JP2004247517A - Molecular magnetic material and method for manufacturing the same - Google Patents

Molecular magnetic material and method for manufacturing the same Download PDF

Info

Publication number
JP2004247517A
JP2004247517A JP2003035780A JP2003035780A JP2004247517A JP 2004247517 A JP2004247517 A JP 2004247517A JP 2003035780 A JP2003035780 A JP 2003035780A JP 2003035780 A JP2003035780 A JP 2003035780A JP 2004247517 A JP2004247517 A JP 2004247517A
Authority
JP
Japan
Prior art keywords
aqueous solution
magnetic material
kcl
temperature
molecular magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003035780A
Other languages
Japanese (ja)
Other versions
JP3837721B2 (en
Inventor
Masafumi Hanawa
雅史 花輪
Hiroshi Moritomo
浩 守友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003035780A priority Critical patent/JP3837721B2/en
Publication of JP2004247517A publication Critical patent/JP2004247517A/en
Application granted granted Critical
Publication of JP3837721B2 publication Critical patent/JP3837721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molecular magnetic material large in the ratio of change in magnetic susceptibility to a temperature in the vicinity of room temperature and not having a temperature hysteresis characteristic, and to provide a method for manufacturing the same. <P>SOLUTION: The molecular magnetic material is described by K<SB>x</SB>Co<SB>y</SB>[Fe(CN)<SB>6</SB>].zH<SB>2</SB>O, wherein 0.44≤x≤0.58, 1.18≤y≤1.24, and 4.17≤z≤5.54. For manufacturing the molecular magnetic material, a water solution comprising CoCl<SB>2</SB>and KCl and a water solution comprising K<SB>3</SB>[Fe(CN)<SB>6</SB>] and KCl are mixed, and the mixture is left for a prescribed period of time for the precipitation of a product to be combined. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、磁化特性が温度ヒステリシスを有さない分子磁性材料、及びその製造方法に関する。
【0002】
【従来の技術】
温度または光照射によって磁化率が変化する分子磁性材料と呼ばれる物質がある。このような特性を有する分子磁性材料は、例えば、光メモリ、温度センサ等のデバイス材料として使用することができ、また分子設計によって特性を種々に調整できるため、今後の機能性材料として注目されている。
温度または光照射によって磁化率が変化する分子磁性材料としては、アルカリ金属を含有したコバルト−鉄シアノ錯体化合物が知られている(特許文献1,2参照)。この物質の結晶構造は図3に示すように、FeとCoがCNを媒介として結合した面心立方格子を形成しており、アルカリ金属は格子間位置に存在している(例えば、非特許文献1参照)。
この分子磁性材料は、温度または光励起をトリガーとして格子の再配列が起こり、CoイオンとFeイオンと間で電荷移動が生じ、磁化状態が変化すると考えられている(例えば、非特許文献2参照)。
【0003】
【特許文献1】
特開平9−246044号公報
【特許文献2】
特開2000−269013号公報
【非特許文献1】
O. Sato 他3名,”Photoinduced Magnetization of a Cobalt−IronCynaide”, Science, 3 May 1996 ,Vol.272, pp.704−705, (pp.704−705,Fig.1−5)
【非特許文献2】
N. Shimamoto他4名,” Control of Charge−Transfer−Induced Spin Transition Temperature on Cobalt−Iron Prussian Blue Analogues”,InorganicChemistry, American Chemical Society, Published on Web 01/2002, Vol.41, No.4, pp.678−684, (p.679, Fig.3, Fig.4, Fig.6, Fig.7)
【0004】
特許文献1の図1には、アルカリ金属として、Naを含有させたコバルト−鉄シアノ錯体化合物からなる分子磁性材料の温度による磁気ヒステリシス特性が示されている。この特性によれば、光照射によって温度を上昇させて磁化率が高い状態を書き込み、温度を下げて磁化率が低い状態を書き込むことが可能であるから、書き換え可能な光メモリ材料として使用することができる。
ところで、上記の分子磁性材料はヒステリシス特性を有しているために、光メモリ材料としては有用であるが、温度に対し磁化率が2値を有するため、温度センサのように温度履歴によらずに磁化率が確定する必要がある用途には不向きである。
【0005】
【発明が解決しようとする課題】
しかしながら従来、温度によって磁化率が変化し、かつ、温度履歴によらずに磁化率が確定する、すなわちヒステリシス特性を有しない分子磁性材料は知られていない。
また、温度センサとして使用する場合には、室温付近で磁化率が大きく変化する分子磁性材料が好ましいが、従来、室温付近で磁化率が大きく変化する分子磁性材料は知られていない。
【0006】
本発明は上記課題に鑑み、室温付近で磁化率の温度に対する変化率が大きく、かつ温度ヒステリシス特性を有しない分子磁性材料、及びその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の分子磁性材料は、化学組成式KCo[Fe(CN)]・zHO(ただし、0.44≦x≦0.58、1.18≦y≦1.24、4.17≦z≦5.54)で表わされる分子磁性材料であって、この分子磁性材料の温度磁化特性が温度ヒステリシスを有さないことを特徴とするものである。
【0008】
前記化学組成式KCo[Fe(CN)]・zHOとしては、好ましくは、化学組成式K0.44Co1.21[Fe(CN)]・5.54HO、K0.52Co1.15[Fe(CN)]・5.52HO、K0.53Co1.18[Fe(CN)]・4.45HO、K0.58Co1.24[Fe(CN)]・4.17HOのいずれか1つであらわされる分子磁性材料である。
【0009】
上記の本発明の分子磁性材料は、室温付近で磁化率の温度に対する変化率が大きく、かつヒステリシス特性を有さないので、例えば、室温近傍の高感度な温度センサ等の用途に好適である。
【0010】
また、本発明の分子磁性材料の製造方法は、CoClとKClからなる水溶液(以下、A水溶液と称する)及びK[Fe(CN)]とKClからなる水溶液(以下、B水溶液と称する)を撹拌して混合する工程と、A水溶液とB水溶液との混合水溶液を所定時間放置し混合水溶液からの生成物を沈殿させる工程と、沈殿物を濾過する工程、とからなることを特徴とする。
上記A水溶液は、CoClを10ミリモル/リットル、KClをxモル/リットル(ただし、x=1,2,3または4)、そしてHOを90ミリリットルの割合で混合した水溶液であり、また、B水溶液は、K[Fe(CN)]を10ミリモル/リットル、KClをxモル/リットル(ただし、x=1,2,3または4)、そしてHOを50ミリリットルの割合で混合した水溶液であることを特徴とする。上記A水溶液とB水溶液とを、容積比で1.8:1の割合で混合することが好ましい。
【0011】
上記の本発明の製造方法による沈殿物は、KCo[Fe(CN)]・zHO(ここで、0.44≦x≦0.58、1.18≦y≦1.24、4.17≦z≦5.54)で表わされる分子磁性材料である。本発明の製造方法は、撹拌、混合、沈殿及び濾過からなり、また、室温で製造できるから、極めて低コストで製造し得る。
【0012】
【発明の実施の形態】
以下、本発明の分子磁性材料及びその製造方法を実施例に基づいて詳細に説明する。
初めに、本発明の分子磁性材料の製造方法を説明する。
最初に、以下に示す組成のA水溶液、及びB水溶液を作製する。
A水溶液はCoClとKClの水溶液であり、CoClが10ミリモル/リットル(mol/l)、KClがXモル/リットル(Xは、0.5 から5程度がよい)、及びHOが90ミリリットルの混合割合になるように混合する。
B水溶液は、鉄シアノカリウム塩、すなわちK[Fe(CN)]とKClの水溶液であり、K[Fe(CN)]が10ミリモル/リットル、KClがXモル/リットル(Xは、0.5 から5程度がよい)、及びHOが50ミリリットルの混合割合となるように混合する。
A水溶液及びB水溶液は、試薬と水を混合した後、試薬が完全に溶解するように約1時間半撹拌し、かつ、24時間放置する。
【0013】
次に、A水溶液とB水溶液とを容積比で1.8:1の割合で混合する。混合の際、B水溶液を撹拌しながら、B水溶液全量に対しA水溶液を約10分間かけて撹拌しながら少しずつ混合していく。さらに、混合した後も約1時間半撹拌を続ける。その後、約24時間放置して生成物を完全に沈殿させる。
【0014】
次に、得られた生成物を適当な孔径を有するフィルターで濾過する。その後、フィルター上の生成物を蒸留水で所定回数洗浄し、空気中や乾燥窒素中において乾燥することにより、固形物として、本発明の化学組成式KCo[Fe(CN)]・zHO(ここで、0.44≦x≦0.58、1.18≦y≦1.24、4.17≦z≦5.54)で表わされる本発明の分子磁性材料が得られる。この磁性材料は、Kを含有したコバルト−鉄シアノ錯体化合物であり、Kはコバルト−鉄シアノ錯体化合物のfcc格子の格子間に存在している。
【0015】
次に、本発明の分子磁性材料の製造方法の特徴について説明する。
従来のコバルト−鉄シアノ錯体化合物の合成は、鉄シアノナトリウム塩Na[Fe(CN)]を原料として合成していた。しかしながら、Na[Fe(CN)]は潮解性が大きく、合成に際しては、Na[Fe(CN)]の潮解を防ぐための様々な工程を必要としていたため、コバルト−鉄シアノ錯体化合物を低コストで合成することができなかった。
本発明の製造方法に使用する[KFe(CN)]は潮解性が小さく、取り扱いが容易であるため、低コストでコバルト−鉄シアノ錯体化合物を合成することができる。
【0016】
また、Na[Fe(CN)]を原料として使用した場合には、潮解性の課題のみでなく、合成されたコバルト−鉄シアノ錯体化合物中にNaが残留してしまうという課題があり、そのためKのみを格子間にドープしたコバルト−鉄シアノ錯体化合物の合成が困難であるという課題があった。
本発明の方法によれば、[KFe(CN)]を原料として使用するので、Kのみドープされたコバルト−鉄シアノ錯体化合物を容易に合成することができる。
【0017】
以下に、上記方法で製造した本発明の分子磁性体の実施例を示す。
(実施例1)
A溶液として、0.117gのCoClと、6.719gのKClを、90ミリリットルのHOに混合し、CoClとKClの濃度比が10mM(ミリモル)/1M(モル)の水溶液を作製した。
また、B溶液として、0.164gのK[Fe(CN)]と、3.728gのKClを50ミリリットルのHOに混合し、K[Fe(CN)]とKClの濃度比が10mM(ミリモル)/1M(モル)のB水溶液を作製した。
A水溶液及びB水溶液それぞれを、約1時間撹拌して、その後、各水溶液中の試薬を完全に溶解させるために約24時間放置した。
【0018】
次に、A水溶液とB水溶液とを、1.8:1の容積比割合で、A水溶液の全量をB水溶液の全量に対して約10分間かけてゆっくり加えた。ここで、B水溶液を最初から撹拌し、A水溶液の全量がB水溶液に加えられた後、さらに撹拌を約1時間継続した。
続いて、A水溶液とB水溶液との混合溶液を約24時間放置して、生成物を完全に沈殿させた。このようにして得られた生成物を1.2μm孔のニトロセルロース系有機ポリマーフィルターで濾過した。さらに、フィルター上の生成物を50ミリリットルの蒸留水で2回洗浄し、空気中で乾燥することにより、固形状の本発明の分子磁性材料、約0.22gを得た。
【0019】
このようにして得られた本発明の分子磁性材料の組成比を化学分析で調べたところ、K0.44Co1.21[Fe(CN)]・5.54HOであった。
【0020】
(実施例2)
A水溶液及びB水溶液のKClを2M(モル)にした以外は、実施例1と同一条件で、本発明の分子磁性材料を合成した。得られた本発明の分子磁性材料の組成を、上記の実施例1と同様に化学分析したところ、組成は、K0.52Co1.15[Fe(CN)]・5.52HOであった。
【0021】
(実施例3)
A水溶液及びB水溶液のKClを3M(モル)にした以外は、実施例1と同一条件で、本発明の分子磁性材料を合成した。得られた本発明の分子磁性材料の組成を上記実施例1と同様に化学分析したところ、組成は、K0.53Co1.18[Fe(CN)]・4.45HOであった。
【0022】
(実施例4)
A水溶液及びB水溶液のKClを4M(モル)にした以外は、実施例1と同一条件で、本発明の分子磁性材料を合成した。得られた本発明の分子磁性材料の組成を上記実施例1と同様に化学分析したところ、組成は、K0.58Co1.24[Fe(CN)]・4.17HOであった。
【0023】
次に、本発明の分子磁性材料の温度に対する磁化特性を示す。
図1は、本発明の分子磁性材料の磁化率と温度の関係を示す図である。図の横軸は温度(K)で、縦軸は磁化率×温度(χT)である。測定に用いた試料は、上記の実施例1から実施例4において作製した試料であり、A水溶液及びB水溶液のKClの量を、それぞれ1M(モル)、2M、3M、4Mとして得られた、化学組成式がK0.44Co1.21[Fe(CN)]・5.54HO、K0.52Co1.15[Fe(CN)]・5.52HO、K0.53Co1.18[Fe(CN)]・4.45HO、及びK0.58Co1.24[Fe(CN)]・4.17HOで表される本発明の分子磁性材料に対応する。
【0024】
図からわかるように、本発明の分子磁性材料は、50Kから350Kまでの温度領域において、温度上昇と共に、χTが増加すると共に、ヒステリシス特性がないことが分かる。また、KClの量が1Mと2Mの本発明の分子磁性材料の場合には、室温付近でχTの温度に対する変化率が大きいことが分かる。
図1の結果から、上記した本発明の分子磁性材料は、室温付近で磁化率の温度に対する変化率が大きく、かつ温度ヒステリシス特性を有さないことがわかる。従って、例えば、室温近傍の高感度な温度センサ等の用途に好適である。
【0025】
次に、本発明の分子磁性材料の温度に対する磁化率の変化がヒステリシスを有さないことを実証する他の測定データを示す。
図2は、本発明の分子磁性材料の格子定数の温度変化を示す図である。図の横軸は温度(K)を示し、縦軸は格子定数(Å)を示している。約100Kから約350Kまで昇温させ、各温度でディフラクトメーターの2θスキャンを行いながら測定した。図において、□(白四角)は、KClが1M(モル)の試料のLS相の格子定数を示し、■(黒四角)はHS相の格子定数を示す。同様に、△(白三角)及び▲(黒三角)は、KClが2Mの試料のLS相とHS相の格子定数を示している。
【0026】
ここで、LS相とHS相について説明する。
アルカリ金属としてNaを含有したコバルト−鉄シアノ錯体化合物においては、スピン状態が異なる2つの相が存在することが知られている(上記非特許文献2参照)。すなわち、二価のFeイオンと三価のCoイオンからなるスピンが小さいLS相と、三価のFeイオンと二価のCoイオンからなるスピンが大きいHS相とが存在し、LS相とHS相とが、おおきな熱ヒステリシスを有して相転移することが知られている。本発明の分子磁性材料は、アルカリ金属としてNaではなくKを含有するコバルト−鉄シアノ錯体化合物であるが、Naを含有したコバルト−鉄シアノ錯体化合物と同様にLS相とHS相とが存在する。
【0027】
図2からわかるように、低温領域ではLS相(□、△)のみが存在し、高温領域においてはHS相(■、▲)のみが存在し、図1の磁化率が急激に変化する温度250K近傍の両相が共存する温度範囲は狭く、特に、KClが1M(モル)の試料(□、■)では極めて狭いことがわかる。このことは、本発明のKを含有したコバルト−鉄シアノ錯体化合物の相転移は、温度によるヒステリシスが極めて小さいことを示している。これは、磁化特性の温度ヒステリシスが極めて小さくなることを意味している。
【0028】
本発明は、上記実施例に限定されることなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。例えば、上記実施の形態で説明した、KCo[Fe(CN)]・zHOの製造方法において、水溶液(A)と水溶液(B)との組成と混合比などは、KCo[Fe(CN)]・zHOの組成に応じて、適宜に調整できることは勿論である。
【0029】
【発明の効果】
上記説明から理解されるように、本発明の分子磁性材料は、磁化率の温度ヒステリシスを有しておらず、また室温付近において磁化率の温度変化率が大きい。従って、温度履歴によらずに磁化率が確定する必要がある用途、例えば温度センサなどに最適な材料である。また、温度変化が磁化率の変化に変換されるので、磁気抵抗効果デバイスの構成要素として使用すれば、極めて高機能なデバイスが実現できる。
本発明の分子磁性材料の製造方法は、極めて簡便であり、従って低コストで本発明の分子磁性材料を提供することができる。また、本発明の製造方法は、鉄シアノカリウム塩、すなわちK[Fe(CN)]を原料として用いるので、純粋にKのみがドープされた分子磁性材料を実現することができる。
【図面の簡単な説明】
【図1】本発明の分子磁性材料の磁化率と温度の関係を示す図である。
【図2】本発明の分子磁性材料の格子定数の温度変化を示す図である。
【図3】コバルト−鉄シアノ錯体化合物の結晶構造を示す図である。
[0001]
[Industrial applications]
The present invention relates to a molecular magnetic material whose magnetization characteristics do not have temperature hysteresis, and a method for manufacturing the same.
[0002]
[Prior art]
There is a substance called a molecular magnetic material whose magnetic susceptibility changes with temperature or light irradiation. Molecular magnetic materials having such characteristics can be used as device materials for optical memories and temperature sensors, for example, and can be variously adjusted in characteristics by molecular design, so that they are attracting attention as future functional materials. .
As a molecular magnetic material whose magnetic susceptibility changes with temperature or light irradiation, a cobalt-iron cyano complex compound containing an alkali metal is known (see Patent Documents 1 and 2). As shown in FIG. 3, the crystal structure of this substance forms a face-centered cubic lattice in which Fe and Co are bonded via CN, and the alkali metal exists at an interstitial position (for example, see Non-Patent Document 1).
In this molecular magnetic material, lattice rearrangement is triggered by temperature or photoexcitation, charge transfer occurs between Co ions and Fe ions, and the magnetization state is considered to change (for example, see Non-Patent Document 2). .
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. Hei 9-246044 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2000-269013 [Non-Patent Document 1]
O. Sato et al., "Photoinduced Magnetization of a Cobalt-IronCynide", Science, 3 May 1996, Vol. 272 pp. 704-705, (pp. 704-705, FIG. 1-5)
[Non-patent document 2]
N. Shimamoto and 4 others, "Control of Charge-Transfer-Induced Spin Translation Temperature on Cobalt-Iron Plush Business Pharmaceutical Business Analogues, Pharmaceuticals and Pharmaceuticals. 41, no. 4, pp. 678-684, (p.679, FIG. 3, FIG. 4, FIG. 6, FIG. 7).
[0004]
FIG. 1 of Patent Document 1 shows the magnetic hysteresis characteristics of a molecular magnetic material comprising a cobalt-iron cyano complex compound containing Na as an alkali metal depending on the temperature. According to this characteristic, it is possible to write a state with a high magnetic susceptibility by raising the temperature by light irradiation and to write a state with a low magnetic susceptibility by lowering the temperature, so that it can be used as a rewritable optical memory material. it can.
By the way, the above molecular magnetic material is useful as an optical memory material because it has a hysteresis characteristic, but since the magnetic susceptibility has two values with respect to temperature, it does not depend on the temperature history like a temperature sensor. It is not suitable for applications where the susceptibility needs to be determined.
[0005]
[Problems to be solved by the invention]
However, conventionally, there is no known molecular magnetic material in which the magnetic susceptibility changes depending on the temperature and the magnetic susceptibility is determined without depending on the temperature history, that is, has no hysteresis characteristics.
When used as a temperature sensor, a molecular magnetic material whose magnetic susceptibility changes greatly near room temperature is preferable, but a molecular magnetic material whose magnetic susceptibility changes largely near room temperature has not been known.
[0006]
In view of the above problems, it is an object of the present invention to provide a molecular magnetic material having a large rate of change in magnetic susceptibility at room temperature near room temperature and having no temperature hysteresis characteristics, and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the molecular magnetic material of the present invention has a chemical composition formula of K x Co y [Fe (CN) 6 ] · zH 2 O (provided that 0.44 ≦ x ≦ 0.58, 1.18) ≤ y ≤ 1.24, 4.17 ≤ z ≤ 5.54), characterized in that the temperature magnetization characteristics of the molecular magnetic material have no temperature hysteresis. .
[0008]
As the chemical composition formula K x Co y [Fe (CN) 6 ] · zH 2 O, preferably, the chemical composition formula K 0.44 Co 1.21 [Fe (CN) 6 ] · 5.54H 2 O, K 0.52 Co 1.15 [Fe (CN) 6 ] .5.52 H 2 O, K 0.53 Co 1.18 [Fe (CN) 6 ] .4.45 H 2 O, K 0.58 Co 1 .24 [Fe (CN) 6 ] .4.17H 2 O is a molecular magnetic material.
[0009]
The above-described molecular magnetic material of the present invention has a large rate of change in magnetic susceptibility to temperature near room temperature and does not have hysteresis characteristics, and thus is suitable for use as a highly sensitive temperature sensor near room temperature, for example.
[0010]
The method for producing a molecular magnetic material according to the present invention includes an aqueous solution comprising CoCl 2 and KCl (hereinafter, referred to as A aqueous solution) and an aqueous solution comprising K 3 [Fe (CN) 6 ] and KCl (hereinafter, referred to as B aqueous solution). A) stirring and mixing, a step of allowing a mixed aqueous solution of the A aqueous solution and the B aqueous solution to stand for a predetermined time to precipitate a product from the mixed aqueous solution, and a step of filtering the precipitate. I do.
The aqueous solution A is an aqueous solution obtained by mixing CoCl 2 at 10 mmol / l, KCl at x mol / l (where x = 1, 2, 3, or 4), and H 2 O at a ratio of 90 ml. , B aqueous solution at a rate of 10 mmol / L of K 3 [Fe (CN) 6 ], x mol / L of KCl (x = 1, 2, 3, or 4), and 50 mL of H 2 O. It is a mixed aqueous solution. It is preferable that the aqueous solution A and the aqueous solution B are mixed at a volume ratio of 1.8: 1.
[0011]
The precipitate obtained by the above-mentioned production method of the present invention is K x Co y [Fe (CN) 6 ] · zH 2 O (where 0.44 ≦ x ≦ 0.58, 1.18 ≦ y ≦ 1.24) , 4.17 ≦ z ≦ 5.54). The production method of the present invention comprises stirring, mixing, precipitation and filtration, and can be produced at room temperature, so that it can be produced at extremely low cost.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the molecular magnetic material of the present invention and the method for producing the same will be described in detail based on examples.
First, a method for producing a molecular magnetic material of the present invention will be described.
First, an aqueous solution A and an aqueous solution B having the following composition are prepared.
The aqueous solution A is an aqueous solution of CoCl 2 and KCl. CoCl 2 is 10 mmol / L (mol / L), KCl is X mol / L (X is preferably about 0.5 to 5), and H 2 O is Mix to a mixing ratio of 90 ml.
The aqueous solution B is an aqueous solution of iron cyano potassium salt, ie, K 3 [Fe (CN) 6 ] and KCl, where K 3 [Fe (CN) 6 ] is 10 mmol / L and KCl is X mol / L (X is , 0.5 to 5) and H 2 O in a mixing ratio of 50 ml.
After mixing the aqueous solution A and the aqueous solution B with the reagent, the mixture is stirred for about one and a half hours so that the reagent is completely dissolved, and left for 24 hours.
[0013]
Next, the A aqueous solution and the B aqueous solution are mixed at a volume ratio of 1.8: 1. At the time of mixing, the aqueous solution A is gradually mixed with the total amount of the aqueous solution B over about 10 minutes while stirring the aqueous solution B while stirring. Further, after the mixing, stirring is continued for about one and a half hours. The product is then left to precipitate completely for about 24 hours.
[0014]
Next, the obtained product is filtered through a filter having an appropriate pore size. Thereafter, the product on the filter is washed with distilled water a predetermined number of times, and dried in air or dry nitrogen, so that the solid composition is represented by the chemical composition formula of K x Co y [Fe (CN) 6 ] · of the present invention. The molecular magnetic material of the present invention represented by zH 2 O (here, 0.44 ≦ x ≦ 0.58, 1.18 ≦ y ≦ 1.24, 4.17 ≦ z ≦ 5.54) is obtained. This magnetic material is a cobalt-iron cyano complex compound containing K, and K exists between lattices of the fcc lattice of the cobalt-iron cyano complex compound.
[0015]
Next, features of the method for producing a molecular magnetic material of the present invention will be described.
In the synthesis of a conventional cobalt-iron cyano complex compound, iron cyano sodium salt Na 3 [Fe (CN) 6 ] was used as a raw material. However, since Na 3 [Fe (CN) 6 ] has a large deliquescent property and requires various steps for preventing the deliquescent of Na 3 [Fe (CN) 6 ] during the synthesis, the cobalt-iron cyano complex is used. The compound could not be synthesized at low cost.
[K 3 Fe (CN) 6 ] used in the production method of the present invention has low deliquescence and is easy to handle, so that a cobalt-iron cyano complex compound can be synthesized at low cost.
[0016]
In addition, when Na 3 [Fe (CN) 6 ] is used as a raw material, there is a problem that Na remains in the synthesized cobalt-iron cyano complex compound in addition to the problem of deliquescent. Therefore, there has been a problem that it is difficult to synthesize a cobalt-iron cyano complex compound in which only K is interstitial-doped.
According to the method of the present invention, since [K 3 Fe (CN) 6 ] is used as a raw material, a cobalt-iron cyano complex compound doped only with K can be easily synthesized.
[0017]
Hereinafter, examples of the molecular magnetic material of the present invention produced by the above method will be described.
(Example 1)
As an A solution, 0.117 g of CoCl 2 and 6.719 g of KCl are mixed with 90 ml of H 2 O to prepare an aqueous solution in which the concentration ratio of CoCl 2 to KCl is 10 mM (mmol) / 1 M (mol). did.
As a B solution, 0.164 g of K 3 [Fe (CN) 6 ] and 3.728 g of KCl are mixed with 50 ml of H 2 O, and the concentrations of K 3 [Fe (CN) 6 ] and KCl are mixed. A B aqueous solution having a ratio of 10 mM (mmol) / 1 M (mol) was prepared.
The aqueous solution A and the aqueous solution B were stirred for about 1 hour, and then allowed to stand for about 24 hours to completely dissolve the reagent in each aqueous solution.
[0018]
Next, the aqueous solution A and the aqueous solution B were slowly added to the total amount of the aqueous solution B over about 10 minutes at a volume ratio of 1.8: 1. Here, the B aqueous solution was stirred from the beginning, and after the entire amount of the A aqueous solution was added to the B aqueous solution, the stirring was further continued for about 1 hour.
Subsequently, the mixed solution of the aqueous solution A and the aqueous solution B was left for about 24 hours to completely precipitate the product. The product thus obtained was filtered through a nitrocellulose-based organic polymer filter having a pore size of 1.2 μm. Further, the product on the filter was washed twice with 50 ml of distilled water and dried in air to obtain about 0.22 g of a solid molecular magnetic material of the present invention.
[0019]
When the composition ratio of the molecular magnetic material of the present invention thus obtained was examined by chemical analysis, it was found to be K 0.44 Co 1.21 [Fe (CN) 6 ] .5.54H 2 O.
[0020]
(Example 2)
The molecular magnetic material of the present invention was synthesized under the same conditions as in Example 1 except that KCl of the aqueous solution A and the aqueous solution B was changed to 2 M (mol). The composition of the obtained molecular magnetic material of the present invention was chemically analyzed in the same manner as in Example 1 described above, and the composition was found to be K 0.52 Co 1.15 [Fe (CN) 6 ] .5.52H 2 O. Met.
[0021]
(Example 3)
The molecular magnetic material of the present invention was synthesized under the same conditions as in Example 1 except that the KCl of the aqueous solutions A and B was changed to 3 M (mol). When the composition of the obtained molecular magnetic material of the present invention was chemically analyzed in the same manner as in Example 1, the composition was K 0.53 Co 1.18 [Fe (CN) 6 ] .4.45H 2 O. Was.
[0022]
(Example 4)
The molecular magnetic material of the present invention was synthesized under the same conditions as in Example 1 except that the KCl of the aqueous solutions A and B was changed to 4 M (mol). When the composition of the obtained molecular magnetic material of the present invention was chemically analyzed in the same manner as in Example 1, the composition was K 0.58 Co 1.24 [Fe (CN) 6 ] .4.17H 2 O. Was.
[0023]
Next, the magnetization characteristics of the molecular magnetic material of the present invention with respect to temperature will be described.
FIG. 1 is a diagram showing the relationship between the magnetic susceptibility and the temperature of the molecular magnetic material of the present invention. The horizontal axis of the figure is temperature (K), and the vertical axis is susceptibility × temperature (ΔT). The samples used for the measurement were the samples prepared in Examples 1 to 4 above, and the amounts of KCl in the aqueous solution A and the aqueous solution B were obtained as 1 M (mol), 2 M, 3 M, and 4 M, respectively. The chemical composition formula is K 0.44 Co 1.21 [Fe (CN) 6 ] · 5.54H 2 O, K 0.52 Co 1.15 [Fe (CN) 6 ] · 5.52H 2 O, K 0 .53 Co 1.18 [Fe (CN) 6 ] .4.45 H 2 O and K 0.58 Co 1.24 [Fe (CN) 6 ] .4.17 H 2 O Corresponds to magnetic materials.
[0024]
As can be seen from the figure, the molecular magnetic material of the present invention shows that ΔT increases as the temperature rises in the temperature range from 50 K to 350 K, and has no hysteresis characteristics. In addition, in the case of the molecular magnetic material of the present invention in which the amount of KCl is 1M and 2M, it can be seen that the change rate of ΔT with respect to the temperature is large near room temperature.
From the results shown in FIG. 1, it is understood that the molecular magnetic material of the present invention described above has a large rate of change in magnetic susceptibility to temperature near room temperature and does not have temperature hysteresis characteristics. Therefore, for example, it is suitable for use as a highly sensitive temperature sensor near room temperature.
[0025]
Next, other measurement data showing that the change of the magnetic susceptibility with respect to the temperature of the molecular magnetic material of the present invention has no hysteresis will be described.
FIG. 2 is a diagram showing a temperature change of the lattice constant of the molecular magnetic material of the present invention. The abscissa in the figure indicates the temperature (K), and the ordinate indicates the lattice constant (Å). The temperature was raised from about 100K to about 350K, and measurement was performed while performing a 2θ scan of a diffractometer at each temperature. In the figure, □ (open square) indicates the lattice constant of the LS phase of the sample having 1 M (mol) of KCl, and ■ (black square) indicates the lattice constant of the HS phase. Similarly, △ (open triangle) and ▲ (closed triangle) indicate the lattice constants of the LS phase and the HS phase of the sample having KCl of 2M.
[0026]
Here, the LS phase and the HS phase will be described.
It is known that a cobalt-iron cyano complex compound containing Na as an alkali metal has two phases having different spin states (see Non-Patent Document 2). That is, there is an LS phase having a small spin composed of divalent Fe ions and trivalent Co ions, and an HS phase having a large spin composed of trivalent Fe ions and divalent Co ions. Is known to undergo a phase transition with large thermal hysteresis. The molecular magnetic material of the present invention is a cobalt-iron cyano complex compound containing K instead of Na as an alkali metal, but has an LS phase and an HS phase similarly to the cobalt-iron cyano complex compound containing Na. .
[0027]
As can be seen from FIG. 2, only the LS phase (□, △) exists in the low temperature region, and only the HS phase (■, 存在) exists in the high temperature region. It can be seen that the temperature range in which both nearby phases coexist is narrow, and in particular, the sample (□, Δ) in which KCl is 1 M (mol) is extremely narrow. This indicates that the phase transition of the K-containing cobalt-iron cyano complex compound of the present invention has extremely low hysteresis with temperature. This means that the temperature hysteresis of the magnetization characteristics becomes extremely small.
[0028]
The present invention is not limited to the above embodiments, and various modifications are possible within the scope of the invention described in the claims, and it goes without saying that they are also included in the scope of the present invention. . For example, in the method for producing K x Co y [Fe (CN) 6 ] · zH 2 O described in the above embodiment, the composition and the mixing ratio of the aqueous solution (A) and the aqueous solution (B) are K x Of course, it can be appropriately adjusted according to the composition of Co y [Fe (CN) 6 ] · zH 2 O.
[0029]
【The invention's effect】
As understood from the above description, the molecular magnetic material of the present invention does not have temperature hysteresis of magnetic susceptibility, and has a large temperature change rate of magnetic susceptibility near room temperature. Therefore, it is an optimal material for applications where the magnetic susceptibility needs to be determined without depending on the temperature history, for example, a temperature sensor. Further, since a change in temperature is converted into a change in magnetic susceptibility, an extremely high-performance device can be realized if used as a component of a magnetoresistive device.
The method for producing a molecular magnetic material of the present invention is extremely simple, and therefore can provide the molecular magnetic material of the present invention at low cost. In addition, the production method of the present invention uses an iron cyano potassium salt, that is, K 3 [Fe (CN) 6 ] as a raw material, so that a molecular magnetic material purely doped with only K can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the magnetic susceptibility and the temperature of the molecular magnetic material of the present invention.
FIG. 2 is a diagram showing a temperature change of a lattice constant of a molecular magnetic material of the present invention.
FIG. 3 is a view showing a crystal structure of a cobalt-iron cyano complex compound.

Claims (5)

化学組成式KCo[Fe(CN)]・zH
(ただし、0.44≦x≦0.58、1.18≦y≦1.24、4.17≦z≦5.54)で表わされる分子磁性材料であり、この磁化特性が温度ヒステリシスを有さないことを特徴とする、分子磁性材料。
Chemical composition formula K x Co y [Fe (CN) 6 ] · zH 2 O
(However, 0.44 ≦ x ≦ 0.58, 1.18 ≦ y ≦ 1.24, 4.17 ≦ z ≦ 5.54), whose magnetization characteristics have a temperature hysteresis. A molecular magnetic material, characterized by not being subjected to any treatment.
前記分子磁性材料が、
0.44Co1.21[Fe(CN)]・5.54HO、
0.52Co1.15[Fe(CN)]・5.52HO、
0.53Co1.18[Fe(CN)]・4.45HO、
0.58Co1.24[Fe(CN)]・4.17HO、
のいずれか1つであることを特徴とする、請求項1に記載の分子磁性材料。
The molecular magnetic material,
K 0.44 Co 1.21 [Fe (CN) 6 ] .5.54H 2 O,
K 0.52 Co 1.15 [Fe (CN) 6 ] · 5.52H 2 O,
K 0.53 Co 1.18 [Fe (CN) 6 ] .4.45H 2 O,
K 0.58 Co 1.24 [Fe (CN) 6 ] .4.17H 2 O,
The molecular magnetic material according to claim 1, wherein the molecular magnetic material is any one of the following.
CoClとKClからなる水溶液およびK[Fe(CN)]とKClからなる水溶液を撹拌して混合する工程と、
上記CoClとKClからなる水溶液および上記K[Fe(CN)]とKClからなる水溶液の混合水溶液を所定時間放置し、この混合水溶液からの生成物を沈殿させる工程と、
この沈殿物を濾過する工程と、からなることを特徴とする、分子磁性材料の製造方法。
Stirring and mixing an aqueous solution comprising CoCl 2 and KCl and an aqueous solution comprising K 3 [Fe (CN) 6 ] and KCl;
Leaving a mixed aqueous solution of the aqueous solution of CoCl 2 and KCl and the aqueous solution of K 3 [Fe (CN) 6 ] and KCl for a predetermined period of time to precipitate a product from the mixed aqueous solution;
Filtering the precipitate. A method for producing a molecular magnetic material, comprising:
前記CoClとKClからなる水溶液は、CoClを10ミリモル/リットル、KClをxモル/リットル(ただし、x=1,2,3または4)、及びHOを90ミリリットルの割合で混合した水溶液であり、前記K[Fe(CN)]とKClからなる水溶液は、K[Fe(CN)]を10ミリモル/リットル、KClをxモル/リットル(ただし、x=1,2,3または4)、及びHOを50ミリリットルの割合で混合した水溶液であることを特徴とする、請求項3に記載の分子磁性材料の製造方法。In the aqueous solution comprising CoCl 2 and KCl, CoCl 2 was mixed at a rate of 10 mmol / L, KCl was mixed at a rate of x mol / L (where x = 1, 2, 3, or 4), and H 2 O was mixed at a rate of 90 mL. The aqueous solution comprising K 3 [Fe (CN) 6 ] and KCl is 10 mmol / L of K 3 [Fe (CN) 6 ] and x mol / L of KCl (where x = 1, 2). , 3 or 4), and an aqueous solution in which H 2 O is mixed at a ratio of 50 ml. 前記CoClとKClからなる水溶液およびK[Fe(CN)]とKClからなる水溶液を撹拌して混合する工程は、上記CoClとKClからなる水溶液および上記K[Fe(CN)]とKClからなる水溶液を、容積比で、1.8:1の割合で混合することを特徴とする、請求項4に記載の分子磁性材料の製造方法。In the step of stirring and mixing the aqueous solution comprising CoCl 2 and KCl and the aqueous solution comprising K 3 [Fe (CN) 6 ] and KCl, the aqueous solution comprising CoCl 2 and KCl and the K 3 [Fe (CN) 6 ] And an aqueous solution comprising KCl are mixed at a volume ratio of 1.8: 1. The method for producing a molecular magnetic material according to claim 4, wherein:
JP2003035780A 2003-02-13 2003-02-13 Molecular magnetic material and method for producing the same Expired - Fee Related JP3837721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003035780A JP3837721B2 (en) 2003-02-13 2003-02-13 Molecular magnetic material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003035780A JP3837721B2 (en) 2003-02-13 2003-02-13 Molecular magnetic material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004247517A true JP2004247517A (en) 2004-09-02
JP3837721B2 JP3837721B2 (en) 2006-10-25

Family

ID=33021099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003035780A Expired - Fee Related JP3837721B2 (en) 2003-02-13 2003-02-13 Molecular magnetic material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3837721B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046399A (en) * 2010-08-30 2012-03-08 National Institute Of Advanced Industrial Science & Technology Electrode material for lithium ion secondary battery using non-defective prussian blue analogue

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046399A (en) * 2010-08-30 2012-03-08 National Institute Of Advanced Industrial Science & Technology Electrode material for lithium ion secondary battery using non-defective prussian blue analogue

Also Published As

Publication number Publication date
JP3837721B2 (en) 2006-10-25

Similar Documents

Publication Publication Date Title
Woodruff et al. Lanthanide single-molecule magnets
Maniaki et al. Coordination clusters of 3d-metals that behave as single-molecule magnets (SMMs): synthetic routes and strategies
Ishida et al. Exchange coupling in TbCu and DyCu single-molecule magnets and related lanthanide and vanadium analogs
Zaleski et al. Metallacryptate single-molecule magnets: Effect of lower molecular symmetry on blocking temperature
Timken et al. Dynamics of spin-state interconversion and cooperativity for ferric spin-crossover complexes in the solid state. 3. Bis [N-(2-(benzylamino) ethyl) salicylaldiminato] iron (III) complexes
Kruger et al. Intramolecular Ferromagnetism in a Novel Hexanuclear (. mu.-Hydroxo)(. mu.-carbonato) copper (II) Bipyridine Complex. Structure of [Cu6 (bpy) 10 (. mu.-CO3) 2 (. mu.-OH) 2](ClO4) 6. cntdot. 4H2O and of a Dinuclear. mu.-Carbonato Complex [Cu2 (bpy) 4 (. mu.-CO3)](PF6) 2. cntdot. 2DMF
Vinslava et al. Molecules at the quantum–classical nanoparticle interface: giant Mn70 single-molecule magnets of∼ 4 nm diameter
Tasiopoulos et al. [Mn12O12 (OMe) 2 (O2CPh) 16 (H2O) 2] 2-single-molecule magnets and other manganese compounds from a reductive aggregation procedure
CN110128674B (en) Water-stable rare earth metal organic framework material for fluorescence detection of sulfonamide antibiotics and preparation method thereof
Sun et al. Lanthanide metal doped organic gel as ratiometric fluorescence probe for selective monitoring of ciprofloxacin
Taguchi et al. Photoswitchable magnetic nanoparticles of Prussian blue with amphiphilic azobenzene
Shi et al. Four coordination polymers based on 1, 4, 8, 11-tetrazacyclotetradecane-N, N′, N ″, N‴-tetra-methylene-benzoic acid: Syntheses, structures, and selective luminescence sensing of iron (III) ions, dichromate anions, and nitrobenzene
Milios et al. The use of methylsalicyloxime in manganese chemistry: A [Mn3III] triangle and its oxidation to a [Mn4IVCe2III] rod
Rogacz et al. Low-coordinate erbium (III) single-molecule magnets with photochromic behavior
Kozlenko et al. Pressure-induced modifications of the magnetic order in the spin-chain compound C a 3 C o 2 O 6
Su et al. Conformational fixation induced fluorescence turn-on of oxytetracycline coordinated on aluminum-based metal-organic frameworks for ultrasensitive sensing application
Sun et al. Supercubane Mixed-Valence Tridecanuclear Manganese Complex
Huang et al. One-pot trapping luminescent rhodamine 110 into the cage of MOF-801 for nitrite detection in aqueous solution
Novio et al. Controlling spin transition in one-dimensional coordination polymers through polymorphism
Jiang et al. A novel naphthalimide-based supramolecular gel for sensing of Fe3+ in aqueous medium and its application
Yan et al. A novel hydrolytically stable fluorescent Cd (II) coordination polymer showing solvent-dependent multi-responsive fluorescence sensing to pH and some metal ions
Dimitrou et al. [Co4O4] 4+ Cubane Core as a Brønsted Base: Preparation and Properties of [Co4O3 (OH)(O2CR) 2 (bpy) 2] 3+ and [Co4O2 (OH) 2 (O2CR) 2 (bpy) 2] 4+ Salts
Chen et al. Two new photochromic coordination compounds with thiazolothiazole extended viologen and two different auxiliary ligands
Zhang et al. Phosphine cleavage of iron (III)-bridged double cubanes: a new route to MoFe3S4 single cubanes
Escuer et al. Use of 6-methylpyridine-2-carbaldehydeoxime in Nickel (II) carboxylate chemistry: Synthetic, structural and magnetic properties of penta and hexanuclear complexes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees