JP2004244751A - Glass fiber sheet and composite material composition using the same - Google Patents

Glass fiber sheet and composite material composition using the same Download PDF

Info

Publication number
JP2004244751A
JP2004244751A JP2003035410A JP2003035410A JP2004244751A JP 2004244751 A JP2004244751 A JP 2004244751A JP 2003035410 A JP2003035410 A JP 2003035410A JP 2003035410 A JP2003035410 A JP 2003035410A JP 2004244751 A JP2004244751 A JP 2004244751A
Authority
JP
Japan
Prior art keywords
glass fiber
sheet
fiber sheet
glass
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003035410A
Other languages
Japanese (ja)
Other versions
JP4345316B2 (en
Inventor
Hiroshige Nakagawa
裕茂 中川
Yasushi Tominaga
康 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003035410A priority Critical patent/JP4345316B2/en
Publication of JP2004244751A publication Critical patent/JP2004244751A/en
Application granted granted Critical
Publication of JP4345316B2 publication Critical patent/JP4345316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a glass fiber sheet which is readily handleable and is not woven at the central part and a composite material which is obtained using the sheet, has a low coefficient of linear expansion and excellent surface smoothness applicable to a substrate for a display device. <P>SOLUTION: The filament glass fiber sheet comprises a sheetlike warp layer in which glass fiber warps stood in the same direction are laid and arranged closely and adjacently and a sheetlike weft layer in which glass fiber wefts are laid and arranged closely and adjacently in the direction perpendicularly to the direction of fiber axis of the sheetlike warp layer. The sheetlike warp layer is laminated to the sheetlike weft layer. The filament glass fiber sheet is woven in a cross state only at both the end parts but not at the central part of the sheet. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、ガラス繊維シート、これを用いた有機無機複合体組成物、および複合体組成物を用いた表示素子用基板に関するものである。
【0002】
【従来の技術】
近年、樹脂基板は軽量であることと可撓性や割れ難い性能であることから、回路用基板の分野だけでなく、液晶用表示素子や有機EL表示素子用の表示素子基板、カラーフィルター基板、太陽電池用基板などの分野にも検討されている。しかし、樹脂基板は線膨張係数が大きく、それが基板の反りなどの問題を引き起こすため線膨張係数の小さな樹脂基板が求められている。
樹脂基板の線膨張係数を低減するため、従来から樹脂とガラス繊維を織り込んだガラスクロスとの複合化が種々行われている。(例えば、特許文献1参照)しかし、ガラスクロスを使用した樹脂との複合体組成物は表面の凹凸が大きく、特に液晶用表示素子や有機EL表示素子用の表示素子基板、カラーフィルター基板、太陽電池用基板などの分野においては、表面平滑性が良好な複合体組成物が求められている。
【0003】
複合体組成物の表面の平滑性を向上させるためにはガラス繊維を織り込まない状態で樹脂と複合体組成物を形成することが重要である。ガラス繊維を織り込まないガラス繊維シートは表面の凹凸が少ないため、これと樹脂との複合体組成物もまた表面の平滑性が優れている。しかし、ガラス繊維を織り込まないガラス繊維シートは取り扱いが非常に困難であるという問題があった。
【0004】
【特許文献1】
特開平05−064857号公報
【0005】
【発明が解決しようとする課題】
本発明は、取り扱いが容易な中央部を織り込まないガラス繊維シートを提供すること、更にそのガラス繊維シートを用い、線膨張係数が小さく、表示素子用基板に応用が可能な表面平滑性が良好な複合体組成物を提供することを目的とする。
【0006】
【課題を解決するための手段】
すなわち本発明は、
(1) 同一方向に並ぶガラス繊維の縦糸が近接又は隣接して敷き整えられたシート状の縦糸層と前記縦糸層の繊維軸方向と直交する方向にガラス繊維の横糸が近接又は隣接して敷き整えられたシート状の横糸層とが積層されている長尺ガラス繊維シートであって、両端部だけをクロス状に織りこみ、中央部は織り込まないことを特徴とする長尺ガラス繊維シート。
(2) 周辺部だけをクロス状に織りこみ、中央部は織り込まないで、同一方向に並ぶガラス繊維の縦糸が近接又は隣接して敷き整えられたシート状の縦糸層と前記縦糸層の繊維軸方向と直交する方向にガラス繊維の横糸が近接又は隣接して敷き整えられたシート状の横糸層が積層されているガラス繊維シート。
(3) (1)、(2)のガラス繊維シートと樹脂とを複合した複合体組成物。
(4) (3)の複合体組成物から、前記ガラス繊維シートの中央部に相当する部分を切り出した複合体組成物。
(5) (4)の複合体組成物を構成要素とした表示素子用基板。
である。
【0007】
【発明の実施の形態】
本発明は取り扱いが容易で中央部を織り込まないガラス繊維シートとそのガラス繊維シートを用いた複合体組成物に関するものである。本発明は例えば、液晶表示素子用基板、有機EL表示素子用基板、カラーフィルター用基板、タッチパネル用基板、太陽電池基板などの光学シート、透明板、光学レンズ、光学素子、光導波路、LED封止材、回路用基板などの表示素子用基板に好適に用いることができる。
本発明に用いられるガラス繊維は、通常7〜13μmの単繊維を単繊維総本数200〜24000本程度束ねたガラスヤーンまたはガラスロービングを主に用いるが、これに限定されない。なおガラスヤーンとは単繊維を斜め方向に撚ったガラス繊維のことであり、ガラスロービングとは単繊維の束が全て直進方向のガラス繊維のことである。
ガラスクロスはガラス繊維を縦方向、横方向に織り込んでいるため、縦方向のガラス繊維と横方向のガラス繊維が交差する部分が表面の凹凸差として現れる。このガラスクロスと樹脂を複合して複合体組成物を製造した場合、ガラスクロス表面の凹凸差のある部分が、複合体組成物の表面に凹凸差として現れるため表面の平滑性は損なわれてしまう。この凹凸差は、例えば表面にさらに樹脂層を設けることで軽減されるが、一般に樹脂は硬化収縮があるため、樹脂層が厚い部分はへこみ、凹凸差が十分に解消されない。また、透明樹脂を用い、複合体組成物を表示素子用の透明基板として用いた時、ガラス繊維近傍での樹脂の配向や熱応力等によって繊維軸方向にリタデーションが発生し、ガラスクロスの繊維軸が打ち消されるようにガラス繊維が配列されていない部分では、表示素子としたときに、クロスニコルでの光漏れが生じてしまう。
【0008】
そこでガラス繊維を織り込まず、同一方向に並ぶガラス繊維の縦糸が近接又は隣接して敷き整えられたシート状の縦糸層と縦糸層の繊維軸方向と直交する方向にガラス繊維の横糸が近接又は隣接して敷き整えられたシート状の横糸層とが積層されているガラス繊維シートを用い、樹脂と複合させることにより、これらの問題を解決した複合体組成物を得ることができる。しかしながら、ガラス繊維を織り込まないものは、取り扱いが非常に困難であり、縦糸と横糸を直交させた状態を維持することができない。そのため、縦横の糸を中央部は織り込まず、左右の両端部だけをクロス状に織り込むことによって、縦糸と横糸を直交させた状態を維持した長尺のガラス繊維シートを得ることができる。複合体組成物を得るためには、続いて、樹脂を含浸・塗布、乾燥・硬化させればよく、こうする事によって、縦糸層と横糸層は樹脂により一体化され、縦糸と横糸を直交させた状態を維持した複合体組成物を製造することができる。
また、連続的に複合体組成物を製造しなくても、ガラス繊維シートの上下の部分も幅方向に樹脂で固定するか、クロス状に織り込むことで、枚葉のガラス繊維シートとして取り出すことができ、この場合には一般に行われるプレス成形によっても複合体組成物を製造することが可能である。
【0009】
上記の様にして得られるガラス繊維シートと複合させる樹脂については特に限定しないが、具体的にはエポキシ樹脂、フェノール樹脂、ポリイミド樹脂、アクリル樹脂、ポリエステル樹脂、ポリカーボネート樹脂、シアネートエステル樹脂、環状ポリオレフィン樹脂、などを挙げることができる。これらの樹脂は、単独で用いても複数を混合して用いても良い。また、必要に応じて、目的とする複合体組成物の特性を損なわない範囲で、少量の酸化防止剤、紫外線吸収剤、染顔料、フィラー等の充填剤等を含んでいても良い。
透明度の高いエポキシ樹脂及び硬化剤を用いることにより、回路用基板だけでなく、液晶表示素子用基板、有機EL表示素子用基板、カラーフィルター用基板、タッチパネル用基板、太陽電池基板などの光学シート、透明板に使用することができる。
【0010】
ガラス繊維シートと樹脂の複合化方法についても特に限定しない。含浸しても、塗布しても良く、溶融させた状態の樹脂をスプレーで吹き付けても良く、樹脂をガラス繊維シートにラミネートしても構わない。また、樹脂は粉体の状態で取り扱っても良く、溶融させても、ワニス状にして取り扱っても構わない。
【0011】
【実施例】
以下に実施例により本発明を具体的に説明するが、本発明はこれらの例によって何ら限定されるものではない。
(実施例1)
図1に示すように、縦方向のガラス繊維(1)を、ガラスクロスを織る時と同様に一列に並べた。この時ガラス繊維シートの左右両端2cmの箇所は縦方向のガラス繊維(1)を、ガラスクロスを織る時と同様に、図4に示すヘルド(5)に通した。ガラス繊維シートの中央部のガラス繊維はヘルド(5)の位置より高い、もしくは低い位置の棒またはロール(7)に掛けておき、この棒またはロールの位置は固定しておいた。縦方向のガラス繊維(1)は全て櫛形状をしたドロッパ(8)に通し、縦方向のガラス繊維同志が重ならない様に調整した。図2に示す横方向のガラス繊維(3)は、図示しないが、ガラスクロスを織る時と同様にシャトルにより、(2)の空間部分に通した。この後、筏(6)で横糸と縦糸を矢印の方向に抑え、筏(6)を元の位置に戻した後、ヘルド(5)の位置を図5のように上下反転させ、図5(2)の空間部分にシャトルを戻した。以上のような操作を繰り返して、左右両端の箇所だけを織り込んだ本発明の長尺ガラス繊維シートを作製した。図2に、本発明の長尺ガラス繊維シートを横糸側から見た平面図を示す。また、図3は、本発明のガラス繊維シートの断面を示す図である。ガラス繊維はEガラス系ガラスヤーン(単繊維径:7μm、単繊維の総本数200本、ユニチカ社製)を使用した。
このガラス繊維シートにトリグリシジルイソシアヌレート(日産化学工業製TEPIC)90重量部、ビスフェノールS型エポキシ樹脂(大日本インキ化学工業製エピクロンEXA1514)10重量部、メチル水添無水ナジック酸(新日本理科製リカシッドHNA−100)170重量部、テトラフェニルホスホニウムブロマイド(北興化学工業製TPP−PB)2重量部を110℃にて溶融混合した樹脂を押し出し機にて樹脂温110℃にて押し出し、ダイス(4)から出てくる樹脂を連続的にガラス繊維シートに含浸させ、140℃と200℃の乾燥炉を通過させて、樹脂を硬化させた後、ロール状に巻き取った。こうしてできた複合体組成物から、ガラス繊維をクロス状に織り込んでいない部分を切り出して評価を行った。
【0012】
(実施例2)
実施例1と同様にして製造したガラス繊維シートの上下の部分を横方向に約幅2cm、アクリル樹脂にて固定した後、枚葉に切り出し、実施例1で使用した樹脂に浸漬してガラス繊維シートに含浸させ、脱泡した。さらに、これを離型処理したガラス板に挟み込んで、オーブン中、100℃にて2時間加熱後、さらに120℃にて2時間、150℃にて2時間、175℃にて2時間、複合体組成物を得た。こうしてできた複合体組成物から、ガラス繊維をクロス状に織り込んでいない部分を切り出して評価を行った。
【0013】
(比較例)
実施例と同じガラスヤーンを用い、通常の方法でガラスクロスを作成した。このガラスクロスは全ての面をクロス状に織り込んである。このガラスクロスを用いて、実施例2と同様にして、複合体組成物のサンプルを作製した。
【0014】
<評価>
(表面粗さ)
表面粗さ計〔(株)小坂研究所製SE−A4〕により、縦糸、横糸から45°方向のRzを測定して表面粗さとした。
(線膨張係数)
セイコー電子(株)製TMA/SS120C型熱応力歪測定装置を用いて、窒素雰囲気下、1分間に5℃の割合で温度を30℃から150℃まで上昇させた後、一旦0℃まで冷却し、再び1分間に5℃の割合で温度を上昇させて30℃〜150℃の時の値を測定して求めた。荷重を5gにし、引張モードで測定を行った。
【0015】
【表1】

Figure 2004244751
【0016】
【発明の効果】
本発明の方法に従うと取り扱いが容易で中央部を織り込まないガラス繊維シートを得る事ができ、このガラス繊維シートを用いる事によって、線膨張係数が小さく、表面平滑性の良好な複合体組成物が得られる。このようにして得られた複合体組成物はガラス繊維の織り込んだ部分を含まないため、表面平滑性が優れ、線膨張係数が小さいため、表示素子用基板に好適に用いることができる。
【図面の簡単な説明】
【図1】本発明のガラス繊維シートを縦糸側から見た平面図
【図2】本発明のガラス繊維シートを横糸側から見た平面図
【図3】本発明のガラス繊維シートの断面図
【図4】本発明のガラス繊維シートを製造するための織機における、糸の配置を示す図(手前側のヘルドが隣のヘルドよりも低い時を示す。)
【図5】本発明のガラス繊維シートを製造するための織機における、糸の配置を示す図(手前側のヘルドが隣のヘルドよりも高い時を示す。)
【符号の説明】
1 縦方向のガラス繊維
2 横糸を通す空間
3 横方向のガラス繊維
4 ダイス
5 ヘルド
6 筏
7 ロール
8 ドロッパ[0001]
[Industrial applications]
The present invention relates to a glass fiber sheet, an organic-inorganic composite composition using the same, and a display element substrate using the composite composition.
[0002]
[Prior art]
In recent years, resin substrates are lightweight and flexible and hard to break, so not only in the field of circuit substrates, but also for display devices for liquid crystal display devices and organic EL display devices, color filter substrates, It is also being studied in fields such as solar cell substrates. However, the resin substrate has a large coefficient of linear expansion, which causes a problem such as warpage of the substrate. Therefore, a resin substrate having a small coefficient of linear expansion is required.
In order to reduce the coefficient of linear expansion of a resin substrate, various types of composites of a resin and a glass cloth woven with glass fibers have been conventionally used. However, the composite composition with a resin using a glass cloth has a large unevenness on the surface, and particularly, a display element substrate for a liquid crystal display element or an organic EL display element, a color filter substrate, and a solar cell. In the field of battery substrates and the like, composite compositions having good surface smoothness have been demanded.
[0003]
In order to improve the smoothness of the surface of the composite composition, it is important to form the composite composition with the resin in a state where glass fibers are not woven. Since the glass fiber sheet into which the glass fiber is not woven has few irregularities on the surface, the composite composition of this and the resin also has excellent surface smoothness. However, there is a problem that handling of a glass fiber sheet into which glass fiber is not woven is extremely difficult.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 05-064857
[Problems to be solved by the invention]
The present invention provides a glass fiber sheet that is not woven into the central portion that is easy to handle, and further uses the glass fiber sheet, has a small linear expansion coefficient, and has good surface smoothness applicable to a display element substrate. It is an object to provide a composite composition.
[0006]
[Means for Solving the Problems]
That is, the present invention
(1) A sheet-like warp layer in which glass fiber warps aligned in the same direction are laid close to or adjacent to each other, and a glass fiber weft is laid close to or adjacent to a direction orthogonal to the fiber axis direction of the warp layer. What is claimed is: 1. A long glass fiber sheet in which a prepared sheet-like weft layer is laminated, wherein only the both end portions are woven in a cross shape, and the center portion is not woven.
(2) Only the peripheral portion is woven in a cross shape, and the central portion is not woven, and the warp yarns of the glass fibers arranged in the same direction are arranged close to or adjacent to each other. A glass fiber sheet in which a sheet-like weft layer in which glass fiber weft yarns are laid close to or adjacent to each other in a direction perpendicular to the direction is laminated.
(3) A composite composition comprising the glass fiber sheet of (1) and (2) and a resin.
(4) A composite composition obtained by cutting out a portion corresponding to the center of the glass fiber sheet from the composite composition of (3).
(5) A substrate for a display element comprising the composite composition of (4) as a constituent element.
It is.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a glass fiber sheet that is easy to handle and does not weave in the center, and a composite composition using the glass fiber sheet. The present invention includes, for example, liquid crystal display element substrates, organic EL display element substrates, color filter substrates, touch panel substrates, optical sheets such as solar cell substrates, transparent plates, optical lenses, optical elements, optical waveguides, and LED encapsulation. It can be suitably used for substrates for display elements such as materials and substrates for circuits.
The glass fiber used in the present invention is mainly a glass yarn or a glass roving in which single fibers of usually 7 to 13 μm are bundled in a total number of about 200 to 24000 single fibers, but is not limited to this. The glass yarn is a glass fiber in which a single fiber is twisted in an oblique direction, and the glass roving is a glass fiber in which all bundles of the single fiber are in a straight traveling direction.
Since the glass cloth weaves the glass fibers in the vertical and horizontal directions, a portion where the vertical and horizontal glass fibers intersect appears as a surface unevenness difference. When a composite composition is manufactured by compounding the glass cloth and the resin, the unevenness of the surface of the glass cloth appears as the unevenness on the surface of the composite composition, so that the smoothness of the surface is impaired. . This unevenness difference can be reduced by, for example, further providing a resin layer on the surface. However, since the resin generally undergoes curing shrinkage, the thick portion of the resin layer is dented, and the unevenness difference is not sufficiently eliminated. Further, when a transparent resin is used and the composite composition is used as a transparent substrate for a display element, retardation occurs in the fiber axis direction due to resin orientation or thermal stress in the vicinity of the glass fiber, and the fiber axis of the glass cloth In a portion where the glass fibers are not arranged so as to cancel out, when a display element is formed, light leakage due to crossed Nicols occurs.
[0008]
Therefore, without weaving the glass fibers, the warp yarns of the glass fibers lined up in the same direction are closely or adjacently laid.The sheet-like warp layer is laid, and the weft yarn of the glass fibers is close to or adjacent to the warp layer in the direction orthogonal to the fiber axis direction. A composite composition that solves these problems can be obtained by using a glass fiber sheet in which a sheet-like weft layer that has been laid out and laid is laminated with a resin. However, those which do not incorporate glass fiber are very difficult to handle, and cannot maintain a state in which the warp and the weft are perpendicular to each other. Therefore, a long glass fiber sheet in which the warp and the weft are maintained orthogonal to each other can be obtained by weaving only the left and right ends in a cross shape without weaving the warp and the warp at the center. In order to obtain a composite composition, subsequently, impregnation and application of a resin, drying and curing may be performed, whereby the warp layer and the weft layer are integrated by the resin, and the warp and the weft are orthogonalized. The composite composition can be produced while maintaining the state.
In addition, even if the composite composition is not continuously manufactured, the upper and lower portions of the glass fiber sheet can also be fixed as a resin in the width direction or woven in a cross shape to be taken out as a single-leaf glass fiber sheet. In this case, it is possible to produce the composite composition also by commonly performed press molding.
[0009]
The resin to be combined with the glass fiber sheet obtained as described above is not particularly limited, but specifically, epoxy resin, phenol resin, polyimide resin, acrylic resin, polyester resin, polycarbonate resin, cyanate ester resin, cyclic polyolefin resin And the like. These resins may be used alone or in combination of two or more. Further, if necessary, a small amount of an antioxidant, an ultraviolet absorber, a coloring agent, a filler such as a filler, and the like may be contained as long as the characteristics of the intended composite composition are not impaired.
By using a highly transparent epoxy resin and a curing agent, not only a circuit board, but also a liquid crystal display element substrate, an organic EL display element substrate, a color filter substrate, a touch panel substrate, an optical sheet such as a solar cell substrate, Can be used for transparent plates.
[0010]
There is no particular limitation on the method of combining the glass fiber sheet and the resin. The resin may be impregnated or applied, a resin in a molten state may be sprayed thereon, or the resin may be laminated on a glass fiber sheet. Further, the resin may be handled in a powder state, may be melted, or may be handled in a varnish form.
[0011]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
(Example 1)
As shown in FIG. 1, the glass fibers (1) in the vertical direction were arranged in a row in the same manner as when weaving a glass cloth. At this time, the glass fiber (1) in the longitudinal direction was passed through the heald (5) shown in FIG. The glass fiber at the center of the glass fiber sheet was hung on a bar or roll (7) at a position higher or lower than the position of the heald (5), and the position of the bar or roll was fixed. The vertical glass fibers (1) were all passed through a comb-shaped dropper (8) so that the vertical glass fibers did not overlap with each other. Although not shown, the transverse glass fibers (3) shown in FIG. 2 were passed through the space (2) by a shuttle in the same manner as when weaving glass cloth. After that, the weft and warp are suppressed in the direction of the arrow by the raft (6), and the raft (6) is returned to the original position. Then, the position of the heald (5) is turned upside down as shown in FIG. The shuttle was returned to the space in 2). By repeating the above operation, a long glass fiber sheet of the present invention in which only the left and right ends were woven was produced. FIG. 2 shows a plan view of the long glass fiber sheet of the present invention viewed from the weft side. FIG. 3 is a diagram showing a cross section of the glass fiber sheet of the present invention. The glass fiber used was E glass glass yarn (single fiber diameter: 7 μm, total number of single fibers: 200, manufactured by Unitika Ltd.).
90 parts by weight of triglycidyl isocyanurate (TEPIC manufactured by Nissan Chemical Industries), 10 parts by weight of bisphenol S type epoxy resin (Epiclon EXA1514 manufactured by Dainippon Ink and Chemicals), and methyl hydrogenated nadic anhydride (manufactured by Nippon Rika) A resin obtained by melting and mixing 170 parts by weight of Ricacid HNA-100) and 2 parts by weight of tetraphenylphosphonium bromide (TPP-PB manufactured by Hokuko Chemical Co., Ltd.) at 110 ° C. is extruded at an extruder at a resin temperature of 110 ° C., and a die (4 ) Was continuously impregnated into the glass fiber sheet, passed through a drying oven at 140 ° C. and 200 ° C. to cure the resin, and then wound into a roll. From the composite composition thus obtained, a portion where the glass fiber was not woven in a cloth shape was cut out and evaluated.
[0012]
(Example 2)
The upper and lower portions of the glass fiber sheet manufactured in the same manner as in Example 1 were fixed laterally in a width of about 2 cm with an acrylic resin, cut out into sheets, and immersed in the resin used in Example 1 to obtain glass fibers. The sheet was impregnated and defoamed. Further, this was sandwiched between release-treated glass plates, and heated in an oven at 100 ° C. for 2 hours, and further at 120 ° C. for 2 hours, 150 ° C. for 2 hours, and 175 ° C. for 2 hours. A composition was obtained. From the composite composition thus obtained, a portion where the glass fiber was not woven in a cloth shape was cut out and evaluated.
[0013]
(Comparative example)
Using the same glass yarn as in the example, a glass cloth was prepared by a usual method. This glass cloth is woven into a cloth on all sides. Using this glass cloth, a composite composition sample was prepared in the same manner as in Example 2.
[0014]
<Evaluation>
(Surface roughness)
Using a surface roughness meter (SE-A4, manufactured by Kosaka Laboratory Co., Ltd.), the Rz in the 45 ° direction from the warp and weft was measured to determine the surface roughness.
(Linear expansion coefficient)
Using a TMA / SS120C type thermal stress strain measuring device manufactured by Seiko Denshi Co., Ltd., the temperature is increased from 30 ° C. to 150 ° C. at a rate of 5 ° C./min in a nitrogen atmosphere, and then cooled to 0 ° C. once. The temperature was again raised at a rate of 5 ° C. per minute and the value at 30 ° C. to 150 ° C. was measured and found. The measurement was performed in a tensile mode with a load of 5 g.
[0015]
[Table 1]
Figure 2004244751
[0016]
【The invention's effect】
According to the method of the present invention, it is possible to obtain a glass fiber sheet which is easy to handle and does not weave in the central part.By using this glass fiber sheet, a composite composition having a small linear expansion coefficient and good surface smoothness can be obtained. can get. Since the composite composition thus obtained does not include a woven portion of glass fiber, it has excellent surface smoothness and a small coefficient of linear expansion, and thus can be suitably used for a display element substrate.
[Brief description of the drawings]
FIG. 1 is a plan view of a glass fiber sheet of the present invention viewed from a warp side. FIG. 2 is a plan view of a glass fiber sheet of the present invention viewed from a weft side. FIG. 3 is a cross-sectional view of the glass fiber sheet of the present invention. FIG. 4 is a view showing the arrangement of yarns in a loom for producing the glass fiber sheet of the present invention (showing a case where the front heald is lower than the adjacent heald).
FIG. 5 is a diagram showing the arrangement of yarns in a loom for producing the glass fiber sheet of the present invention (showing a case where the front heald is higher than the next heald).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vertical glass fiber 2 Space through which weft passes 3 Horizontal glass fiber 4 Dice 5 Heald 6 Raft 7 Roll 8 Dropper

Claims (5)

同一方向に並ぶガラス繊維の縦糸が近接又は隣接して敷き整えられたシート状の縦糸層と前記縦糸層の繊維軸方向と直交する方向にガラス繊維の横糸が近接又は隣接して敷き整えられたシート状の横糸層とが積層されている長尺ガラス繊維シートであって、両端部だけをクロス状に織りこみ、中央部は織り込まないことを特徴とする長尺ガラス繊維シート。A sheet-like warp layer in which warps of glass fibers arranged in the same direction are laid closely or adjacently, and a woof of glass fibers are laid closely or adjacently in a direction orthogonal to the fiber axis direction of the warp layer. A long glass fiber sheet in which a sheet-like weft layer is laminated, wherein only both end portions are woven in a cross shape, and a central portion is not woven. 周辺部だけをクロス状に織りこみ、中央部は織り込まないで、同一方向に並ぶガラス繊維の縦糸が近接又は隣接して敷き整えられたシート状の縦糸層と前記縦糸層の繊維軸方向と直交する方向にガラス繊維の横糸が近接又は隣接して敷き整えられたシート状の横糸層が積層されているガラス繊維シート。Weaving only the peripheral part in a cross shape, without weaving the central part, the warp yarns of the glass fibers arranged in the same direction are close to or adjacent to each other. A glass fiber sheet in which a sheet-like weft layer in which glass fiber wefts are laid in close proximity or adjacent to each other in the direction in which the glass fibers are laid is laminated. 請求項1または2記載のガラス繊維シートと樹脂とを複合した複合体組成物。A composite composition comprising the glass fiber sheet according to claim 1 and a resin. 請求項3記載の複合体組成物から、前記ガラス繊維シートの中央部に相当する部分を切り出した複合体組成物。A composite composition obtained by cutting out a portion corresponding to a central portion of the glass fiber sheet from the composite composition according to claim 3. 請求項4記載の複合体組成物を構成要素とした表示素子用基板。A display element substrate comprising the composite composition according to claim 4 as a constituent element.
JP2003035410A 2003-02-13 2003-02-13 Glass fiber sheet and composite composition using the same Expired - Fee Related JP4345316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003035410A JP4345316B2 (en) 2003-02-13 2003-02-13 Glass fiber sheet and composite composition using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003035410A JP4345316B2 (en) 2003-02-13 2003-02-13 Glass fiber sheet and composite composition using the same

Publications (2)

Publication Number Publication Date
JP2004244751A true JP2004244751A (en) 2004-09-02
JP4345316B2 JP4345316B2 (en) 2009-10-14

Family

ID=33020841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003035410A Expired - Fee Related JP4345316B2 (en) 2003-02-13 2003-02-13 Glass fiber sheet and composite composition using the same

Country Status (1)

Country Link
JP (1) JP4345316B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040348A (en) * 2013-08-20 2015-03-02 東レ株式会社 Woven fabric base material, method for weaving the same, and weaving machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015040348A (en) * 2013-08-20 2015-03-02 東レ株式会社 Woven fabric base material, method for weaving the same, and weaving machine

Also Published As

Publication number Publication date
JP4345316B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
JP4646294B2 (en) Glass plate crack prevention film, optical film and display
US20070117485A1 (en) Laminated film
US20070042168A1 (en) Resin sheet, liquid crystal cell substrate, liquid crystal display device, substrate for an electroluminescence display device, electroluminescence display device, and a substrate for a solar cell
US7714976B2 (en) Optical resin sheet and liquid crystal cell substrate including the same, liquid crystal display device, substrate for an image display device, and image display device
US20070128376A1 (en) Resin sheet, liquid crystal cell substrate, liquid crytal display device, substrate for an electroluminescence display device, electroluminescence display device, and substrate for a solar cell
KR101983359B1 (en) Glass fabric and glass fiber sheet material using same
PT1989249E (en) A composite material
DE3876371D1 (en) LAMINATE FROM METAL LAYERS AND FROM CONTINUOUS, FIBER REINFORCED, SYNTHETIC, THERMOPLASTIC MATERIAL AND METHOD FOR THE PRODUCTION THEREOF.
US20070190879A1 (en) Double glass cloth, and prepreg and substrate for printed wiring board using the glass cloth
KR102459984B1 (en) Glass fiber reinforced resin molded products, electronic device housings, interior parts for mobility products, and exterior parts for mobility products
EP1114718A1 (en) Fiber-reinforced resin composite material having reduced coefficient of linear expansion
KR20120120772A (en) Loom method for manufacturing carbon fiber fabric using adhesion-thread and threrof carbon fiber fabric
JP4345316B2 (en) Glass fiber sheet and composite composition using the same
KR101411015B1 (en) Glass cloth and flexible substrate comprising the same
EP0559437B1 (en) Cloth prepreg and process for producing it
TWI829910B (en) Glass yarn bundle cloth and glass fiber reinforced resin sheet
JP6684095B2 (en) Glass cloth, prepreg, and printed wiring board
JP2007168150A (en) Transparent composite sheet
JP2010043199A (en) Transparent substrate and method for manufacturing the same
JPH11293532A (en) Covering yarn for electromagnetic shielding, and electromagnetic shielding material using the same
JP2005297312A (en) Transparent composite sheet and display element using it
Lim et al. 12‐4: Composition Optimization of Transparent Glass‐fabric Reinforced Siloxane Hybrid (GFRHybrimer) Films for Thermally Stable Flexible Display Substrate Film
JPH09136384A (en) Laminate
KR20140077584A (en) Fiber laminate, window sheet comprising the same, and flexible display apparatus comprising the same
JP4254477B2 (en) Unidirectional woven glass cloth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140724

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees