JP2004247109A - Betatron accelerator and acceleration core device for betatron - Google Patents

Betatron accelerator and acceleration core device for betatron Download PDF

Info

Publication number
JP2004247109A
JP2004247109A JP2003034297A JP2003034297A JP2004247109A JP 2004247109 A JP2004247109 A JP 2004247109A JP 2003034297 A JP2003034297 A JP 2003034297A JP 2003034297 A JP2003034297 A JP 2003034297A JP 2004247109 A JP2004247109 A JP 2004247109A
Authority
JP
Japan
Prior art keywords
acceleration
core
charged particle
accelerating
particle beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003034297A
Other languages
Japanese (ja)
Other versions
JP3999140B2 (en
Inventor
Nobuyuki Zumoto
信行 頭本
Akiyoshi Teramoto
昭好 寺本
Isao Uchiki
功 内木
Takahisa Nagayama
貴久 永山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003034297A priority Critical patent/JP3999140B2/en
Publication of JP2004247109A publication Critical patent/JP2004247109A/en
Application granted granted Critical
Publication of JP3999140B2 publication Critical patent/JP3999140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To economically improve incidence efficiency and irradiation efficiency of a betatron accelerator. <P>SOLUTION: Of the betatron accelerator provided with a hollow conductor of a ring shape forming a channel for charged particle beams inside and having an accelerating gap inducing an accelerating field of the charged particle beams, an accelerating core fitted so as to surround the hollow conductor, and an exciting coil wound around the accelerating core and completing the incidence and the irradiation within a period of an operation frequency of the accelerating core, an accelerating voltage by the exciting coil is set high at the incidence of the charged particle beams and low at the acceleration as well as the irradiation. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、研究・医療・工業分野に用いられるベータトロン加速器及びベータトロン用加速装置に関するものである。
【0002】
【従来の技術】
従来のベータトロン加速器の加速コアの駆動用電源は、例えば特許文献1に開示されている。その駆動用電源は、高電圧DC電源をスイッチングしているので、生じる加速電圧の波形は単純な矩形波形状となる。又、特許文献1に開示されている別の駆動用電源は、加速コア励磁巻線を介した二つのコンデンサの誘導的充電関係を使用しているので、加速コア励磁巻線を流れる電流は正弦波形状となり、したがってこれにより励起される加速電圧も正弦波形状となる。
【0003】
【特許文献1】
特開平5−343199号公報(図1,図2,図3)
【0004】
【発明が解決しようとする課題】
ベータトロン加速器性能の重要な指標の一つにビーム出射効率η=(出射ビーム電流Iout)/(入射ビーム電流Iin)があり、通常高出射効率が求められている。上記構成のベータトロン加速器において、ηを最大化する場合、まずビームの入射効率が問題となる。ビーム入射効率は入射時のビーム広がりが小さいほど向上するが、入射時のビーム広がりは荷電粒子の空間電荷効果が原因であり、これを低減するためには、通常加速電圧Vacを高めるしか方法がない。しかし、この場合、コアの鉄損が増大するので、これに対処するために、低損失材を使用すれば材料コスト高となるし、冷却装置の強化で対処しようとすれば、装置コスト高となってしまう問題があった。上記従来の技術で説明した従来のベータトロン加速器用電源では加速電圧波形が単純な矩形形状や正弦波形状しか実現できなかったので、上記問題を回避することができなかった。
【0005】
この発明は、ベータトロン加速器の加速コアの駆動用電源として、供給側の負荷が少なく、大電流を供給できる電源を提供しようとするものである。
又、上記従来のような問題点を解消するためになされたもので、経済的にベータトロン加速器の入射効率や出射効率を高めようとするものである。
さらに又、加速コアに可変電圧を経済的に供給できるベータトロン用加速コア装置を提供しようとするものである。
【0006】
【課題を解決するための手段】
この発明に係わるベータトロン加速器は、内部に荷電粒子ビームの通路を形成し、荷電粒子ビームの加速電場を誘起する加速間隙を有する環状の中空導体と、この中空導体を取り囲むように設けた加速コアと、この加速コアに巻きつけた励磁コイルと、この励磁コイルに電圧を印加する電源とを備え、上記加速コアの運転周波数の1周期以内に粒子の入射から出射までを完了するベータトロン加速器において、上記電源は交流電力を整流・平滑回路により整流電圧に形成し、ブリッジ回路に構成したスイッチ素子により両極性に矩形波電圧を出力するインバータ電源で構成され、粒子の入射から出射までの時間に加速電圧を印加するものである。
【0007】
また、内部に荷電粒子ビームの通路を形成し、荷電粒子ビームの加速電場を誘起する加速間隙を有する環状の中空導体と、この中空導体を取り囲むように設けた加速コアと、この加速コアに巻きつけた励磁コイルと、この励磁コイルに電圧を印加する電源とを備え、上記加速コアの運転周波数の1周期以内に粒子の入射から出射までを完了するベータトロン加速器において、上記励磁コイルによる加速電圧は、荷電粒子ビームの入射時を高く、荷電粒子ビームの加速時と出射時を低く設定するものである。
【0008】
また、ベータトロン加速器において、励磁コイルによる加速電圧は、荷電粒子ビームの入射時を高く、加速時を低く、出射時を高く設定するものである。
【0009】
また、ベータトロン加速器において、励磁コイルによる加速電圧は、荷電粒子ビームの入射時及び加速時を低く、荷電粒子ビームの出射時を高く設定するものである。
【0010】
また、この発明のベータトロン用加速コア装置は、第1の加速コアと、重畳用の第2の加速コアと、上記第1の加速コアを励磁する第1の励磁コイルと、重畳用の上記第2の加速コアを励磁する第2の励磁コイルと、これらの励磁コイルに共通の電源を設け、これらの励磁コイルをスイッチング素子で並列接続と直列接続とに切り替えられるようにしたものである。
【0011】
さらにまた、第1の加速コアと、重畳用の第2の加速コアと、上記第1の加速コアを励磁する第1の励磁コイルを有する第1励磁電源回路と、重畳用の上記第2の加速コアを励磁する第2の励磁コイルを有する第2励磁電源回路とを設けたものである。
【0012】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1であるベータトロン加速器を示す構成図で、励磁電源回路を除いて示してある。ベータトロン加速器は、内部を真空に保ち荷電粒子ビームを周回させる通路を形成し、荷電粒子ビームの加速電場を誘起する加速間隙を有する環状の真空ダクト(銅やステンレスから形成される中空導体)4と、荷電粒子ビームの軌道を真空ダクト4内に維持するために、真空ダクト4を挟むように複数個設置される電磁石3と、荷電粒子ビームの軌道を囲むように中空導体を取り囲んで設置され磁束の時間変化による起電力により荷電粒子ビームを加速する加速コア2と、図示していないが、加速コア2に巻き付けられた加速コア2の励磁コイルに電圧を印加する励磁電源と、真空ダクトに対して荷電粒子ビームを入射させる入射器と、荷電粒子ビームを取り出すビーム取り出し器から構成される。
【0013】
次に動作について説明する。ビーム入射器(図示せず)から荷電粒子ビームを出射させ、真空ダクト(環状の中空導体)4内に導入を開始する。この時点から加速コア2の励磁コイルにおける励磁電源電圧を高電圧とすると、加速コア2の断面を取り囲むビーム軌道上に励磁電圧に等しい誘導電場が発生し、荷電粒子ビームが加速を開始する。加速された荷電粒子ビームは電磁石3により進路を曲げられ、環状の真空ダクト中をほぼ円運動し、励磁電源電圧が印加されている時間継続的に加速される。加速が継続している間にビーム出射器(図示せず)により取り出しを行なう。
【0014】
通常のベータトロン加速器の電磁石3では、磁場を時間的に変化させ、磁場が増大する位相条件下で、加速中の荷電粒子ビームを所定の軌道に維持するようにしているので、最大繰り返し周波数は10〜100Hzが限界であり、ビームデューティー(単位時間あたりビームが出射する時間)は1%以下に限られるが、この実施の形態では、荷電粒子ビームの軌道を規定するための電磁石3の磁場を荷電粒子ビーム軌道の径方向に単調増加または単調減少となるように変化させ、時間的に一定で荷電粒子ビームを所定の軌道に維持するようにしたので、繰り返し周波数を10kHz程度まで向上が可能となり、ビームデューティーを十%以上に向上することができる。例えば、繰り返し周波数1kHz、ビーム時間幅100μs(ビームデューティー:10%)が可能である。
【0015】
実施の形態1における加速コアの励磁コイルにおける励磁電源の電圧波形を図2に示す。図において、荷電粒子ビームの入射時(入射期間)の加速電圧は、
(1+α)Vo、その後の加速時(加速期間)および出射時(出射期間)における加速電圧はVoである。時間t=0でビーム入射器から加速器内にビームが入射し始め、τe=τb−τaで入射を終了する。なお、τbは加速可能時間、τaはτbから入射期間τeを引いた時間で、1粒子の入射から出射までの時間である。τsは励磁電源周波数の1周期の時間を表す。
【0016】
引き続きビームの加速を続け、t=τb―(1+α)(τb―τa)において、最初に入射したビームが出射し始め、t=τbにおいてすべてのビームが出射する。この実施の形態では、例えば、α=1、(図11でt1〜t3の)平均の加速電圧1kV、加速可能時間τb=500μs、入射期間(τb―τa)=100μsとすると、ビーム入射時の加速電圧は2kVとなる。
【0017】
図2の電圧波形を実現する実施の形態1の構成を図3に示す。これと対比して従来の電圧波形を実現する構成を図4に示す。従来では、図4に示すように励磁電源1の電圧Voに相当する加速電圧しか発生できなかった。この実施の形態では図3に示すように、加速コア2を第1加速コア21と第2加速コア22に分割し、これらに対応する第1励磁コイル61,第2励磁コイル62を設け、これらの励磁コイル61,62を並列接続と直列接続とに切り替え可能な双方向スイッチ71,72を設け、電源電圧Voの励磁電源1を接続する。そして、ビーム入射時の高加速電圧が必要な期間には、図3の(上段の)並列接続とすることで、従来と同一の電圧Voの電源を使用した場合でも、ビーム入射時の加速電圧Vac=2Voが得られる。従って、高価な高電圧電源を使用することなく加速電圧の高電圧化が可能となる。
【0018】
又、ビーム加速時と出射時でより低い加速電圧に設定する期間には、図3の下段で励磁コイル61,62を直列接続(巻き数は1ターン)にすることにより、ビーム加速時と出射時に加速電圧Vac=Voが得られる。このように、同一の電圧Voの電源を使用した場合でも、2設定加速電圧を得ることができる。
なお、高価な高電圧電源により加速電圧を2Voとした場合には、図6に示す電圧波形となる。図で、τb’は加速可能期間で半周期より短い。τa’はτb’から入射期間を引いた時間である。
【0019】
実施の形態1では、荷電粒子ビームの入射時には、第1加速コア21の励磁に加えて、第2加速コア22を励磁し、荷電粒子ビームへの印加電圧を倍増させ、時間的に早く入射されたビームのエネルギーを短時間に空間電荷(スペースチャージ)の影響を受けないレベルまで加速しているので、入射効率を向上させることができる。
【0020】
加速コアの励磁コイルの駆動回路(インバータ電源回路)の一般例を図5に示す。サイリスタで構成されるブリッジ回路34とコンデンサC1,C2で整流・平滑回路35を形成する。IGBT( Insulated Gate Bipolar Transistor )とコンデンサでブリッジ回路に構成したスイッチング回路36を形成する。スイッチング回路36内のコンデンサは安定用である。加速コア励磁コイルの巻数比は、N:1で示しているが、1:1でも良い。Io,I1,I2,I3は電流を、Vap,Vacは電圧を表す。Vap,Vac電圧には、矩形波電圧が得られる。
この加速コアの励磁コイルの駆動回路は、出力として矩形波の大電流(例えば1000A)を得ることができ、その時の電源供給側は負荷として少ない電流(数10A)で良く、交流電力供給側の影響が少ないものである。
【0021】
実施の形態1において、コアの断面積S1は入射時を高電圧としない場合のコア断面積S0と比較すると、ビーム入射時に高電圧としている分だけロスを生じるので、S1={1+αD/(fτb)}S0のように拡大する必要がある。この実施の形態1の定数の場合S1=1.2S0となる。なお、Dはビームデューティー、fは駆動電源の周波数である。
【0022】
従来の電源で高加速電圧とした場合のコア発熱とこの実施の形態1の発熱を比較する。コアの発熱で主要な成分は渦電流損Weddyであり、これは電圧の2乗に比例する。従って電圧を倍に設定した従来の図6の場合、4Weddyとなるが、電源のON時間(τb’)が短くなっていることと、従来よりコア断面積が大きいことを考慮すると2Weddyとなる。
【0023】
一方、この実施の形態1の場合は、加速周期に対する倍電圧の時間が200μs/1000μs=0.2なので、渦電流損は(4×0.2+1×0.8)Weddy=1.6Weddy、コア断面積の拡大分を考慮すると、1.33Weddyとなり、渦電流損による発熱を35%低減できるという効果がある。
【0024】
なお、実施の形態1における、励磁コイルの並列と直列との切り替えについては、図3では2個の双方向スイッチを使用しているが、図7のように双方向スイッチに対する電流負荷を減らす目的で、3個の双方向スイッチ73,74,75を使用しても良い。また実施の形態1ではビーム入射時の加速電圧を2Voとしているが、例えば4Voとする場合には、図8に示すようにコアを第1コア23,第2コア24,第3コア25,第4コア26と4分割し、双方向スイッチ素子76,77で並列と直列とを切り替えるようにすればよい。この場合もスイッチ素子に対する電流負荷低減のために、図9のように5個の双方向スイッチ78,79,80,81,82を使用しても良い。
【0025】
実施の形態2
図10はこの発明の実施の形態2における励磁コイルの励磁電源回路を示す構成図である。第1励磁電源11(電圧Vo)は第1加速コア27を第1励磁コイル67により励磁する矩形波電圧出力インバータ電源である。荷電粒子ビームの加速可能期間に亘って低電圧を発生する構成としている。第2励磁電源12(電圧V1)は第2加速コア28を第2励磁コイル68により励磁する矩形波電圧出力インバータ電源である。実施の形態2では、荷電粒子ビームの入射時及び出射時に第1励磁電源11に加えて電圧を発生する構成としている。
【0026】
次に動作について説明する。荷電粒子ビームの入射時には、第1加速コア27の励磁に加えて、第2励磁電源12を印加して第2加速コア28を励磁し、荷電粒子ビームへの印加電圧を倍増(又は複数倍)させ、時間的に早く入射されたビームのエネルギーを短時間に空間電荷(スペースチャージ)の影響を受けないレベルまで加速することによって、入射効率を向上させる。しかし、このままでは図11に示したビームエネルギー図にあるように、主に第1加速コア27により出射エネルギーに達するビームの時間幅が広がってしまう。そのため、このベータトロン加速器を他のシンクロトロン加速器の入射器として使用する場合に次段への入射効率が低下するという問題がある。
【0027】
そこで、図12,図13に示しすように最初に入射したビームが出射エネルギーに到達する時刻t2に第2励磁電源12を再び印加して、時間的に遅く入射したビームの加速電圧を上げることにより、出射ビーム幅を入射時と同一に復元、補正する。これにより、このベータトロン加速器を入射器として使用する場合にも、実施の形態1と同様にコスト低減できる効果が得られる。このときのビームエネルギーを図示すると図13のとおりである。通常の第1加速コア27の励磁用電源(第1励磁電源11)回路はもとより、第2加速コア28の第2励磁電源12回路は、共に整流電圧をブリッジ接続したスイッチング素子により矩形波電圧を出力する、簡単なインバータ電源回路で構成できるため、極めて安価なもので実現できる効果を奏する。
【0028】
実施の形態3.
実施の形態3を図10に基づいて説明する。図10の第1励磁電源11により、第1加速コア27が励磁され、と同時に(図10には示していない)荷電粒子ビームが入射される。実施の形態3における加速コアに印加される加速電圧およびビームエネルギー、ビーム電流の時間的変化を図14に示す。図14において、荷電粒子ビームの入射の完了した時刻をt1とすると、よりt1に近い時刻に入射された方が、励磁される時間が短い分、エネルギー量は少なくなっている。図14において、エネルギーの幅があるのはこのためである。
【0029】
次に、ビームを出射する時刻をt2とすると、時刻t2において、第2励磁電源12により第2加速コア28を励磁し、等価的に第1励磁電源11の出力電圧に加算させる。これにより加速電圧は増加し、時刻t1近傍で入射されたビームも急峻にエネルギーが増大し、上述のエネルギーの幅を小さくすることができる。その結果、最後に入射した荷電粒子が出射を完了する時刻をt3とするとt1>(t3−t2)となる。以上により、図14に示すように、従来とエネルギーは同一で、出射する時間が短くなることから出射時のビームピーク電流を増大でき、出射効率を向上できるという効果がある。特にこのベータトロン加速器を次段の加速器への入射器として使用する場合に、次段へのビーム入射効率を向上できるという効果がある。
【0030】
実施の形態4.
実施の形態4について説明する。実施の形態2では、図10に示すように第1,第2加速コア27,28を励磁しているが、それぞれのコアを、例えば、比較的安価なコア材料として、珪素鋼板を使用した場合の渦電流損を求める。電圧波形のパラメータとして、図12におけるτb=500μs、τa=400μsとする。第1加速コア27に関して、断面積をSo、珪素鋼板に特有の渦電流に係わる定数をCとすると、Wo=C(1/So)Voと計算される。次に、第2加速コア28の断面積は{(500−400)/500}So=0.2Soとなる。第2加速コア28の励磁波形として、まず加速電圧Voで(τb―τa)の時間だけ励磁し、
次に加速電圧―{(τb―τa)/(τb―2(τb―τa))Voで{τb―2(τb―τa)}の時間を励磁しているので、第2加速コアの渦電流損Wo 2は、
Wo2=Wo・(1/0.2)・{2(τb―τa)/τb+(V3/Vo)・(τb―2(τb―τa))/τb}=2.3Woとなる。
【0031】
従って合計の渦電流損はW=Wo+2.3Wo=3.3Woと計算される。上記の渦電流損を低減するために、コア材の珪素鋼板を例えば、鉄系アモルファス材に変更すると、発熱は1/10に低減でき0.33Woにできるが、加速コアコストがほぼ3倍となってしまう。これに対して、この実施の形態4では、第2加速コア28だけを鉄系アモルファス材料とし、第1加速コア27の材質は珪素鋼板のままとする。この場合、コアの発熱は W=Wo+2.3(1/10)Wo=1.23Wo と上述の3.3Woとの比較で37%程度まで低減でき、しかもコスト上昇はコアの体積比から計算して 0.8+3×0.2=1.4 倍程度に抑えられる。すなわち、低損失で低コストな加速コアを提供できるという効果がある。
【0032】
【発明の効果】
以上説明したように、この発明のベータトロン加速器によれば、内部に荷電粒子ビームの通路を形成し、荷電粒子ビームの加速電場を誘起する加速間隙を有する環状の中空導体と、この中空導体を取り囲むように設けた加速コアと、この加速コアに巻きつけた励磁コイルと、この励磁コイルに電圧を印加する電源とを備え、上記加速コアの運転周波数の1周期以内に粒子の入射から出射までを完了するベータトロン加速器において、上記電源は交流電力を整流・平滑回路により整流電圧に形成し、ブリッジ回路に構成したスイッチ素子により両極性に矩形波電圧を出力するインバータ電源で構成され、粒子の入射から出射までの時間に加速電圧を印加するようにしたので、ベータトロン加速器の加速コアの駆動用電源として、交流電力供給側の負荷が少なく、矩形波の大電流を供給できる電源を提供できる。
【0033】
また、内部に荷電粒子ビームの通路を形成し、荷電粒子ビームの加速電場を誘起する加速間隙を有する環状の中空導体と、この中空導体を取り囲むように設けた加速コアと、この加速コアに巻きつけた励磁コイルと、この励磁コイルに電圧を印加する電源とを備え、上記加速コアの運転周波数の1周期以内に粒子の入射から出射までを完了するベータトロン加速器において、上記励磁コイルによる加速電圧は、荷電粒子ビームの入射時を高く、荷電粒子ビームの加速時と出射時を低く設定するようにしたので、経済的に、入射効率を向上させることができる。
【0034】
また、ベータトロン加速器において、励磁コイルによる加速電圧は、荷電粒子ビームの入射時を高く、加速時を低く、出射時を高く設定するようにしたので、経済的に、入射効率を向上させることができ、ベータトロン加速器を入射器としても使用し易い。
【0035】
また、ベータトロン加速器において、励磁コイルによる加速電圧は、荷電粒子ビームの入射時及び加速時を低く、荷電粒子ビームの出射時を高く設定するようにしたので、出射効率を向上させることができる。
【0036】
また、この発明のベータトロン用加速コア装置は、第1の加速コアと、重畳用の第2の加速コアと、上記第1の加速コアを励磁する第1の励磁コイルと、重畳用の上記第2の加速コアを励磁する第2の励磁コイルと、これらの励磁コイルに共通の電源を設け、これらの励磁コイルをスイッチング素子で並列接続と直列接続とに切り替えられるようにしたので、電圧Voの電源を使用した場合でも、2設定加速電圧を得ることができ、所要時期に加速電圧2Voが得られ、高価な高電圧電源を使用することなく加速電圧の高電圧化が可能となる。
【0037】
さらにまた、第1の加速コアと、重畳用の第2の加速コアと、上記第1の加速コアを励磁する第1の励磁コイルを有する第1励磁電源回路と、重畳用の上記第2の加速コアを励磁する第2の励磁コイルを有する第2励磁電源回路とを設けたので、高価な高電圧電源を使用することなく所要な時期に加速電圧の高電圧化が可能となる。
【図面の簡単な説明】
【図1】この発明の実施の形態1であるベータトロン加速器を示す構成図である。による加速器の加速電圧波形。
【図2】実施の形態1における加速コアの励磁コイルにおける励磁電源の電圧波形を示す図である。
【図3】図2の電圧波形を実現する実施の形態1の構成を示す図である。
【図4】従来の電圧波形を実現する構成を対比して示す図である。
【図5】加速コアの励磁コイルの駆動回路を示す図である。
【図6】従来のベータトロン加速器の加速電圧波形を対比して示す図である。
【図7】図2の電圧波形を実現する実施の形態1の第2の構成を示す図である。
【図8】図2の電圧波形を実現する実施の形態1の第3の構成を示す図である。
【図9】図2の電圧波形を実現する実施の形態1の第4の構成を示す図である。
【図10】実施の形態2及び3における励磁コイルの励磁電源回路を示す構成図である。
【図11】実施の形態1による加速電圧,ビームエネルギー及びビーム電流の説明図である。
【図12】実施の形態2による加速電圧波形の説明図である。
【図13】実施の形態2による加速電圧,ビームエネルギー及びビーム電流の説明図である。
【図14】実施の形態3による加速電圧,ビームエネルギー及びビーム電流の説明図である。
【符号の説明】
1,11,12 励磁電源 2 加速コア
3 電磁石 4 真空ダクト(環状中空導体)
21,22,23,24,25,26,27,28 加速コア
61,62,67,68 励磁コイル
71,72,73,74,75,76,77,78,79,80,81,82
双方向性スイッチ素子。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a betatron accelerator and a betatron accelerator used in the research, medical, and industrial fields.
[0002]
[Prior art]
A power supply for driving an acceleration core of a conventional betatron accelerator is disclosed in Patent Document 1, for example. Since the driving power supply switches a high-voltage DC power supply, the waveform of the generated acceleration voltage has a simple rectangular waveform. Another driving power supply disclosed in Patent Document 1 uses an inductive charging relationship between two capacitors via an acceleration core excitation winding, so that the current flowing through the acceleration core excitation winding is sinusoidal. Thus, the acceleration voltage excited thereby has a sinusoidal shape.
[0003]
[Patent Document 1]
JP-A-5-343199 (FIGS. 1, 2 and 3)
[0004]
[Problems to be solved by the invention]
One of the important indices of the betatron accelerator performance is beam extraction efficiency η = (output beam current Iout) / (incident beam current Iin), and usually high output efficiency is required. In the betatron accelerator having the above configuration, when η is maximized, first, the beam incidence efficiency becomes a problem. Although the beam incidence efficiency is improved as the beam spread at the time of incidence is smaller, the beam spread at the time of incidence is due to the space charge effect of charged particles, and the only way to reduce this is to increase the acceleration voltage Vac. Absent. However, in this case, the iron loss of the core increases. To cope with this, if a low-loss material is used, the material cost increases, and if the cooling device is reinforced, the device cost increases. There was a problem. With the conventional power supply for the betatron accelerator described in the above prior art, the acceleration voltage waveform could only be realized in a simple rectangular shape or a sine wave shape, so that the above problem could not be avoided.
[0005]
An object of the present invention is to provide a power source that can supply a large current with a small load on a supply side as a power source for driving an acceleration core of a betatron accelerator.
Another object of the present invention is to solve the above-mentioned conventional problems, and to economically increase the incidence efficiency and emission efficiency of the betatron accelerator.
It is still another object of the present invention to provide a betatron accelerator core device capable of economically supplying a variable voltage to the accelerator core.
[0006]
[Means for Solving the Problems]
A betatron accelerator according to the present invention includes a ring-shaped hollow conductor having a passage for a charged particle beam formed therein and having an acceleration gap for inducing an acceleration electric field of the charged particle beam, and an acceleration core provided to surround the hollow conductor. And an excitation coil wound around the acceleration core, and a power supply for applying a voltage to the excitation coil, wherein the betatron accelerator completes the period from the incidence to the emission of particles within one cycle of the operating frequency of the acceleration core. The power supply comprises an inverter power supply that forms AC power into a rectified voltage by a rectifying / smoothing circuit, and outputs a rectangular wave voltage in both polarities by a switch element configured in a bridge circuit. An acceleration voltage is applied.
[0007]
In addition, an annular hollow conductor having an acceleration gap for inducing an accelerated electric field of the charged particle beam in which a passage of the charged particle beam is formed, an acceleration core provided to surround the hollow conductor, and a coil wound around the acceleration core A betatron accelerator, comprising: an excitation coil attached thereto; and a power supply for applying a voltage to the excitation coil. The betatron accelerator completes the process from the incidence to the emission of particles within one cycle of the operating frequency of the acceleration core. Is to set the charged particle beam high at the time of incidence and low at the time of acceleration and emission of the charged particle beam.
[0008]
In the betatron accelerator, the acceleration voltage by the excitation coil is set to be high when the charged particle beam is incident, low when the charged particle beam is accelerated, and high when the charged particle beam is emitted.
[0009]
Further, in the betatron accelerator, the acceleration voltage by the excitation coil is set low when the charged particle beam is incident and accelerated, and is set high when the charged particle beam is emitted.
[0010]
Further, the acceleration core device for betatron of the present invention includes a first acceleration core, a second acceleration core for superimposition, a first excitation coil for exciting the first acceleration core, and A second excitation coil for exciting the second acceleration core and a common power supply are provided for these excitation coils, and these excitation coils can be switched between parallel connection and series connection by a switching element.
[0011]
Furthermore, a first acceleration core, a second acceleration core for superimposition, a first excitation power supply circuit having a first excitation coil for exciting the first acceleration core, and a second excitation power supply circuit for superimposition. A second excitation power supply circuit having a second excitation coil for exciting the acceleration core.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a configuration diagram showing a betatron accelerator according to Embodiment 1 of the present invention, excluding an excitation power supply circuit. The betatron accelerator has an annular vacuum duct (a hollow conductor made of copper or stainless steel) having an acceleration gap for forming a passage for circulating the charged particle beam while maintaining a vacuum inside, and having an acceleration gap for inducing an accelerating electric field of the charged particle beam. In order to maintain the trajectory of the charged particle beam in the vacuum duct 4, a plurality of electromagnets 3 are provided so as to sandwich the vacuum duct 4, and a plurality of electromagnets 3 are provided so as to surround the trajectory of the charged particle beam. An acceleration core 2 for accelerating the charged particle beam by an electromotive force due to a time change of magnetic flux, an excitation power supply (not shown) for applying a voltage to an excitation coil of the acceleration core 2 wound around the acceleration core 2, and a vacuum duct It is composed of an injector for injecting a charged particle beam and a beam extractor for extracting the charged particle beam.
[0013]
Next, the operation will be described. A charged particle beam is emitted from a beam injector (not shown), and introduction into a vacuum duct (annular hollow conductor) 4 is started. If the excitation power supply voltage of the excitation coil of the acceleration core 2 is set to a high voltage from this point, an induction electric field equal to the excitation voltage is generated on the beam orbit surrounding the cross section of the acceleration core 2, and the charged particle beam starts to accelerate. The path of the accelerated charged particle beam is bent by the electromagnet 3, moves substantially circularly in the annular vacuum duct, and is continuously accelerated while the excitation power supply voltage is applied. Extraction is performed by a beam emitter (not shown) while acceleration is continued.
[0014]
In the electromagnet 3 of a normal betatron accelerator, the magnetic field is changed with time so that the charged particle beam during acceleration is maintained in a predetermined orbit under a phase condition in which the magnetic field increases, so that the maximum repetition frequency is The limit is 10 to 100 Hz, and the beam duty (time for emitting a beam per unit time) is limited to 1% or less. In the present embodiment, the magnetic field of the electromagnet 3 for defining the trajectory of the charged particle beam is limited. By changing the charged particle beam trajectory so as to increase or decrease monotonically in the radial direction of the trajectory of the charged particle beam and maintaining the charged particle beam in a predetermined trajectory at a constant time, the repetition frequency can be improved to about 10 kHz. , The beam duty can be improved to 10% or more. For example, a repetition frequency of 1 kHz and a beam time width of 100 μs (beam duty: 10%) are possible.
[0015]
FIG. 2 shows a voltage waveform of the excitation power supply in the excitation coil of the acceleration core according to the first embodiment. In the figure, the acceleration voltage when the charged particle beam is incident (incident period) is
(1 + α) Vo, and the acceleration voltage during the subsequent acceleration (acceleration period) and emission (emission period) is Vo. At time t = 0, the beam starts to enter the accelerator from the beam injector, and ends when τe = τb−τa. Here, τb is the accelerating time, τa is the time obtained by subtracting the incident period τe from τb, and is the time from the entrance to the exit of one particle. τs represents the time of one cycle of the excitation power supply frequency.
[0016]
The beam continues to be accelerated. At t = τb− (1 + α) (τb−τa), the first incident beam starts to be emitted, and at t = τb, all beams are emitted. In this embodiment, for example, if α = 1, the average acceleration voltage is 1 kV (from t1 to t3 in FIG. 11), the accelerating time τb is 500 μs, and the incident period (τb−τa) is 100 μs, The acceleration voltage becomes 2 kV.
[0017]
FIG. 3 shows a configuration of the first embodiment for realizing the voltage waveform of FIG. FIG. 4 shows a configuration for realizing a conventional voltage waveform by contrast. Conventionally, as shown in FIG. 4, only an acceleration voltage corresponding to the voltage Vo of the excitation power supply 1 can be generated. In this embodiment, as shown in FIG. 3, the acceleration core 2 is divided into a first acceleration core 21 and a second acceleration core 22, and corresponding first and second excitation coils 61 and 62 are provided. Are provided to switch the excitation coils 61 and 62 between parallel connection and series connection, and the excitation power supply 1 of the power supply voltage Vo is connected. Then, during a period in which a high acceleration voltage is required at the time of beam incidence, by connecting in parallel (upper stage) in FIG. 3, the acceleration voltage at the time of beam incidence is used even when a power source of the same voltage Vo as the conventional one is used. Vac = 2Vo is obtained. Therefore, it is possible to increase the acceleration voltage without using an expensive high-voltage power supply.
[0018]
Also, during a period in which the lower accelerating voltage is set during the beam acceleration and during the emission, the exciting coils 61 and 62 are connected in series (the number of turns is one turn) in the lower part of FIG. Sometimes an accelerating voltage Vac = Vo is obtained. As described above, even when the power supplies having the same voltage Vo are used, it is possible to obtain two setting acceleration voltages.
When the acceleration voltage is set to 2 Vo by an expensive high voltage power supply, the voltage waveform shown in FIG. 6 is obtained. In the figure, τb ′ is an acceleration possible period shorter than a half cycle. τa ′ is a time obtained by subtracting the incident period from τb ′.
[0019]
In the first embodiment, when the charged particle beam is incident, the second acceleration core 22 is excited in addition to the excitation of the first acceleration core 21 to double the applied voltage to the charged particle beam, and the charged particle beam is incident earlier. Since the energy of the emitted beam is accelerated in a short time to a level that is not affected by space charge, the incident efficiency can be improved.
[0020]
FIG. 5 shows a general example of a drive circuit (an inverter power supply circuit) for the excitation coil of the acceleration core. A rectifier / smoothing circuit 35 is formed by the bridge circuit 34 composed of a thyristor and the capacitors C1 and C2. A switching circuit 36 configured as a bridge circuit is formed by an IGBT (Insulated Gate Bipolar Transistor) and a capacitor. The capacitor in the switching circuit 36 is for stabilization. The turns ratio of the acceleration core excitation coil is shown as N: 1, but may be 1: 1. Io, I1, I2, and I3 represent current, and Vap and Vac represent voltage. A rectangular wave voltage is obtained as the Vap and Vac voltages.
The drive circuit for the exciting coil of the acceleration core can obtain a large current (for example, 1000 A) of a rectangular wave as an output, and the power supply side at that time needs only a small current (several tens of amps) as a load, and the AC power supply side It has little effect.
[0021]
In the first embodiment, as compared with the core cross-sectional area S0 when the high voltage is not applied at the time of incidence, the core cross-sectional area S1 has a loss corresponding to the high voltage at the time of beam incidence, so that S1 = {1 + αD / (fτb) ) It is necessary to enlarge as shown in} S0. In the case of the constant of the first embodiment, S1 = 1.2S0. Here, D is the beam duty, and f is the frequency of the drive power supply.
[0022]
The heat generation of the core when the conventional power supply is set to a high acceleration voltage and the heat generation of the first embodiment are compared. The main component of the heat generated by the core is the eddy current loss Weddy, which is proportional to the square of the voltage. Therefore, in the case of FIG. 6 in which the voltage is set to double, the current is 4 Weddy, but it is 2 Weddy in consideration of the fact that the ON time (τb ′) of the power supply is shorter and the core cross-sectional area is larger than the conventional case.
[0023]
On the other hand, in the case of the first embodiment, since the time of the doubled voltage with respect to the acceleration cycle is 200 μs / 1000 μs = 0.2, the eddy current loss is (4 × 0.2 + 1 × 0.8) Weddy = 1.6 Weddy, and the core is Taking into account the enlargement of the cross-sectional area, it is 1.33 Weddy, which has the effect of reducing heat generation due to eddy current loss by 35%.
[0024]
Note that, in the first embodiment, two switching switches are used in FIG. 3 for switching the excitation coil between parallel and series, but the purpose is to reduce the current load on the bidirectional switch as shown in FIG. Thus, three bidirectional switches 73, 74, 75 may be used. In the first embodiment, the acceleration voltage at the time of beam incidence is 2 Vo. However, when the acceleration voltage is 4 Vo, for example, as shown in FIG. 8, the cores are the first core 23, the second core 24, the third core 25, and the The four cores 26 may be divided into four parts, and the bidirectional switch elements 76 and 77 may switch between parallel and series. Also in this case, five bidirectional switches 78, 79, 80, 81, and 82 may be used as shown in FIG. 9 to reduce the current load on the switch element.
[0025]
Embodiment 2
FIG. 10 is a configuration diagram showing an excitation power supply circuit of an excitation coil according to Embodiment 2 of the present invention. The first excitation power supply 11 (voltage Vo) is a rectangular wave voltage output inverter power supply that excites the first acceleration core 27 with the first excitation coil 67. The configuration is such that a low voltage is generated over a period during which the charged particle beam can be accelerated. The second excitation power supply 12 (voltage V1) is a rectangular wave voltage output inverter power supply that excites the second acceleration core 28 by the second excitation coil 68. In the second embodiment, a voltage is generated in addition to the first excitation power supply 11 when a charged particle beam enters and exits.
[0026]
Next, the operation will be described. When the charged particle beam is incident, in addition to the excitation of the first acceleration core 27, the second excitation power supply 12 is applied to excite the second acceleration core 28, thereby doubling (or multiplying) the voltage applied to the charged particle beam. Then, the energy of the incident beam is accelerated in a short time to a level that is not affected by space charge (space charge) in a short time, thereby improving the incidence efficiency. However, as it is, as shown in the beam energy diagram shown in FIG. 11, the time width of the beam reaching the emission energy mainly by the first acceleration core 27 is widened. Therefore, when this betatron accelerator is used as an injector of another synchrotron accelerator, there is a problem that the efficiency of incidence to the next stage is reduced.
[0027]
Therefore, as shown in FIGS. 12 and 13, the second excitation power supply 12 is applied again at time t2 when the first incident beam reaches the emission energy, and the acceleration voltage of the lately incident beam is increased. As a result, the output beam width is restored and corrected to the same value as at the time of incidence. Thus, even when this betatron accelerator is used as an injector, the effect of reducing costs can be obtained as in the first embodiment. FIG. 13 shows the beam energy at this time. Not only the excitation power supply (first excitation power supply 11) circuit of the normal first acceleration core 27 but also the second excitation power supply 12 circuit of the second acceleration core 28 converts a rectangular wave voltage by a switching element in which both rectified voltages are bridge-connected. Since it can be constituted by a simple inverter power supply circuit for outputting, there is an effect that can be realized by an extremely inexpensive device.
[0028]
Embodiment 3 FIG.
Embodiment 3 will be described with reference to FIG. The first acceleration core 27 is excited by the first excitation power supply 11 shown in FIG. 10, and at the same time, a charged particle beam (not shown in FIG. 10) is incident. FIG. 14 shows temporal changes in the acceleration voltage, beam energy, and beam current applied to the acceleration core in the third embodiment. In FIG. 14, assuming that the time at which the injection of the charged particle beam is completed is t1, the energy amount is smaller at the time closer to t1 because the excitation time is shorter. This is why there is a range of energy in FIG.
[0029]
Next, assuming that the time at which the beam is emitted is t2, at time t2, the second acceleration core 28 is excited by the second excitation power supply 12 and equivalently added to the output voltage of the first excitation power supply 11. As a result, the acceleration voltage increases, and the energy of the beam incident near time t1 also sharply increases, so that the above-described energy width can be reduced. As a result, t1> (t3-t2), where the time at which the last incident charged particle completes emission is t3. As described above, as shown in FIG. 14, the energy is the same as that of the related art, and the emission time is shortened. Therefore, the beam peak current at the time of emission can be increased and the emission efficiency can be improved. In particular, when the betatron accelerator is used as an injector for the next-stage accelerator, there is an effect that the beam incidence efficiency for the next stage can be improved.
[0030]
Embodiment 4 FIG.
Embodiment 4 will be described. In the second embodiment, the first and second accelerating cores 27 and 28 are excited as shown in FIG. 10, but each core is made of, for example, a silicon steel plate as a relatively inexpensive core material. Find the eddy current loss of As parameters of the voltage waveform, it is assumed that τb = 500 μs and τa = 400 μs in FIG. Assuming that the cross-sectional area is So and the constant relating to the eddy current specific to the silicon steel sheet is C with respect to the first acceleration core 27, Wo = C (1 / So) Vo 2 is calculated. Next, the cross-sectional area of the second acceleration core 28 is {(500-400) / 500} So = 0.2So. As the excitation waveform of the second acceleration core 28, first, the excitation voltage Vo is excited for (τb−τa) time,
Next, since the time of {τb−2 (τb−τa)} is excited by the acceleration voltage − {(τb−τa) / (τb−2 (τb−τa)) Vo, the eddy current of the second acceleration core Loss Wo2 is
Wo2 = Wo · (1 / 0.2) · {2 (τb−τa) / τb + (V3 / Vo) 2 · (τb−2 (τb−τa)) / τb} = 2.3 Wo
[0031]
Therefore, the total eddy current loss is calculated as W = Wo + 2.3Wo = 3.3Wo. When the silicon steel sheet of the core material is changed to, for example, an iron-based amorphous material in order to reduce the above-mentioned eddy current loss, heat generation can be reduced to 1/10 and can be reduced to 0.33Wo, but the acceleration core cost is almost tripled. turn into. On the other hand, in the fourth embodiment, only the second acceleration core 28 is made of an iron-based amorphous material, and the material of the first acceleration core 27 is a silicon steel plate. In this case, the heat generation of the core can be reduced to about 37% by comparing W = Wo + 2.3 (1/10) Wo = 1.23Wo with the above 3.3Wo, and the cost increase is calculated from the core volume ratio. 0.8 + 3 × 0.2 = 1.4 times. That is, there is an effect that a low-loss and low-cost acceleration core can be provided.
[0032]
【The invention's effect】
As described above, according to the betatron accelerator of the present invention, a path of a charged particle beam is formed therein, and an annular hollow conductor having an acceleration gap for inducing an accelerating electric field of the charged particle beam, An acceleration core provided to surround the core; an excitation coil wound around the acceleration core; and a power supply for applying a voltage to the excitation coil. In the betatron accelerator that completes the above, the power supply is configured by an inverter power supply that forms AC power into a rectified voltage by a rectifying / smoothing circuit, and outputs a rectangular wave voltage in both polarities by a switch element configured in a bridge circuit, Since the acceleration voltage is applied during the time from incidence to emission, the AC power supply side is used as a power supply for driving the acceleration core of the betatron accelerator. Load is small, it can provide a power supply capable of supplying a large current of a rectangular wave.
[0033]
In addition, an annular hollow conductor having an acceleration gap for inducing an accelerated electric field of the charged particle beam in which a passage of the charged particle beam is formed, an acceleration core provided to surround the hollow conductor, and a coil wound around the acceleration core A betatron accelerator, comprising: an excitation coil attached thereto; and a power supply for applying a voltage to the excitation coil. The betatron accelerator completes the process from the incidence to the emission of particles within one cycle of the operating frequency of the acceleration core. In this method, the incident time of the charged particle beam is set to be high, and the accelerated time and the emitted time of the charged particle beam are set to be low. Therefore, the incident efficiency can be improved economically.
[0034]
In addition, in the betatron accelerator, the acceleration voltage by the excitation coil is set to be high at the time of incidence of the charged particle beam, low at the time of acceleration, and high at the time of emission of the charged particle beam. It is easy to use the betatron accelerator as an injector.
[0035]
Further, in the betatron accelerator, the acceleration voltage by the excitation coil is set low when the charged particle beam is incident and accelerated, and high when the charged particle beam is emitted, so that the extraction efficiency can be improved.
[0036]
Further, the acceleration core device for betatron of the present invention includes a first acceleration core, a second acceleration core for superimposition, a first excitation coil for exciting the first acceleration core, and A second excitation coil for exciting the second acceleration core and a common power supply for these excitation coils are provided, and these excitation coils can be switched between parallel connection and series connection by a switching element. Even if the power supply is used, it is possible to obtain an acceleration voltage of 2 settings, obtain an acceleration voltage of 2 Vo at a required time, and increase the acceleration voltage without using an expensive high-voltage power supply.
[0037]
Furthermore, a first acceleration core, a second acceleration core for superimposition, a first excitation power supply circuit having a first excitation coil for exciting the first acceleration core, and a second excitation power supply circuit for superimposition. Since the second excitation power supply circuit having the second excitation coil for exciting the acceleration core is provided, the acceleration voltage can be increased at a required time without using an expensive high voltage power supply.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a betatron accelerator according to a first embodiment of the present invention. Accelerator voltage waveform by.
FIG. 2 is a diagram showing a voltage waveform of an excitation power supply in an excitation coil of an acceleration core according to the first embodiment.
FIG. 3 is a diagram showing a configuration of a first embodiment for realizing the voltage waveform of FIG. 2;
FIG. 4 is a diagram showing a configuration for realizing a conventional voltage waveform in comparison.
FIG. 5 is a diagram showing a drive circuit of an excitation coil of the acceleration core.
FIG. 6 is a diagram showing an acceleration voltage waveform of a conventional betatron accelerator in comparison.
FIG. 7 is a diagram showing a second configuration of the first embodiment for realizing the voltage waveform of FIG. 2;
FIG. 8 is a diagram showing a third configuration of the first embodiment for realizing the voltage waveform of FIG. 2;
FIG. 9 is a diagram showing a fourth configuration of the first embodiment for realizing the voltage waveform of FIG. 2;
FIG. 10 is a configuration diagram illustrating an excitation power supply circuit of an excitation coil according to the second and third embodiments.
FIG. 11 is an explanatory diagram of an acceleration voltage, a beam energy, and a beam current according to the first embodiment.
FIG. 12 is an explanatory diagram of an acceleration voltage waveform according to the second embodiment.
FIG. 13 is an explanatory diagram of an acceleration voltage, a beam energy, and a beam current according to the second embodiment.
FIG. 14 is an explanatory diagram of an acceleration voltage, a beam energy, and a beam current according to the third embodiment.
[Explanation of symbols]
1,11,12 Excitation power supply 2 Acceleration core 3 Electromagnet 4 Vacuum duct (annular hollow conductor)
21, 22, 23, 24, 25, 26, 27, 28 Acceleration cores 61, 62, 67, 68 Excitation coils 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82
Bidirectional switch element.

Claims (11)

内部に荷電粒子ビームの通路を形成し、荷電粒子ビームの加速電場を誘起する加速間隙を有する環状の中空導体と、この中空導体を取り囲むように設けた加速コアと、この加速コアに巻きつけた励磁コイルと、この励磁コイルに電圧を印加する電源とを備え、上記加速コアの運転周波数の1周期以内に粒子の入射から出射までを完了するベータトロン加速器において、上記電源は交流電力を整流・平滑回路により整流電圧に形成し、ブリッジ回路に構成したスイッチ素子により両極性に矩形波電圧を出力するインバータ電源で構成され、粒子の入射から出射までの時間に加速電圧を印加することを特徴とするベータトロン加速器。An annular hollow conductor having an accelerating gap for forming an accelerating electric field of the charged particle beam in which a passage of the charged particle beam is formed, an accelerating core provided to surround the hollow conductor, and a coil wound around the accelerating core A betatron accelerator comprising an exciting coil and a power supply for applying a voltage to the exciting coil, wherein the power supply rectifies and converts AC power within one cycle of the operating frequency of the accelerating core to complete the process from incidence to emission of particles. It is composed of an inverter power supply that forms a rectified voltage by a smoothing circuit and outputs a rectangular wave voltage in both polarities by a switch element configured as a bridge circuit, and applies an accelerating voltage during the time from the incidence to emission of particles. Betatron accelerator. 内部に荷電粒子ビームの通路を形成し、荷電粒子ビームの加速電場を誘起する加速間隙を有する環状の中空導体と、この中空導体を取り囲むように設けた加速コアと、この加速コアに巻きつけた励磁コイルと、この励磁コイルに電圧を印加する電源とを備え、上記加速コアの運転周波数の1周期以内に粒子の入射から出射までを完了するベータトロン加速器において、上記励磁コイルによる加速電圧は、荷電粒子ビームの入射時を高く、荷電粒子ビームの加速時と出射時を低く設定することを特徴とするベータトロン加速器。An annular hollow conductor having an accelerating gap for forming an accelerating electric field of the charged particle beam in which a passage of the charged particle beam is formed, an accelerating core provided to surround the hollow conductor, and a coil wound around the accelerating core In a betatron accelerator comprising an excitation coil and a power supply for applying a voltage to the excitation coil, and completing the process from the incidence to the emission of particles within one cycle of the operating frequency of the acceleration core, the acceleration voltage by the excitation coil is: A betatron accelerator characterized in that the charged particle beam is set to be high at the time of incidence and low at the time of acceleration and emission of the charged particle beam. 内部に荷電粒子ビームの通路を形成し、荷電粒子ビームの加速電場を誘起する加速間隙を有する環状の中空導体と、この中空導体を取り囲むように設けた加速コアと、この加速コアに巻きつけた励磁コイルと、この励磁コイルに電圧を印加する電源とを備え、上記加速コアの運転周波数の1周期以内に粒子の入射から出射までを完了するベータトロン加速器において、上記励磁コイルによる加速電圧は、荷電粒子ビームの入射時を高く、加速時を低く、出射時を高く設定することを特徴とするベータトロン加速器。An annular hollow conductor having an accelerating gap for forming an accelerating electric field of the charged particle beam in which a passage of the charged particle beam is formed, an accelerating core provided to surround the hollow conductor, and a coil wound around the accelerating core In a betatron accelerator comprising an excitation coil and a power supply for applying a voltage to the excitation coil, and completing the process from the incidence to the emission of particles within one cycle of the operating frequency of the acceleration core, the acceleration voltage by the excitation coil is: A betatron accelerator characterized in that a charged particle beam is set high during incidence, low during acceleration, and high during extraction. 内部に荷電粒子ビームの通路を形成し、荷電粒子ビームの加速電場を誘起する加速間隙を有する環状の中空導体と、この中空導体を取り囲むように設けた加速コアと、この加速コアに巻きつけた励磁コイルと、この励磁コイルに電圧を印加する電源とを備え、上記加速コアの運転周波数の1周期以内に粒子の入射から出射までを完了するベータトロン加速器において、上記励磁コイルによる加速電圧は、荷電粒子ビームの入射時及び加速時を低く、荷電粒子ビームの出射時を高く設定することを特徴とするベータトロン加速器。An annular hollow conductor having an accelerating gap for forming an accelerating electric field of the charged particle beam in which a passage of the charged particle beam is formed, an accelerating core provided to surround the hollow conductor, and a coil wound around the accelerating core In a betatron accelerator comprising an excitation coil and a power supply for applying a voltage to the excitation coil, and completing the process from the incidence to the emission of particles within one cycle of the operating frequency of the acceleration core, the acceleration voltage by the excitation coil is: A betatron accelerator, wherein the time of incidence and acceleration of a charged particle beam is set low, and the time of emission of a charged particle beam is set high. 第1の加速コアと重畳用の第2の加速コア及びそれらの励磁電源回路とを備えたことを特徴とする請求項1〜請求項4のいずれか1項に記載のベータトロン加速器。The betatron accelerator according to any one of claims 1 to 4, further comprising a first acceleration core, a second acceleration core for superimposition, and an excitation power supply circuit thereof. 上記第1の加速コアを励磁する第1の励磁コイルと、重畳用の上記第2の加速コアを励磁する第2の励磁コイルと、これらの励磁コイルに共通の電源を設け、これらの励磁コイルをスイッチング素子で並列接続と直列接続とに切り替えられるようにしたことを特徴とする請求項5記載のベータトロン加速器。A first excitation coil for exciting the first acceleration core, a second excitation coil for exciting the superimposing second acceleration core, and a common power supply for these excitation coils; 6. The betatron accelerator according to claim 5, wherein switching between the parallel connection and the series connection is performed by a switching element. 上記第1の加速コアと重畳用の上記第2の加速コアとを異なる材質の材料で構成したことを特徴とする請求項5又は請求項6記載のベータトロン加速器。7. The betatron accelerator according to claim 5, wherein the first acceleration core and the second acceleration core for superimposition are made of different materials. 上記環状の中空導体の荷電粒子ビームの通路における荷電粒子ビームの軌道を規定するための磁場を荷電粒子ビーム軌道の径方向に単調増加または単調減少で変化させ、時間的には一定としたことを特徴とする請求項1〜請求項7のいずれか1項に記載のベータトロン加速器。The magnetic field for defining the trajectory of the charged particle beam in the path of the charged particle beam in the annular hollow conductor is monotonically increased or decreased in the radial direction of the charged particle beam trajectory, and is fixed in time. The betatron accelerator according to any one of claims 1 to 7, characterized in that: 第1の加速コアと、重畳用の第2の加速コアと、上記第1の加速コアを励磁する第1の励磁コイルと、重畳用の上記第2の加速コアを励磁する第2の励磁コイルと、これらの励磁コイルに共通の電源を設け、これらの励磁コイルをスイッチング素子で並列接続と直列接続とに切り替えられるようにしたベータトロン用加速コア装置。A first acceleration core, a second acceleration core for superposition, a first excitation coil for exciting the first acceleration core, and a second excitation coil for exciting the second acceleration core for superposition And a common power supply for these exciting coils, and these exciting coils can be switched between parallel connection and series connection by a switching element. 第1の加速コアと、重畳用の第2の加速コアと、上記第1の加速コアを励磁する第1の励磁コイルを有する第1励磁電源回路と、重畳用の上記第2の加速コアを励磁する第2の励磁コイルを有する第2励磁電源回路とを設けたベータトロン用加速コア装置。A first acceleration core, a second acceleration core for superimposition, a first excitation power supply circuit having a first excitation coil for exciting the first acceleration core, and the second acceleration core for superimposition. An acceleration core device for a betatron, comprising: a second excitation power supply circuit having a second excitation coil for excitation. 上記第1の加速コアと重畳用の上記第2の加速コアとを異なる材質の材料で構成したことを特徴とする請求項9又は請求項10記載のベータトロン用加速コア装置。The betatron acceleration core device according to claim 9 or 10, wherein the first acceleration core and the superimposing second acceleration core are made of different materials.
JP2003034297A 2003-02-12 2003-02-12 Betatron accelerator and acceleration core device for betatron Expired - Fee Related JP3999140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003034297A JP3999140B2 (en) 2003-02-12 2003-02-12 Betatron accelerator and acceleration core device for betatron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003034297A JP3999140B2 (en) 2003-02-12 2003-02-12 Betatron accelerator and acceleration core device for betatron

Publications (2)

Publication Number Publication Date
JP2004247109A true JP2004247109A (en) 2004-09-02
JP3999140B2 JP3999140B2 (en) 2007-10-31

Family

ID=33020032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034297A Expired - Fee Related JP3999140B2 (en) 2003-02-12 2003-02-12 Betatron accelerator and acceleration core device for betatron

Country Status (1)

Country Link
JP (1) JP3999140B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521904A (en) * 2013-05-17 2016-07-25 イオンビーム アプリケーションズ, エス.エー. Electron accelerator with coaxial cavity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016521904A (en) * 2013-05-17 2016-07-25 イオンビーム アプリケーションズ, エス.エー. Electron accelerator with coaxial cavity
US9775228B2 (en) 2013-05-17 2017-09-26 Ion Beam Applications S.A. Electron accelerator having a coaxial cavity

Also Published As

Publication number Publication date
JP3999140B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
US8964419B2 (en) Active voltage droop control-type pulse power generator
JP5736887B2 (en) High voltage inverter device
US9929667B2 (en) Circuit for direct energy extraction from a charged-particle beam
Li et al. A dual half-bridge phase-shifted converter with wide ZVZCS switching range
Wang et al. A simple inverter for arc-welding machines with current doubler rectifier
WO2010050486A1 (en) Power inverter
JP2011097688A (en) Power conversion device and power conversion method
WO2021140667A1 (en) Power supply device and electrical propulsion system
Sharifi et al. Generalized three-winding switched-coupled-inductor impedance networks with highly flexible gain
JP2005312293A (en) Regulated power supply
JP2002010486A (en) Capacitor charging device and its method
JP3999140B2 (en) Betatron accelerator and acceleration core device for betatron
JP2015192470A (en) Resonance type dc/dc converter
Chen et al. A series resonant filament power supply with variable structure and oscillation-free switching strategy for high-voltage accelerator application
JP7377708B2 (en) power converter
JP2003243749A (en) Laser power source apparatus
US20220094269A1 (en) Dc pulse power supply device
JP4391924B2 (en) Betatron accelerator
JP4408137B2 (en) Betatron accelerator
Son et al. Development of 120 kV and 60 kW Three Phase LCC Resonant Converter for Electron Beam Welding System
Zhang et al. A new repetitive flat-top pulsed magnetic field power supply for gradient driver in mri
Wang et al. A New Method for Magnetic Gain Modulation of Chemical Oxygen Iodine Laser Based on Flat-Top Pulsed Magnetic Field
US6934165B2 (en) Loosely coupled parallel resonant converter
Saike et al. Implementation of an electrical Isolated Power Supply Module for IGBT Drivers
JPH11145794A (en) Pulsating power source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees