定して逓倍率Nを決定する構成では,前記PLL1の出力が,出力可能な上限周波数内に収まるように,予め,基準クロックの誤差(前記基準発振器2の誤差)とPLL1の発振周波数の誤差(前記位相比較器11,前記ループフィルタ12或いは前記VCO13等の誤差等に起因する出力周波数の誤差)とを見込んだ分だけ余裕をもった逓倍率Nの設定を行う必要がある。例えば,(1)式におけるymaxを,実際に出力し得る最大周波数よりも低めに設定する等である。このため,前記PLL1の有する最大能力を十分に発揮させることができないという問題点があった。特に,基準クロックを簡単な論理回路を用いて構成する場合には個体間の誤差が大きくなるのでより大きな余裕率を見込まねばならず,また,発振回路を用いて正確な基準クロックを生成しようとするとコストアップとなる。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,簡易な構成によりPLLの性能を最大限引き出し,外部からの入力信号の周波数に応じて極力高い周波数のクロック信号を生成する周波数逓倍装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために本発明は,2つの入力信号の位相を比較する位相比較器と,該位相比較器による比較結果に基づいて前記2つの入力信号の位相が同期するように出力信号の周波数を調節する可変発振器と,該可変発振器の出力信号を設定された逓倍率の逆数に分周する分周器とを具備し,外部からの入力信号と前記分周器の出力信号とが前記位相比較器に入力されるよう構成された周波数逓倍装置において,前記外部からの入力信号の周波数と前記可変発振器の出力信号の周波数とを比較する周波数比較手段と,前記周波数比較手段による比較結果に基づいて前記逓倍率を設定する逓倍率設定手段と,前記周波数比較手段による周波数の比較を行う際に,前記可変発振器の出力信号が出力可能な略最大の周波数となるよう制御する出力周波数最大化手段と,を具備してなることを特徴とする周波数逓倍装置として構成されるものである。ここで,前記位相比較器と前記可変発振器と前記分周器とは,PLLを構成するものである。
このように,独立した基準クロック用の発振器を設けることなく,PLLが具備するVCO等の前記可変発振器の出力を用いて前記逓倍率を設定するので簡易な構成となる。しかも,前記可変発振器が実際に出力する略最大周波数と前記外部からの入力信号の周波数との比較に基づいて前記逓倍率が設定されるため,PLL等の機器の各個体の性能ばらつきや誤差等による余裕を考慮する必要がない。その結果,外部からの入力信号の周波数に応じて,PLLの性能を最大限引き出す前記逓倍率を設定することが可能である。
【0006】
また,前記出力周波数最大化手段が,前記外部からの入力信号の位相を遅延させる位相遅延手段と,前記位相比較器への入力信号の一方を,前記周波数比較手段による周波数の比較を行う所定時間前に前記位相遅延手段の出力信号に切り替え,前記逓倍率設定手段による前記逓倍率の設定後に前記分周器の出力信号に切り替える信号切替え手段と,を具備するものが考えられる。
このような構成によれば,前記信号切替え手段によって前記位相比較器への入力信号の一方を前記位相遅延手段の出力信号とすると,前記位相比較器の他方の入力信号である前記外部からの入力信号との間に位相差(位相遅延)が生じるので,その位相差を無くそうとして前記可変発振器の出力周波数が上昇する。ここで,前記可変発振器の出力が前記分周器を介して前記位相比較器にフィードバックされていないので,前記可変発振器の出力周波数は上限で頭打ちとなるまで上昇し続ける。従って,前記所定時間を,前記可変発振器の出力周波数が最大(頭打ち)となるまで上昇するのに十分な時間とすれば,前記可変発振器の出力周波数を略最大とすることができる。しかも,前記位相比較器等のPLLの構成要素を動作させた結果としての前記可変発振器の最大出力周波数が得られるので,前記逓倍率の設定にあたってPLLの構成要素の特性のばらつき等を考慮する(余裕を設ける)必要がない。
【0007】
また,前記位相比較器がエクスクルージブオアの論理回路を用いるものであり,前記位相遅延手段がインバータ回路を用いるものが考えられる。
これにより,簡易な構成で前記位相比較器及び前記位相遅延手段を構成することが可能となる。
【0008】
また,前記周波数比較手段としては,前記外部からの入力信号が所定の複数回数だけ発振する間に可変発振器の出力信号が発振する回数に基づいて,前記外部からの入力信号の周波数と前記可変発振器の出力信号の周波数とを比較するものが考えられる。
これにより,従来のように前記外部からの入力信号が1回発振する間に基準クロックが発振する回数に基づいて周波数の比較を行うよりも誤差の少ない周波数比較(測定)を行なうことが可能となる。
【0009】
また,前記可変発振器の出力信号をクロック信号とするタイマと,前記逓倍率が設定された後,前記タイマにより所定時間が計時されるまでに,前記位相比較器により前記外部からの入力信号と前記分周器の出力信号との位相の同期が検出されない場合に,前記逓倍率を一段階低く設定変更する逓倍率見直し手段と,を具備するものが考えられる。
これにより,万一,一旦設定した前記逓倍率が高すぎて,正常に同期がとれない状況が発生した場合であっても,同期をとれる前記逓倍率となるように自動的に見直される。
【0010】
また,前記逓倍率見直し手段により所定回数だけ前記逓倍率の設定変更を行っても,前記位相比較器により前記外部からの入力信号と前記分周器の出力信号との位相の同期が検出されない場合には,前記周波数比較手段による周波数の比較及び前記逓倍率設定手段による前記逓倍率の設定が再度実行されるよう制御する再実行制御手段を具備するものも考えられる。
これにより,周波数の比較を行う際に入力した前記外部からの入力信号にノイズが生じていた等により,前記逓倍率が正しく設定されていなかった場合であっても,前記周波数の比較から再実行されて前記逓倍率の設定がやり直されるので,適正な逓倍率が再設定される。
【0011】
また,前記再実行制御手段により前記再実行が所定回数だけなされても,前記位相比較器により前記外部からの入力信号と前記分周器の出力信号との位相の同期が検出されない場合には,所定のエラー出力を行うエラー出力手段を具備するものが考えられる。
これにより,前記逓倍率を正常に自動設定できなかったことを利用者に知らせることができる。
【0012】
【発明の実施の形態】
以下添付図面を参照しながら,本発明の実施の形態及び実施例について説明し,本発明の理解に供する。尚,以下の実施の形態及び実施例は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係る周波数逓倍器Zの概略構成を表すブロック図,図2は本発明の実施の形態に係る周波数逓倍器Zを構成する位相遅延手段と信号選択手段と位相比較器との回路構成の一例を表す図,図3は本発明の実施の形態に係る周波数逓倍器Zにおける外部クロックの倍率測定器の構成の一例を表すブロック図,図4は本発明の実施例に係る周波数逓倍器Z1の概略構成を表すブロック図,図5は本発明の実施例に係る周波数逓倍器Z1における逓倍率調整処理の手順を表すフローチャート,図6は従来の周波数逓倍器Aの概略構成を表すブロック図である。
【0013】
まず,図1を用いて,本発明の実施の形態に係る周波数逓倍器Zの構成について説明する。
図1に示すように,周波数逓倍器Zは,PLL10と,倍率測定器30と,逓倍率設定手段40と,逓倍率制御部50と,位相遅延手段60と,信号選択手段70とを具備している。
前記PLL10は,図6に示した従来のPLL1と同様に,2つの入力信号の位相を比較する位相比較器11と,該位相比較器11による位相の比較結果(位相の偏差)を平滑化して電圧出力するループフィルタ12と,該ループフィルタ12の出力電圧に従って(即ち,前記位相比較器11による位相の比較結果に基づいて)出力信号の周波数を調節するVCO13(電圧制御発振器,前記可変発振器の一例)と,該VCO13の出力信号を前記逓倍率設定手段14により設定された逓倍率の逆数に分周する分周器14とを具備している。
前記PLL10において,前記位相比較器11に入力される一方の信号が外部から入力されるクロック信号(前記外部クロック)である点は,従来の周波数逓倍Aと同じである。しかし,もう一方の入力信号は,常に前記分周器14の出力信号であるのではなく,状況により,前記分周器14の出力信号と前記外部クロックの位相を遅延させる前記位相遅延手段60の出力信号(前記外部クロックの位相を遅延させた信号)のいずれかが,前記信号選択手段70(前記信号切替え手段の一例)により選択(切り替え)されるよう構成されている点で従来の構成(図6)と異なる。
また,前記倍率測定器30(前記周波数比較手段の一例)は,前記PLL10の出力信号の周波数と前記外部クロックの周波数とを比較し,それらの比率(倍率)を測定する(以下,倍率測定という)ものである。従って,従来のように基準クロック発振用の独立した発振器(図6における前記基準発振器2)が設けられていない。さらに,前記倍率測定器30は,前記PLL10の出力信号が所定の複数回数Lだけ発振する間に前記外部クロックが発振する回数に基づいて前記倍率測定を行うものである。
【0014】
図3は,前記倍率測定器30の構成の一例を表すブロック図である。前記倍率測定器30は,例えば図3に示すように,前記VCO13の出力信号の発振回数(クロック数)を順次カウントする基準クロック数カウンタ31と,前記外部クロックの発振回数を順次カウントする外部クロック数カウンタ32と,これらのカウンタ31,32それぞれからカウント数(信号の発振回数)を入力し,前記外部クロック数カウンタ32によりM回(M≧2)カウントされる間に前記基準クロック数カウンタ31によりカウントされる回数Lから,前記外部クロックの周波数の倍率R(=L/M)を算出する倍率算出手段33とにより構成することができる。
これにより,従来のように前記外部クロックが1回発振する間に基準クロックが発振する回数に基づいて前記倍率測定を行うよりも誤差の少ない前記倍率測定を行なうことが可能となる。
図3では,前記倍率Rを計算する前記倍率算出手段33を独立して設けているが,前記倍率Rの計算は前記逓倍率設定手段40で行うよう構成してもかまわない。
【0015】
一方,前記逓倍率設定手段40(図1)は,図6に示した従来の逓倍率設定手段4と同様に前記PLL10に対して(即ち,前記分周器14に対して)逓倍率Nを設定するものであるが,従来と異なるのは,前記外部クロックの周波数と前記PLL10の出力信号の周波数との比較結果(即ち,前記倍率測定器30により測定された前記外部クロックの周波数に対する前記PLL10の出力周波数の倍率)に基づいて逓倍率Nが算出される点である。
また,前記逓倍率制御部50は,前記信号選択手段70に対して,信号の切り替え信号(いずれの入力信号を選択するかを指定する信号)を出力するとともに,前記倍率測定器30に対して,前記倍率測定を行うタイミングを指示する測定指令信号を出力するものである。
以上のような構成により,前記信号選択手段70によって前記分周器14の出力信号が前記位相比較器11にフィードバックされるよう選択されている場合に,前記VCO13の出力周波数が,前記外部クロック及び前記分周器14の出力信号の位相が同期するように調節され,前記VCO13の出力信号(即ち,内部クロック)が,前記外部クロックの周波数を前記分周器14に設定された逓倍率で逓倍した信号となる。
【0016】
また,前記位相遅延手段60は,所定の回路により任意の位相分だけ遅延させる構成も考えられるが,インバータ回路を用いて位相を180°遅延させる(即ち,反転させる)ものであれば構成が簡易となる。
前記信号選択手段70により,前記位相比較器11への入力信号として前記位相遅延手段60の出力信号(前記外部クロックの位相を遅延させた信号)が選択されると,前記位相比較器11によって常に位相遅れが検出されるので,前記VCO13は,その位相遅れをなくすようにその出力周波数を順次高くするよう動作する。そして,その状態がしばらく続けば,前記VCO13の出力周波数が上限となって飽和する。この飽和した状態における前記VCO13の出力周波数が,前記PLL10の真の最大出力周波数である。即ち,前記PLL10において公称される最大出力周波数は,前記位相比較器11や前記ループフィルタ12,前記VCO12等の各種誤差が見込まれた値であり,実際には公称される最大出力周波数よりも高い周波数を出力できる場合が多い。しかし,その出力周波数は,前記PLL10の個体ごとにばらつきがあるため,従来は,前記PLL10の最大出力周波数として公称値を採用し,さらに,前記基準クロック(前記基準発振器2の出力)の誤差分を考慮してさらに低い出力周波数となるように逓倍率Nを設定せざるを得なかった。
【0017】
そこで,本周波数逓倍器Zでは,前記倍率測定器30による前記倍率測定(即ち,周波数の比較)を行う際に,前記VCO13の出力周波数が真の最大値となるようにし,周波数が最大となった前記VCO13の出力信号の周波数と前記外部クロックの周波数との比較により測定した前記外部クロックの倍率(比較結果)に基づいて前記逓倍率設定手段40により逓倍率Nを設定する。
逓倍率Nの設定手順は,例えば次のように行う。
まず,起動時(電源ON時)やリセット時等に,前記逓倍率制御部50により,前記信号選択手段70に対して前記外部クロックの遅延信号側が選択されるよう信号の切り替え信号を出力し,前記VCO13の出力周波数が飽和するのに十分な所定時間が経過するまでその状態を保持する。そして,その所定時間経過後(即ち,前記VCO13の出力周波数が飽和して出力周波数が真の最大値(略最大値)となっている状態のとき)に,前記逓倍率制御部50から前記倍率測定器30に対して前記倍率測定を行うよう指示する測定指令信号を出力する。これにより,前記外部クロックの周波数の前記VCO13出力周波数(最大出力周波数)に対する倍率が測定され,それが前記逓倍率設定手段40に入力される。ここで,前記逓倍率制御部50が,前記VCO13の出力周波数が飽和するまでの時間経過を検知する手段としては,例えば,前記逓倍率制御部50にタイマを設けて前記VCO13の出力周波数の上昇特性(上昇速度)に応じた十分な時間を計時することや,前記ループフィルタ12の出力電圧の変化を監視し,該出力電圧の上昇が止まったときに前記VCO13の出力周波数が飽和したと検知すること等が考えられる。
前記逓倍率設定手段40では,前記倍率測定器30から前記外部クロックの周波数の倍率Rが入力されると,その倍率Rを整数化(例えば,小数点以下切捨て)した値を逓倍率Nとして前記分周器14に設定する。もちろん,前記分周器14が,整数値の逆数以外の分周が可能なものであれば,必ずしも整数化する必要はない。
このようにして逓倍率Nを設定することにより,前記外部クロックの周波数に応じて,前記VCO13の出力周波数が出力可能な範囲において真に最大となるよう逓倍率Nが設定される。ここで,前記外部クロックの周波数の倍率測定において,従来のように別途独立して設けた基準クロックを基準とするのではなく,周波数の逓倍に用いる前記PLL10自体の最大周波数出力を基準とするので,前記PLL10の個体間のばらつき等を考慮した余裕率を考慮する必要がなく,真に最大の逓倍率Nを設定することが可能となる。
【0018】
例えば,前記外部クロックの周波数が40MHz,前記PLL10の最大出力周波数(即ち,前記VCO13の最大出力周波数)が,公称値では100MHzであるが,実際には120MHzまで出力できる能力(余裕)を有している場合を考える。この場合,従来の方法では,前記PLL10の個体のばらつきを考慮して,公称値である100MHzを基準に逓倍率Nを2(=100÷40の小数点以下を切り捨てた値)以下とせざるを得ないが(前記基準クロックの誤差を考慮すればN=1とせざるを得ない場合も生じ得る),本周波数逓倍器Zによれば,実際に前記PLL10から120MHzの信号が出力されていることを測定した上で逓倍率Nを設定するので,逓倍率Nを3(=120÷40)と設定することが可能である。その結果,従来は80MHzの前記内部クロックしか得られないが,本周波数逓倍器Zによれば,その1.5倍の120MHzの前記内部クロックを得ることが可能となる。
そして,前記逓倍率設定手段40による逓倍率Nの設定がなされた後に,前記逓倍率制御部50により前記信号選択手段70に対して前記分周器14の出力信号側が選択されるよう信号の切り替え信号を出力する。これにより,前記VCO13の出力信号(即ち,内部クロック)が,前記外部クロックの周波数を前記分周器14に設定された逓倍率Nで逓倍した信号となるよう調節される。
【0019】
ところで,前記位相比較器としては,入力パルス信号の立ち上がりのタイミングを比較するポジティブエッジ・トリガ型トライステート出力位相比較器や,RSフリップフロップ応用型位相比較器等,各種考えられるが,前記位相遅延手段60が,例えばインバータ回路を用いることによって位相を180°遅延させる(反転させる)ものであれば,前記位相比較器11を,エクスクルージブオアの論理回路を用いるものとすることが可能である。
図2は,前記位相遅延手段60にインバータ回路を用いた場合における,前記位相遅延手段60と前記信号選択手段70と前記位相比較器11との回路構成の一例を表す図である。図2に示す例では,前記位相遅延手段60がインバータ回路からなり,前記位相比較器11がエクスクルージブオアの論理回路からなる。また,前記信号選択手段70は,前記逓倍率制御部50から出力される選択信号が,「0」(OFF)である場合に,前記分周器14の出力信号が選択され,「1」(ON)である場合に,前記外部クロックの遅延信号(即ち,前記位相遅延手段60の出力信号)が選択されるよう構成されている。
このような構成により,前記外部クロックと該外部クロックの位相を180°遅延させた信号との組み合わせ(前記位相比較器11への入力の組み合わせ)は,(1,0)又は(0,1)のいずれかとなり,これを入力とする前記位相比較器11(エクスクルージブオアの論理回路)の出力は常時「1」(位相のずれがあることを表す)となる。これにより,簡易な回路構成で,前記VCO13の出力周波数を最大となるまで上昇させることができる。
この他にも,前記VCO13の出力周波数を最大となるまで上昇させるための構成(前記出力周波数最大化手段の構成)としては,前記VCO13に入力する電圧信号を,前記ループフィルタ12の出力と前記VCO13の入力可能な最大電圧信号とを選択的に切り替え可能に構成し,前記VCO13に前記最大電圧信号を入力させた状態で前記倍率測定器30による前記倍率測定を行うことも考えられる。しかし,このような構成の場合,例えば,前記ループフィルタ12の出力電圧の最大値と前記最大電圧信号との間に誤差が生じ得る場合には,前記PLL10の出力信号を真の最大周波数としたことにならない(誤差が生じる)。従って,図1に示すように,前記PLL10の各構成要素を生かした形で前記PLL10の出力信号の周波数を最大まで上昇させるようにすることが望ましい。
【0020】
【実施例】
次に,前記周波数逓倍器Zの応用例である,周波数逓倍器Z1について説明する。
図4は,本発明の実施例に係る周波数逓倍器Z1の構成を表すブロック図である。図4に示すように,周波数逓倍器Z1は,前記周波数逓倍装置Zと同様の構成を有しており,異なる点は,前記逓倍率制御部50が,前記VCO13の出力信号をクロックとするタイマ51を具備していることと,前記逓倍率制御部50が前記PLL10からいわゆるロック信号(前記位相比較器11により前記外部クロックと前記分周器14の出力信号との位相が同期されたか否かの検出信号)を入力し,該ロック信号に基づいて逓倍率Nの設定を見直すよう前記逓倍率設定手段40を制御するよう構成されていることである。その他の構成及び動作については,前記周波数逓倍器Zと同様である。
【0021】
次に,本周波数逓倍器Z1における逓倍率Nの設定及び見直し処理(逓倍率調整処理)について説明する。
図5は,本周波数逓倍器Z1の前記逓倍率制御部50によって制御される,逓倍率Nの調整処理の手順を表すフローチャートである。以下,S01,S02,…は,処理手順(ステップ)の番号を表す。
まず,起動時(電源ON時)やリセット時等に,逓倍率Nの調整処理が開始されると,所定のエラー検知用カウンタxが初期化(x←0)され(S01),前記逓倍率制御部50により,前記信号選択手段70に対して前記外部クロックの遅延信号側(遅延入力)が選択されるよう信号の切り替え信号が出力される(S02)。
次に,前記タイマ51での計時により,前記VCO13の出力周波数が飽和するのに十分な時間が経過するまで(即ち,前記VCO13の出力周波数が飽和して出力周波数が真の最大値(略最大値)となるまで)待つ(S03)。この間,前記VCO13の出力周波数は変化するので,該VCO13の出力信号をクロック信号として用いる前記タイマ51の計時精度は低いが,十分余裕を見た計時時間を設定しておけば何ら問題はない。
次に,前記逓倍率制御部50から前記倍率測定器30に対して前記倍率測定を行うよう指示する測定指令信号を出力することにより,前記外部クロックの周波数の前記VCO13出力周波数(最大出力周波数)に対する倍率が測定される(S04)。
次に,前記逓倍率制御部50により前記エラー検知用カウンタxをカウントアップ(+1)するとともに,前記倍率測定の再実行を行うか否かを判断するために用いる倍率再測定用カウンタyを初期化(y←0)する(S05)。
次に,前記倍率測定器30により測定された前記外部クロックの周波数の倍率が前記逓倍率設定手段40に入力され,該倍率に基づいて前記逓倍率設定手段40が逓倍率Nを求めて前記分周器14に設定する(S06)。
次に,前記逓倍率制御部50により前記倍率再測定用カウンタyをカウントアップ(+1)(S07)した後,前記逓倍率制御部50により前記信号選択手段70に対して前記分周器14の出力信号側(即ち,前記PLL10におけるループ帰還側)が選択されるよう信号の切り替え信号を出力する(S08)。これにより,前記VCO13の出力信号(即ち,内部クロック)が,前記外部クロックの周波数を前記分周器14に設定された逓倍率Nで逓倍した信号となるよう前記VCO13の出力調整が開始する。
【0022】
次に,前記逓倍率制御部50により,前記タイマ51に所定の計時時間がセット(タイマセット)され(S09),その計時時間がタイムアップ(経過)するまで前記PLL10の前記ロック信号(2つの入力信号の位相が同期されたことを表す信号)が検知されるか否かがチェックされる(S10,S11)。そして,タイムアップするまでに前記PLL10の前記ロック信号が検知された場合(S11のY側)には,そのまま当該逓倍率調整処理が終了するが,タイムアップするまでに前記ロック信号が検知されない場合(S10のY側)には,前記逓倍率制御部50により,前記倍率再測定用カウンタyが既定値Y(≧1)より大きいか否かがチェックされ(S12),前記既定値Y以下である場合にはS15へ移行し,前記既定値Yより大きい場合にはS13へ移行する。
S15へ移行した場合,前記逓倍率制御部50により,前記信号選択手段70に対して前記外部クロックの遅延信号側(遅延入力)が選択されるよう信号の切り替え信号が出力される(S15)。さらに,前記タイマ51での計時により,前記VCO13の出力周波数が飽和するのに十分な時間が経過するまで(即ち,前記VCO13の出力周波数が飽和して出力周波数が真の最大値(略最大値)となるまで)待った後(S16),前記逓倍率設定手段40により,その時点で設定されている逓倍率Nよりも1つ(1段階の例)下げた逓倍率Nを前記分周器14に対して設定(S17)した後,前述したS07以降の処理が繰り返される。
このS06〜S12→S15〜S17の処理により,逓倍率Nが設定(S06)された後,前記タイマ51により所定時間が計時されるまでに前記ロック信号が検出されない(前記位相比較器11により前記外部クロックと前記分周器14の出力信号との位相の同期が検出されない)場合に,逓倍率Nが一段階低く設定変更されることになる(前記逓倍率見直し手段の処理の一例)。
このような処理を行うことにより,万一,一旦設定した逓倍率Nが高すぎて,正常に同期がとれない状況が発生した場合であっても,同期をとれる逓倍率Nとなるように自動的に見直される。
【0023】
一方,S12において,前記倍率再測定用カウンタyが既定値Yより大きいと判別された場合,即ち,逓倍率NをY段階下げてもなお前記ロック信号を検知できない場合は(S12のY側),前記エラー検知用カウンタxの値が所定の既定値Xより大きいか否かがチェックされ(S13),該既定値X以下であると判別された場合は,S02へ戻って前記信号選択手段70による信号切り替え及び再度前記倍率測定を行うところから処理が繰り返される(前記再実行制御手段の処理の一例)。
これにより,前記倍率測定(周波数の比較)を行う際に入力した前記外部クロックにノイズが生じていた等により逓倍率Nが正しく設定されていなかった場合であっても,前記倍率測定から再実行されて逓倍率Nの設定がやり直されるので,適正な逓倍率Nが再設定される。
さらに,S13において,前記エラー検知用カウンタxの値が前記既定値Xより大きいと判別された場合,即ち,前記倍率測定からの逓倍率Nの設定のやり直しをX回実行してもなお前記ロック信号が検出されない場合は,前記逓倍率制御部50から不図示の表示装置等に所定のエラー出力(S14)がなされた後,当該逓倍率調整処理が終了する。これにより,逓倍率Nを正常に自動設定できなかったことを利用者に知らせることができる。
以上のような処理を行うことにより,万一,逓倍率Nが正しく設定さなかった場合でも,逓倍率Nが見直されて極力高く適切な逓倍率Nが自動設定される。
【0024】
【発明の効果】
以上説明したように,本発明によれば,独立した基準クロックを必要としない簡易な構成により,PLL等の機器の各個体の性能ばらつきや誤差等による余裕を考慮することなくPLLの性能を最大限引き出し,外部からの入力信号の周波数に応じて,極力高い周波数のクロック信号を生成する周波数逓倍器(装置)を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る周波数逓倍器Zの概略構成を表すブロック図。
【図2】本発明の実施の形態に係る周波数逓倍器Zの概略構成を表すブロック図。
【図3】本発明の実施の形態に係る周波数逓倍器Zにおける外部クロックの倍率測定器の構成の一例を表すブロック図。
【図4】本発明の実施例に係る周波数逓倍装器Z1の概略構成を表すブロック図。
【図5】本発明の実施例に係る周波数逓倍器Z1における逓倍率調整処理の手順を表すフローチャート。
【図6】従来の周波数逓倍器Aの概略構成を表すブロック図。
【符号の説明】
1,10…PLL
2…基準発振器
3,30…倍率測定器
4,40…逓倍率設定手段
11…位相比較器
12…ループフィルタ
13…VCO(可変発振器)
14…分周器
31…基準クロック数カウンタ
32…外部クロック数カウンタ
33…倍率算出手段
50…逓倍率制御部
51…タイマ
60…位相遅延手段
70…信号選択手段(信号切替え手段)
S01,S02,,…処理手順(ステップ)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a frequency multiplier that outputs a signal obtained by multiplying the frequency of an external input signal.
[0002]
[Prior art]
In order to operate semiconductor integrated circuits and option boards at high speed, a signal obtained by multiplying an external input signal (hereinafter referred to as an external clock) using a PLL (Phase Locked Loop) is generated, and the signal is used as an internal clock. Operating the circuit has been performed. Hereinafter, a device (circuit) that multiplies the external clock according to a set multiplication factor using such a PLL is referred to as a frequency multiplier (corresponding to a frequency multiplication device).
In such a frequency multiplier, even if the frequency of the input external clock may be different (not predetermined), in order to operate the internal circuit while maintaining a predetermined high-speed performance, the frequency multiplier should be as high as possible. It is necessary to generate an internal clock having a frequency, that is, to set a multiplication factor as high as possible according to the frequency of the external clock. However, the output frequency of the PLL is usually limited in the band of the oscillation frequency. Therefore, if the frequency of the external clock × the multiplication rate is out of the oscillation frequency range of the PLL, the PLL does not operate. For this reason, it is required to set the highest possible multiplication rate within the frequency range in which the PLL can oscillate.
Patent Documents 1 and 2 disclose that a reference clock (oscillator) is provided internally in such a case that the multiplication factor can be automatically set without setting the multiplication factor externally even in a usage environment where the frequency of the external clock is different. It has been proposed to automatically set the multiplication factor based on a comparison between a clock frequency and the frequency of the external clock.
FIG. 6 is a block diagram illustrating a configuration of a conventional frequency multiplier A based on the technology disclosed in Patent Documents 1 and 2.
As shown in FIG. 6, a conventional frequency multiplier A includes a PLL 1, a reference oscillator 2 for generating a reference clock (a signal to be a reference) used for setting a multiplication factor N, and an output frequency of the reference oscillator 2. And a frequency of the external clock, and a magnification measuring device 3 for measuring the ratio (magnification) of the external clock. Multiplication rate setting means 4 for setting the rate N to the PLL 1.
The PLL 1 also includes a phase comparator 11 for comparing the phases of two input signals, a loop filter 12 for smoothing the phase comparison result (phase deviation) by the phase comparator 11 and outputting a voltage, A VCO 13 (an example of a voltage controlled oscillator or a variable oscillator) for adjusting the frequency of an output signal according to the output voltage of the VCO 12 (that is, based on the result of phase comparison by the phase comparator 11); A frequency divider that divides the frequency by an inverse of the multiplier set by the multiplier setting unit, wherein the external clock and the output signal of the divider are input to the phase comparator. Have been.
Accordingly, the output frequency of the VCO 13 is adjusted so that the phases of the two input signals input to the phase comparator, that is, the external clock and the output signal of the frequency divider 14 are synchronized. Therefore, the output signal of the VCO 13 (that is, the internal clock) is a signal obtained by multiplying the frequency of the external clock by the multiplication factor set in the frequency divider 14.
The multiplication rate setting means 4 sets a predetermined frequency near the maximum output frequency of the VCO 13 to y max When the output frequency of the reference oscillator 2 is a and the magnification of the output frequency a of the reference oscillator 2 with respect to the frequency of the external clock measured by the magnification measuring device 3 is R, for example, the following equation (1) is used. The multiplication factor N is calculated.
N = y max / (A / R) (however, truncation below decimal point) ... (1)
As a result, the maximum magnification N that can be output as much as possible within the range that the VCO 13 can output is calculated according to the measurement result R by the magnification measuring device 3, that is, according to the frequency of the external clock.
[0003]
[Patent Document 1]
JP-A-10-289032
[Patent Document 2]
JP 2001-135038 A
[0004]
[Problems to be solved by the invention]
However, in the configuration shown in FIG. 6 in which the frequency of the external clock is measured using an independent reference clock (the output of the reference oscillator 2) to determine the multiplication factor N, the output of the PLL 1 can be output. The error of the reference clock (error of the reference oscillator 2) and the error of the oscillation frequency of the PLL 1 (errors of the phase comparator 11, the loop filter 12, the VCO 13, etc.) are set in advance so as to fall within the upper limit frequency. It is necessary to set the multiplying factor N with a margin by taking into account the output frequency error). For example, y in equation (1) max Is set lower than the maximum frequency that can be actually output. For this reason, there has been a problem that the maximum capability of the PLL 1 cannot be sufficiently exhibited. In particular, when the reference clock is configured using a simple logic circuit, the error between individuals increases, so a larger margin must be expected, and an accurate reference clock must be generated using an oscillation circuit. Then, the cost increases.
Accordingly, the present invention has been made in view of the above circumstances, and it is an object of the present invention to maximize the performance of a PLL with a simple configuration, and to provide a clock having a highest frequency according to the frequency of an external input signal. An object of the present invention is to provide a frequency multiplier for generating a signal.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a phase comparator for comparing the phases of two input signals, and an output signal for synchronizing the phases of the two input signals based on a comparison result by the phase comparator. A variable oscillator for adjusting the frequency; and a frequency divider for dividing an output signal of the variable oscillator to a reciprocal of a set multiplication factor, wherein an external input signal and an output signal of the frequency divider are output by the frequency divider. In a frequency multiplier configured to be input to a phase comparator, frequency comparison means for comparing the frequency of the external input signal with the frequency of the output signal of the variable oscillator; When performing frequency comparison by the frequency comparison means and the frequency comparison means for setting the multiplication rate based on the multiplication rate, control is performed so that the output signal of the variable oscillator becomes substantially the maximum outputtable frequency. And a force frequency up means, is constituted as a frequency multiplying device characterized by comprising comprises a. Here, the phase comparator, the variable oscillator, and the frequency divider constitute a PLL.
As described above, the multiplication factor is set using the output of the variable oscillator such as the VCO included in the PLL without providing an independent reference clock oscillator. In addition, since the multiplication factor is set based on a comparison between the substantially maximum frequency actually output by the variable oscillator and the frequency of the external input signal, the performance variation and error of each device such as a PLL can be set. There is no need to consider the margin due to. As a result, it is possible to set the multiplication factor that maximizes the performance of the PLL according to the frequency of the external input signal.
[0006]
Further, the output frequency maximizing means delays one of the input signals to the phase comparator with a phase delay means for delaying the phase of the external input signal and a predetermined time for comparing the frequency by the frequency comparing means. Signal switching means for switching to the output signal of the phase delay means before, and switching to the output signal of the frequency divider after setting the multiplication rate by the multiplication rate setting means.
According to this configuration, when one of the input signals to the phase comparator is set as the output signal of the phase delay unit by the signal switching unit, the external input which is the other input signal of the phase comparator is used. Since a phase difference (phase delay) occurs between the signal and the signal, the output frequency of the variable oscillator increases in an attempt to eliminate the phase difference. Here, since the output of the variable oscillator is not fed back to the phase comparator through the frequency divider, the output frequency of the variable oscillator continues to increase until it reaches a plateau at the upper limit. Therefore, if the predetermined time is set to a time sufficient to increase the output frequency of the variable oscillator to a maximum (a peak), the output frequency of the variable oscillator can be made substantially the maximum. Moreover, since the maximum output frequency of the variable oscillator is obtained as a result of operating the components of the PLL such as the phase comparator, variations in the characteristics of the components of the PLL are considered when setting the multiplication factor ( There is no need to provide a margin).
[0007]
Further, it is conceivable that the phase comparator uses an exclusive OR logic circuit and the phase delay unit uses an inverter circuit.
This makes it possible to configure the phase comparator and the phase delay unit with a simple configuration.
[0008]
The frequency comparing means may include a frequency of the external input signal and a frequency of the variable oscillator based on the number of times the output signal of the variable oscillator oscillates while the external input signal oscillates a predetermined number of times. Is compared with the frequency of the output signal.
This makes it possible to perform frequency comparison (measurement) with less error than the frequency comparison based on the number of times the reference clock oscillates while the external input signal oscillates once as in the prior art. Become.
[0009]
A timer using the output signal of the variable oscillator as a clock signal; and, after the multiplication rate is set, the phase comparator compares the input signal from the outside with the external input signal until a predetermined time is measured by the timer. If the synchronization of the phase with the output signal of the frequency divider is not detected, it may be possible to provide a multiplying factor reviewing means for changing the setting of the multiplying factor by one step lower.
Thus, even if the multiplication rate once set is too high and a situation where synchronization cannot be normally performed occurs, the multiplication rate is automatically reviewed so that the multiplication rate can be synchronized.
[0010]
In addition, even if the setting of the multiplying factor is changed a predetermined number of times by the multiplying factor reviewing means, the phase comparator does not detect the phase synchronization between the external input signal and the output signal of the frequency divider. It is also conceivable to provide a re-execution control means for controlling the comparison of the frequency by the frequency comparison means and the setting of the multiplication rate by the multiplication rate setting means again.
Thus, even if the multiplication rate is not set correctly due to noise in the external input signal input when performing the frequency comparison, the comparison is performed again from the frequency comparison. Then, the setting of the multiplication rate is performed again, so that an appropriate multiplication rate is reset.
[0011]
Even if the re-execution is performed a predetermined number of times by the re-execution control means, if the phase comparator does not detect the phase synchronization between the external input signal and the frequency divider output signal, An apparatus having an error output unit for performing a predetermined error output may be considered.
As a result, it is possible to notify the user that the multiplication rate could not be automatically set normally.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments and examples of the present invention will be described with reference to the accompanying drawings to provide an understanding of the present invention. The following embodiments and examples are mere examples embodying the present invention, and do not limit the technical scope of the present invention.
FIG. 1 is a block diagram showing a schematic configuration of a frequency multiplier Z according to an embodiment of the present invention, and FIG. 2 is a diagram showing a phase delay means and a signal selector constituting the frequency multiplier Z according to the embodiment of the present invention. FIG. 3 is a diagram showing an example of a circuit configuration of the means and the phase comparator, FIG. 3 is a block diagram showing an example of a configuration of an external clock magnification measuring device in the frequency multiplier Z according to the embodiment of the present invention, and FIG. FIG. 5 is a block diagram illustrating a schematic configuration of a frequency multiplier Z1 according to an embodiment of the present invention. FIG. 5 is a flowchart illustrating a procedure of a multiplication factor adjustment process in the frequency multiplier Z1 according to the embodiment of the present invention. It is a block diagram showing the schematic structure of the container A.
[0013]
First, the configuration of the frequency multiplier Z according to the embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 1, the frequency multiplier Z includes a PLL 10, a magnification measuring device 30, a magnification setting unit 40, a magnification control unit 50, a phase delay unit 60, and a signal selection unit 70. ing.
The PLL 10, like the conventional PLL 1 shown in FIG. 6, smoothes the phase comparator 11 for comparing the phases of two input signals and the result of phase comparison (phase deviation) by the phase comparator 11. A loop filter 12 that outputs a voltage, and a VCO 13 (a voltage controlled oscillator, a variable oscillator) that adjusts the frequency of an output signal in accordance with the output voltage of the loop filter 12 (that is, based on the result of phase comparison by the phase comparator 11). And a frequency divider 14 for dividing the output signal of the VCO 13 to the reciprocal of the multiplication factor set by the multiplication factor setting means 14.
In the PLL 10, the point that one signal input to the phase comparator 11 is a clock signal (the external clock) input from the outside is the same as the conventional frequency multiplication A. However, the other input signal is not always the output signal of the frequency divider 14 and, depending on the situation, the phase delay means 60 for delaying the phase of the output signal of the frequency divider 14 and the phase of the external clock. A conventional configuration (e.g., a configuration in which one of the output signals (the signal obtained by delaying the phase of the external clock) is selected (switched) by the signal selection unit 70 (an example of the signal switching unit)). 6).
Further, the magnification measuring device 30 (an example of the frequency comparing means) compares the frequency of the output signal of the PLL 10 with the frequency of the external clock, and measures the ratio (magnification) thereof (hereinafter referred to as magnification measurement). ) Therefore, an independent oscillator for the reference clock oscillation (the reference oscillator 2 in FIG. 6) is not provided unlike the related art. Further, the magnification measuring device 30 performs the magnification measurement based on the number of times the external clock oscillates while the output signal of the PLL 10 oscillates a predetermined number of times L.
[0014]
FIG. 3 is a block diagram showing an example of the configuration of the magnification measuring device 30. As shown in FIG. 3, for example, the magnification measuring device 30 includes a reference clock number counter 31 that sequentially counts the number of oscillations (the number of clocks) of the output signal of the VCO 13 and an external clock that sequentially counts the number of oscillations of the external clock. The number of counters 32 and the number of counts (the number of signal oscillations) from each of these counters 31 and 32 are input, and while the external clock number counter 32 counts M times (M ≧ 2), the reference clock number counter 31 And a magnification calculating means 33 for calculating a magnification R (= L / M) of the frequency of the external clock from the number L counted by the above.
This makes it possible to perform the magnification measurement with less error than when performing the magnification measurement based on the number of times the reference clock oscillates while the external clock oscillates once as in the related art.
In FIG. 3, the magnification calculation means 33 for calculating the magnification R is provided independently, but the calculation of the magnification R may be performed by the multiplication magnification setting means 40.
[0015]
On the other hand, the multiplication factor setting means 40 (FIG. 1) sets the multiplication factor N for the PLL 10 (that is, for the frequency divider 14) in the same manner as the conventional multiplication factor setting means 4 shown in FIG. The difference from the conventional one is that the frequency of the external clock is compared with the frequency of the output signal of the PLL 10 (that is, the frequency of the external clock measured by the magnification measuring device 30 is different from the frequency of the external clock). This is the point at which the multiplication factor N is calculated based on the multiplication factor of the output frequency.
Further, the multiplication rate control unit 50 outputs a signal switching signal (a signal designating which input signal is to be selected) to the signal selection unit 70, and outputs the signal to the magnification measurement unit 30. , And outputs a measurement command signal for instructing the timing of the magnification measurement.
With the above-described configuration, when the output signal of the frequency divider 14 is selected to be fed back to the phase comparator 11 by the signal selection unit 70, the output frequency of the VCO 13 is changed to the external clock and the external clock. The phase of the output signal of the frequency divider 14 is adjusted to be synchronized, and the output signal of the VCO 13 (that is, the internal clock) is multiplied by the frequency of the external clock at the multiplication factor set in the frequency divider 14. Signal.
[0016]
The phase delay means 60 may be configured to delay an arbitrary phase by a predetermined circuit. However, if the phase is delayed by 180 ° (that is, inverted) using an inverter circuit, the configuration is simplified. It becomes.
When an output signal of the phase delay unit 60 (a signal obtained by delaying the phase of the external clock) is selected as an input signal to the phase comparator 11 by the signal selection unit 70, the phase comparator 11 always outputs the signal. Since the phase delay is detected, the VCO 13 operates to sequentially increase the output frequency so as to eliminate the phase delay. If this state continues for a while, the output frequency of the VCO 13 becomes the upper limit and saturates. The output frequency of the VCO 13 in this saturated state is the true maximum output frequency of the PLL 10. In other words, the maximum output frequency that is declared in the PLL 10 is a value in which various errors of the phase comparator 11, the loop filter 12, the VCO 12, and the like are expected, and is actually higher than the nominal maximum output frequency. In many cases, frequency can be output. However, since the output frequency varies from one PLL 10 to another, a nominal value is conventionally used as the maximum output frequency of the PLL 10, and an error of the reference clock (the output of the reference oscillator 2) is further added. In consideration of the above, the multiplying factor N must be set so as to obtain a lower output frequency.
[0017]
Therefore, in the frequency multiplier Z, when the magnification measurement (that is, frequency comparison) by the magnification measuring device 30 is performed, the output frequency of the VCO 13 is set to the true maximum value, and the frequency is maximized. The multiplication factor N is set by the multiplication factor setting means 40 based on the multiplication factor (comparison result) of the external clock measured by comparing the frequency of the output signal of the VCO 13 with the frequency of the external clock.
The setting procedure of the multiplication rate N is performed as follows, for example.
First, at the time of start-up (when the power is turned on) or at the time of reset, the multiplication rate control unit 50 outputs a signal switching signal to the signal selecting means 70 so that the delay signal side of the external clock is selected. The state is maintained until a predetermined time sufficient for the output frequency of the VCO 13 to be saturated elapses. After the elapse of the predetermined time (that is, when the output frequency of the VCO 13 is saturated and the output frequency is at the true maximum value (substantially the maximum value)), the multiplying factor control unit 50 outputs the scaling factor. A measurement command signal for instructing the measuring device 30 to perform the magnification measurement is output. As a result, the magnification of the frequency of the external clock with respect to the output frequency (maximum output frequency) of the VCO 13 is measured, and is input to the multiplication factor setting means 40. Here, as means for detecting the time lapse until the output frequency of the VCO 13 saturates, for example, the timer is provided in the multiplier control unit 50 to increase the output frequency of the VCO 13. It measures a sufficient time according to the characteristic (rising speed) and monitors a change in the output voltage of the loop filter 12, and detects that the output frequency of the VCO 13 is saturated when the output voltage stops rising. And so on.
When the multiplier R of the frequency of the external clock is input from the multiplier 30, the multiplier R setting unit 40 sets a value obtained by converting the multiplier R into an integer (for example, truncated below the decimal point) as the multiplier N. Set to the frequency divider 14. Of course, if the frequency divider 14 can perform frequency division other than the reciprocal of an integer value, it is not always necessary to convert the frequency to an integer.
By setting the multiplying factor N in this way, the multiplying factor N is set according to the frequency of the external clock so that the output frequency of the VCO 13 is truly maximized in a range where it can be output. Here, in the multiplication measurement of the frequency of the external clock, the maximum frequency output of the PLL 10 itself used for frequency multiplication is used as a reference, instead of using a reference clock provided separately and independently as in the related art. Therefore, it is not necessary to consider a margin rate in consideration of variations among the PLLs 10 and the like, and it is possible to set a truly maximum multiplication factor N.
[0018]
For example, the frequency of the external clock is 40 MHz, and the maximum output frequency of the PLL 10 (that is, the maximum output frequency of the VCO 13) is 100 MHz at a nominal value, but actually has the capability (margin) to output up to 120 MHz. Think about it. In this case, in the conventional method, the multiplication factor N has to be set to 2 (= 100 ÷ 40 where the decimal part is rounded down) or less with reference to the nominal value of 100 MHz in consideration of the individual variation of the PLL 10. However, there is a case where N = 1 must be considered in consideration of the error of the reference clock. However, according to the frequency multiplier Z, it is confirmed that the PLL 10 actually outputs a 120 MHz signal. Since the multiplication factor N is set after measurement, the multiplication factor N can be set to 3 (= 120 (40). As a result, conventionally, only the internal clock of 80 MHz can be obtained, but according to the frequency multiplier Z, it is possible to obtain the internal clock of 120 MHz, which is 1.5 times that of the internal frequency.
After the multiplying factor N is set by the multiplying factor setting unit 40, the signal is switched by the multiplying factor control unit 50 to the signal selecting unit 70 so that the output signal side of the frequency divider 14 is selected. Output a signal. Thereby, the output signal of the VCO 13 (that is, the internal clock) is adjusted to be a signal obtained by multiplying the frequency of the external clock by the multiplication factor N set in the frequency divider 14.
[0019]
By the way, various types of the phase comparator, such as a positive edge trigger type tri-state output phase comparator for comparing the rising timing of the input pulse signal, an RS flip-flop applied type phase comparator, and the like are conceivable. If the means 60 delays (inverts) the phase by 180 ° by using, for example, an inverter circuit, the phase comparator 11 can use an exclusive-OR logic circuit. .
FIG. 2 is a diagram illustrating an example of a circuit configuration of the phase delay unit 60, the signal selection unit 70, and the phase comparator 11 when an inverter circuit is used as the phase delay unit 60. In the example shown in FIG. 2, the phase delay means 60 comprises an inverter circuit, and the phase comparator 11 comprises an exclusive-or logic circuit. When the selection signal output from the multiplication rate control unit 50 is “0” (OFF), the signal selection unit 70 selects the output signal of the frequency divider 14 and outputs “1” ( ON), the delay signal of the external clock (that is, the output signal of the phase delay unit 60) is selected.
With such a configuration, the combination of the external clock and a signal obtained by delaying the phase of the external clock by 180 ° (combination of inputs to the phase comparator 11) is (1, 0) or (0, 1). The output of the phase comparator 11 (exclusive OR logic circuit) which receives this as an input is always "1" (indicating that there is a phase shift). Thus, the output frequency of the VCO 13 can be increased to a maximum with a simple circuit configuration.
In addition, as a configuration for increasing the output frequency of the VCO 13 to a maximum (configuration of the output frequency maximizing means), a voltage signal input to the VCO 13 is output from the output of the loop filter 12 to the output of the loop filter 12. It is also conceivable that the maximum voltage signal that can be input to the VCO 13 can be selectively switched, and the magnification measurement by the magnification measuring device 30 is performed with the maximum voltage signal being input to the VCO 13. However, in the case of such a configuration, for example, when an error may occur between the maximum value of the output voltage of the loop filter 12 and the maximum voltage signal, the output signal of the PLL 10 is set to the true maximum frequency. It does not mean (error occurs). Therefore, as shown in FIG. 1, it is desirable to increase the frequency of the output signal of the PLL 10 to the maximum while making use of the components of the PLL 10.
[0020]
【Example】
Next, a frequency multiplier Z1 which is an application example of the frequency multiplier Z will be described.
FIG. 4 is a block diagram illustrating a configuration of the frequency multiplier Z1 according to the embodiment of the present invention. As shown in FIG. 4, the frequency multiplier Z1 has a configuration similar to that of the frequency multiplier Z. The difference is that the multiplier control unit 50 uses a timer that uses the output signal of the VCO 13 as a clock. 51, and the multiplication rate control unit 50 outputs a so-called lock signal from the PLL 10 (whether the phase of the external clock and the output signal of the frequency divider 14 are synchronized by the phase comparator 11 or not). Is detected, and the multiplication factor setting means 40 is controlled so as to review the setting of the multiplication factor N based on the lock signal. Other configurations and operations are the same as those of the frequency multiplier Z.
[0021]
Next, the process of setting and reviewing the multiplication factor N (multiplication factor adjustment process) in the frequency multiplier Z1 will be described.
FIG. 5 is a flowchart showing a procedure for adjusting the multiplication factor N, which is controlled by the multiplication factor controller 50 of the frequency multiplier Z1. Hereinafter, S01, S02,... Represent the numbers of the processing procedures (steps).
First, when the adjustment process of the multiplication factor N is started at the time of startup (when the power is turned on) or at the time of reset, a predetermined error detection counter x is initialized (x ← 0) (S01), and the multiplication factor is set. The control unit 50 outputs a signal switching signal to the signal selection means 70 so that the delay signal side (delay input) of the external clock is selected (S02).
Next, the time counted by the timer 51 is used until a sufficient time elapses for the output frequency of the VCO 13 to be saturated (that is, the output frequency of the VCO 13 is saturated and the output frequency becomes a true maximum value (substantially the maximum value). Value)) (S03). During this time, the output frequency of the VCO 13 changes, so that the timer 51 that uses the output signal of the VCO 13 as a clock signal has low timekeeping accuracy. However, there is no problem if a sufficient time is set for the timekeeping time.
Next, by outputting a measurement command signal instructing the magnification measuring device 30 to perform the magnification measurement from the multiplication ratio control unit 50, the VCO 13 output frequency (maximum output frequency) of the frequency of the external clock is output. Is measured (S04).
Next, the multiplication rate control unit 50 counts up (+1) the error detection counter x and initializes a magnification re-measurement counter y used to determine whether or not to execute the magnification measurement again. (Y ← 0) (S05).
Next, the magnification of the frequency of the external clock measured by the magnification measuring device 30 is input to the multiplication factor setting means 40, and the multiplication factor setting means 40 obtains the multiplication factor N based on the multiplication factor. It is set in the frequency divider 14 (S06).
Next, after the magnification re-measurement counter y is counted up (+1) (S07) by the multiplication rate control unit 50, the multiplication rate control unit 50 instructs the signal selection unit 70 to output the signal of the frequency divider 14. A signal switching signal is output so that the output signal side (that is, the loop feedback side in the PLL 10) is selected (S08). As a result, the output adjustment of the VCO 13 starts so that the output signal of the VCO 13 (ie, the internal clock) becomes a signal obtained by multiplying the frequency of the external clock by the multiplication factor N set in the frequency divider 14.
[0022]
Next, a predetermined time is set (timer set) in the timer 51 by the multiplication rate control unit 50 (S09), and the lock signal (two signals) of the PLL 10 is kept until the time is up (elapsed). It is checked whether or not a signal indicating that the phases of the input signals are synchronized (S10, S11). If the lock signal of the PLL 10 is detected before the time is up (Y side of S11), the multiplication rate adjustment process is terminated as it is, but the lock signal is not detected until the time is up. On the Y side of S10, the multiplication rate control unit 50 checks whether or not the magnification remeasurement counter y is larger than a predetermined value Y (≧ 1) (S12). If there is, the process proceeds to S15, and if it is larger than the predetermined value Y, the process proceeds to S13.
When the process proceeds to S15, the multiplying factor controller 50 outputs a signal switching signal to the signal selecting means 70 so that the delay signal side (delay input) of the external clock is selected (S15). Further, the time counted by the timer 51 is used until the time sufficient for the output frequency of the VCO 13 to be saturated elapses (that is, the output frequency of the VCO 13 is saturated and the output frequency becomes a true maximum value (substantially the maximum value). )) (S16), and the multiplying factor setting means 40 reduces the multiplying factor N, which is one step lower than the currently set multiplying factor N (one step), to the frequency divider 14 (step S16). After setting (S17), the above-described processing from S07 is repeated.
After the multiplication rate N is set (S06) by the processing from S06 to S12 to S15 to S17, the lock signal is not detected until a predetermined time is measured by the timer 51 (the phase comparator 11 determines the lock signal). When the synchronization of the phase between the external clock and the output signal of the frequency divider 14 is not detected), the setting of the multiplication rate N is changed by one step lower (an example of the processing of the multiplication rate reviewing means).
By performing such a process, even if the multiplication factor N once set is too high and a situation in which synchronization cannot be normally achieved occurs, the multiplication factor N is automatically adjusted so that the multiplication factor N can be synchronized. Will be reviewed.
[0023]
On the other hand, in S12, when it is determined that the magnification re-measurement counter y is larger than the predetermined value Y, that is, when the lock signal cannot be detected even after decreasing the magnification N by Y steps (Y side of S12). It is checked whether the value of the error detection counter x is greater than a predetermined value X (S13). If it is determined that the value is equal to or less than the predetermined value X, the process returns to S02 to return to the signal selection means 70. The process is repeated from the point at which the signal is switched and the magnification measurement is performed again (an example of the process of the re-execution control unit).
Thus, even if the multiplication factor N is not set correctly due to noise in the external clock input when performing the magnification measurement (frequency comparison), the processing is restarted from the magnification measurement. Then, the multiplying factor N is set again, so that the appropriate multiplying factor N is reset.
Further, in S13, when it is determined that the value of the error detection counter x is larger than the predetermined value X, that is, even if the re-setting of the multiplication factor N from the magnification measurement is executed X times, the lock is still performed. If no signal is detected, a predetermined error output (S14) is output from the multiplication rate control unit 50 to a display device (not shown), and the multiplication rate adjustment processing ends. As a result, it is possible to inform the user that the multiplication factor N has not been automatically set normally.
By performing the above processing, even if the multiplication factor N is not set correctly, the multiplication factor N is reviewed and the appropriate multiplication factor N is automatically set as high as possible.
[0024]
【The invention's effect】
As described above, according to the present invention, with a simple configuration that does not require an independent reference clock, the performance of the PLL can be maximized without considering margins due to performance variations and errors of individual devices such as a PLL. It is possible to provide a frequency multiplier (apparatus) that generates a clock signal having a frequency as high as possible in accordance with the frequency of an input signal from the outside or from the outside.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of a frequency multiplier Z according to an embodiment of the present invention.
FIG. 2 is a block diagram showing a schematic configuration of a frequency multiplier Z according to the embodiment of the present invention.
FIG. 3 is a block diagram illustrating an example of a configuration of an external clock magnification measuring device in the frequency multiplier Z according to the embodiment of the present invention.
FIG. 4 is a block diagram showing a schematic configuration of a frequency doubler Z1 according to the embodiment of the present invention.
FIG. 5 is a flowchart illustrating a procedure of a multiplication factor adjustment process in the frequency multiplier Z1 according to the embodiment of the present invention.
FIG. 6 is a block diagram illustrating a schematic configuration of a conventional frequency multiplier A.
[Explanation of symbols]
1,10 ... PLL
2. Reference oscillator
3, 30 ... magnification measuring device
4, 40... Multiplication rate setting means
11 ... Phase comparator
12 ... Loop filter
13. VCO (variable oscillator)
14 ... frequency divider
31: Reference clock counter
32: External clock number counter
33: Magnification calculation means
50: Multiplication rate control unit
51 ... Timer
60 phase delay means
70 ... Signal selecting means (signal switching means)
S01, S02,... Processing procedure (step)

Claims (7)

2つの入力信号の位相を比較する位相比較器と,該位相比較器による比較結果に基づいて前記2つの入力信号の位相が同期するように出力信号の周波数を調節する可変発振器と,該可変発振器の出力信号を設定された逓倍率の逆数に分周する分周器とを具備し,外部からの入力信号と前記分周器の出力信号とが前記位相比較器に入力されるよう構成された周波数逓倍装置において,
前記外部からの入力信号の周波数と前記可変発振器の出力信号の周波数とを比較する周波数比較手段と,
前記周波数比較手段による比較結果に基づいて前記逓倍率を設定する逓倍率設定手段と,
前記周波数比較手段による周波数の比較を行う際に,前記可変発振器の出力信号が出力可能な略最大の周波数となるよう制御する出力周波数最大化手段と,
を具備してなることを特徴とする周波数逓倍装置。
A phase comparator for comparing phases of two input signals, a variable oscillator for adjusting a frequency of an output signal based on a comparison result by the phase comparator so as to synchronize the phases of the two input signals, and a variable oscillator And a frequency divider that divides the output signal of the frequency divider to the reciprocal of the set multiplication factor. The external input signal and the output signal of the frequency divider are input to the phase comparator. In a frequency multiplier,
Frequency comparing means for comparing the frequency of the external input signal with the frequency of the output signal of the variable oscillator;
Multiplication factor setting means for setting the multiplication factor based on the comparison result by the frequency comparison means;
Output frequency maximizing means for controlling the output signal of the variable oscillator to be substantially the maximum outputtable frequency when comparing the frequencies by the frequency comparing means;
A frequency multiplier comprising:
前記出力周波数最大化手段が,
前記外部からの入力信号の位相を遅延させる位相遅延手段と,
前記位相比較器への入力信号の一方を,前記周波数比較手段による周波数の比較を行う所定時間前に前記位相遅延手段の出力信号に切り替え,前記逓倍率設定手段による前記逓倍率の設定後に前記分周器の出力信号に切り替える信号切替え手段と,を具備するものである請求項1に記載の周波数逓倍装置。
The output frequency maximizing means comprises:
Phase delay means for delaying the phase of the external input signal;
One of the input signals to the phase comparator is switched to the output signal of the phase delay means a predetermined time before the frequency comparison is performed by the frequency comparison means, and the division signal is set after the multiplication rate setting means sets the multiplication rate. 2. The frequency multiplier according to claim 1, further comprising signal switching means for switching to an output signal of the frequency divider.
前記位相比較器がエクスクルージブオアの論理回路を用いるものであり,前記位相遅延手段がインバータ回路を用いるものである請求項2に記載の周波数逓倍装置。3. The frequency multiplier according to claim 2, wherein said phase comparator uses an exclusive-OR logic circuit, and said phase delay means uses an inverter circuit. 前記周波数比較手段が,前記可変発振器の出力信号が所定の複数回数だけ発振する間に前記外部からの入力信号が発振する回数に基づいて,前記外部からの入力信号の周波数と前記可変発振器の出力信号の周波数とを比較するものである請求項1〜3のいずれかに記載の周波数逓倍装置。The frequency comparing means determines the frequency of the external input signal and the output of the variable oscillator based on the number of times the external input signal oscillates while the output signal of the variable oscillator oscillates a predetermined number of times. The frequency multiplier according to any one of claims 1 to 3, wherein the frequency multiplier compares the frequency of the signal. 前記可変発振器の出力信号をクロック信号とするタイマと,
前記逓倍率が設定された後,前記タイマにより所定時間が計時されるまでに,前記位相比較器により前記外部からの入力信号と前記分周器の出力信号との位相の同期が検出されない場合に,前記逓倍率を一段階低く設定変更する逓倍率見直し手段と,を具備してなる請求項1〜4のいずれかに記載の周波数逓倍装置。
A timer using the output signal of the variable oscillator as a clock signal;
When the phase comparator does not detect the phase synchronization between the external input signal and the frequency divider output signal before the timer measures the predetermined time after the multiplication rate is set, The frequency multiplier according to any one of claims 1 to 4, further comprising: a multiplier ratio reviewing unit that changes the setting of the multiplier ratio by one step.
前記逓倍率見直し手段により所定回数だけ前記逓倍率の設定変更を行っても,前記位相比較器により前記外部からの入力信号と前記分周器の出力信号との位相の同期が検出されない場合には,前記周波数比較手段による周波数の比較及び前記逓倍率設定手段による前記逓倍率の設定が再度実行されるよう制御する再実行制御手段を具備してなる請求項5に記載の周波数逓倍装置。If the phase comparator does not detect the synchronization of the phase between the external input signal and the output signal of the frequency divider even if the setting of the multiplier is changed a predetermined number of times by the multiplier reviewer, 6. The frequency multiplication device according to claim 5, further comprising a re-execution control unit that controls the comparison of the frequency by the frequency comparison unit and the setting of the multiplication ratio by the multiplication ratio setting unit to be executed again. 前記再実行制御手段により前記再実行が所定回数だけなされても,前記位相比較器により前記外部からの入力信号と前記分周器の出力信号との位相の同期が検出されない場合には,所定のエラー出力を行うエラー出力手段を具備してなる請求項6に記載の周波数逓倍装置。Even if the re-execution control means performs the re-execution a predetermined number of times, if the phase comparator does not detect the phase synchronization between the external input signal and the output signal of the frequency divider, a predetermined number 7. The frequency multiplier according to claim 6, further comprising error output means for outputting an error.
JP2003033415A 2003-02-12 2003-02-12 Frequency multiplier Pending JP2004247820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003033415A JP2004247820A (en) 2003-02-12 2003-02-12 Frequency multiplier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003033415A JP2004247820A (en) 2003-02-12 2003-02-12 Frequency multiplier

Publications (1)

Publication Number Publication Date
JP2004247820A true JP2004247820A (en) 2004-09-02

Family

ID=33019392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003033415A Pending JP2004247820A (en) 2003-02-12 2003-02-12 Frequency multiplier

Country Status (1)

Country Link
JP (1) JP2004247820A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100693895B1 (en) 2005-08-16 2007-03-12 삼성전자주식회사 Clock multiplier having phase-locked loop circuit
JP2012505598A (en) * 2008-10-07 2012-03-01 クゥアルコム・インコーポレイテッド Method and apparatus for supporting multiple communication modes of operation
US8542658B2 (en) 2006-01-11 2013-09-24 Qualcomm Incorporated Support for wide area networks and local area peer-to-peer networks
JP2016063445A (en) * 2014-09-19 2016-04-25 株式会社ソシオネクスト Pll circuit and semiconductor integrated circuit

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100693895B1 (en) 2005-08-16 2007-03-12 삼성전자주식회사 Clock multiplier having phase-locked loop circuit
US8811369B2 (en) 2006-01-11 2014-08-19 Qualcomm Incorporated Methods and apparatus for supporting multiple communications modes of operation
US9369943B2 (en) 2006-01-11 2016-06-14 Qualcomm Incorporated Cognitive communications
US8804677B2 (en) 2006-01-11 2014-08-12 Qualcomm Incorporated Methods and apparatus for establishing communications between devices with differing capabilities
US8743843B2 (en) 2006-01-11 2014-06-03 Qualcomm Incorporated Methods and apparatus relating to timing and/or synchronization including the use of wireless terminals beacon signals
US8750868B2 (en) 2006-01-11 2014-06-10 Qualcomm Incorporated Communication methods and apparatus related to wireless terminal monitoring for and use of beacon signals
US8750262B2 (en) 2006-01-11 2014-06-10 Qualcomm Incorporated Communications methods and apparatus related to beacon signals some of which may communicate priority information
US8750261B2 (en) 2006-01-11 2014-06-10 Qualcomm Incorporated Encoding beacon signals to provide identification in peer-to-peer communication
US8755362B2 (en) 2006-01-11 2014-06-17 Qualcomm Incorporated Wireless communication methods and apparatus supporting paging and peer to peer communications
US8774846B2 (en) 2006-01-11 2014-07-08 Qualcomm Incorporated Methods and apparatus relating to wireless terminal beacon signal generation, transmission, and/or use
US8879519B2 (en) 2006-01-11 2014-11-04 Qualcomm Incorporated Wireless communication methods and apparatus supporting peer to peer communications
US8553644B2 (en) 2006-01-11 2013-10-08 Qualcomm Incorporated Wireless communication methods and apparatus supporting different types of wireless communication approaches
US8542658B2 (en) 2006-01-11 2013-09-24 Qualcomm Incorporated Support for wide area networks and local area peer-to-peer networks
US8787323B2 (en) 2006-01-11 2014-07-22 Qualcomm Incorporated Wireless communication methods and apparatus supporting synchronization
US8879520B2 (en) 2006-01-11 2014-11-04 Qualcomm Incorporated Wireless communication methods and apparatus supporting wireless terminal mode control signaling
US8885572B2 (en) 2006-01-11 2014-11-11 Qualcomm Incorporated Wireless communication methods and apparatus using beacon signals
US8902866B2 (en) 2006-01-11 2014-12-02 Qualcomm Incorporated Communication methods and apparatus which may be used in the absence or presence of beacon signals
US8902860B2 (en) 2006-01-11 2014-12-02 Qualcomm Incorporated Wireless communication methods and apparatus using beacon signals
US8902865B2 (en) 2006-01-11 2014-12-02 Qualcomm Incorporated Wireless communication methods and apparatus supporting multiple modes
US8902864B2 (en) 2006-01-11 2014-12-02 Qualcomm Incorporated Choosing parameters in a peer-to-peer communications system
US8923317B2 (en) 2006-01-11 2014-12-30 Qualcomm Incorporated Wireless device discovery in a wireless peer-to-peer network
US9277481B2 (en) 2006-01-11 2016-03-01 Qualcomm Incorporated Wireless communication methods and apparatus supporting different types of wireless communciation approaches
JP2012505598A (en) * 2008-10-07 2012-03-01 クゥアルコム・インコーポレイテッド Method and apparatus for supporting multiple communication modes of operation
JP2016063445A (en) * 2014-09-19 2016-04-25 株式会社ソシオネクスト Pll circuit and semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
US9503109B2 (en) Apparatus and methods for synchronizing phase-locked loops
US6208183B1 (en) Gated delay-locked loop for clock generation applications
US6225840B1 (en) Clock generation circuit which reduces a transition time period and semiconductor device using the same
KR100824791B1 (en) Clock multiplier and clock multiplying method
JP5585273B2 (en) PLL circuit, operation method and system of PLL circuit
JP4390353B2 (en) Clock generation method and clock generation circuit
US8648632B2 (en) Digital PLL circuit, semiconductor integrated circuit, and display apparatus
JP2011205328A (en) Local oscillator
EP3196729B1 (en) Signal generator using multi-sampling and edge combining and associated signal generating method
JP2006119123A (en) Phase difference detection device
JP2010233226A (en) Clock generating circuit
JP3566686B2 (en) Multiplier clock generation circuit
JP3995552B2 (en) Clock multiplier circuit
JP2004247820A (en) Frequency multiplier
JP4296135B2 (en) PLL clock output stabilization circuit
JP2017112458A (en) Spread spectrum clock generating circuit and method for generating spread spectrum clock
US9240794B2 (en) Apparatus and methods for phase-locked loop startup operation
JP2004032586A (en) Multiplied pll circuit
JP4371598B2 (en) Multiplication clock generation circuit
JP6950172B2 (en) Spread spectrum clock generation circuit
JP2007049345A (en) Clock generation circuit
JPH10322200A (en) Phase lock detecting circuit
JP2005191684A (en) Clock generating apparatus
JP2004153332A (en) Clock generating circuit
JP7113788B2 (en) Phase lock circuit