JP2004244587A - Preparation process for polymer aqueous dispersion, and polymer aqueous dispersion - Google Patents

Preparation process for polymer aqueous dispersion, and polymer aqueous dispersion Download PDF

Info

Publication number
JP2004244587A
JP2004244587A JP2003038397A JP2003038397A JP2004244587A JP 2004244587 A JP2004244587 A JP 2004244587A JP 2003038397 A JP2003038397 A JP 2003038397A JP 2003038397 A JP2003038397 A JP 2003038397A JP 2004244587 A JP2004244587 A JP 2004244587A
Authority
JP
Japan
Prior art keywords
aqueous dispersion
monomer
polymer
water
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003038397A
Other languages
Japanese (ja)
Other versions
JP4301492B2 (en
Inventor
Kihachi Suzuki
喜八 鈴木
Takeshi Sudo
剛 須藤
Shozo Imono
昌三 芋野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2003038397A priority Critical patent/JP4301492B2/en
Publication of JP2004244587A publication Critical patent/JP2004244587A/en
Application granted granted Critical
Publication of JP4301492B2 publication Critical patent/JP4301492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for manufacturing an aqueous dispersion of a polymer which has a small volume-mean particle size and a desired copolymerization composition ratio from two or more kinds of radically polymerizable monomers using a small amount of an emulsifier. <P>SOLUTION: The preparation process of the polymer aqueous dispersion comprises dispersing an aqueous solution to be dispersed, which contains a monomer mixture containing at least two kinds of radically polymerizable monomers, an initiator, and a dispersing agent, by injecting at an injection pressure of 6.5×10<SP>7</SP>Pa or more to obtain a monomer aqueous dispersion and then copolymerizing the monomer aqueous dispersion. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ポリマー水分散体の製造方法および当該製造方法により得られたポリマー水分散体に関する。本発明のポリマー水分散体は、各種用途に適用できる。たとえば、紙基材やポリ塩化ビニル、ポリオレフィン等の各種プラスチック基材等に用いられる水系剥離剤、水系耐ブロッキング剤、水系滑り剤および水系撥水剤等として有用である。特に、剥離シート用の水系剥離剤として有用であり、本発明の水系剥離剤を塗工した剥離シートは粘着テープ、粘着シート等の粘着面の保護、保存に好適である。
【0002】
【従来の技術】
一般に、粘着テープ、粘着シート等の粘着体においては、その粘着面の保護のために、該粘着面に剥離シートを貼着するか、あるいは粘着体をロール状に巻いて該粘着面を基材の背面に貼着している。これら剥離シートの剥離面や基材の背面には、使用時における剥離性を良好にするために剥離剤が塗布されている。
【0003】
従来より、上記剥離剤としてはシリコーン系剥離剤や長鎖アルキル基等の長鎖炭化水素基を有するポリマーからなる剥離剤(以下、長鎖アルキル系剥離剤という)が用いられているが、長鎖アルキル系剥離剤はシリコーン系剥離剤に比べて再粘着性、筆記性および印刷性が優れていることから、近年、長鎖アルキル系剥離剤が注目を集めている。例えば、エチレンビニルアルコールにアルキルイソシアナートを反応させたポリマーを溶剤型の剥離剤として用いることが提案されている(たとえば特許文献1参照。)。
【0004】
さらに、作業環境や公害に対する配慮から長鎖アルキル系剥離剤を水系化する技術が提案されている。例えば、原料を水中撹拌下で反応させることにより長鎖アルキル系剥離剤を得ている(たとえば特許文献2参照。)。また、長鎖アルキル基を有する剥離ポリマーを、水中で乳化分散させて得た水分散体を水系剥離剤として用いている(たとえば特許文献3、特許文献4参照。)。
【0005】
前記長鎖アルキル基を有する剥離ポリマーの水分散体からなる水系剥離剤は、その塗工物が一般的に有用と考えられている薄層となるように得られた水分散体中の被分散体の体積平均粒径が1μm以下の微細なものであり、しかも保存安定性が良好で分散安定化した水分散体であることが要求される。そのため、前記水分散体の製造にあたっては、必然的に多量の乳化剤が用いられる。これら水分散体における乳化剤量は、一般的に剥離剤ポリマー100重量部(乾燥重量)に対して10〜100重量部(乾燥重量)である。
【0006】
しかし、乳化剤の使用量を多くして製造された水分散体(水系剥離剤等)が各種基材に塗工された剥離シートを粘着体等に適用すると、剥離シートに形成された剥離性皮膜の一部が、粘着体等の粘着剤面に移行して粘着剤の粘着力を低下させたり、粘着体に貼り付けた被着体表面を汚染するなどの悪影響を及ぼす。
【0007】
また、水系剥離剤は、長鎖アルキル基を有するラジカル重合性モノマーを極性を有するモノマーと共に水中に乳化分散させて、乳化共重合する方法により得ることができる(たとえば特許文献5参照。)。この方法は、比較的に少量の乳化剤で、サブミクロン以下の体積平均粒径の剥離ポリマーの水分散体を得るのに有用な方法と考えられる。しかし、長鎖アルキル基を有するラジカル重合性モノマーとそれと共重合させる極性モノマーは、水に対する溶解度が大きく異なる。そのため、通常の乳化重合の場合には、前記各モノマーのミセル中への可溶化速度が異なり、意図した組成比の共重合体を得ることは困難であった。したがって、得られる水系剥離剤も意図した特性を有するものが得られていない。一方、通常の懸濁重合では、サブミクロン以下の体積平均粒径の剥離ポリマーの水分散体を得ることは困難であった。
【0008】
【特許文献1】
特公昭60−30355号公報
【0009】
【特許文献2】
特開昭61−113678号公報
【0010】
【特許文献3】
特開平9−111197号公報
【0011】
【特許文献4】
特開平9−29756号公報
【0012】
【特許文献5】
特開平4−222886号公報
【0013】
【発明が解決しようとする課題】
本発明は、少量の乳化剤を用いて、2種類以上のラジカル重合性モノマーから、体積平均粒径が小さい、所望の共重合組成比のポリマーの水分散体を製造する方法および当該製造方法により得られたポリマー水分散体を提供することを目的とする。さらには、当該ポリマーの水分散体を用いてなり、粘着体等の粘着剤の粘着特性に影響を及ほさない水系剥離剤を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明者等は前記課題を解決すべく鋭意検討を重ねた結果、以下に示す製造方法により、前記目的を達成できることを見出し本発明を解決するに至った。
【0015】
すなわち本発明は、少なくとも2種類のラジカル重合性モノマーを含有するモノマー混合物、開始剤および分散剤を含有する被分散水溶液を、注入圧力:6.5×10 Pa以上で噴射することにより分散させてモノマー水分散体とした後、当該モノマー水分散体を共重合することを特徴とするポリマー水分散体の製造方法、に関する。
【0016】
前記ポリマー水分散体の製造方法において、前記被分散水溶液を、注入圧力:6.5×10 〜3.1×10 Pa、注入初速度:150〜630m/secで噴射することが好ましい。
【0017】
本発明では、分散質(開始剤およびモノマー混合物)と分散媒(分散剤および水)を含有する被分散水溶液を、注入圧力が6.5×10 Pa以上の超高圧、超高速度で噴射して相互接触することにより、モノマー混合物を水中に分散させて微細粒子のモノマー水分散体としている。また、超高圧、超高速度で分散質と分散媒を噴射しているため、高いエネルギーを効率良く、モノマー水分散体の製造に費やすことが可能となり、非常に少ない分散剤量で、サブミクロン以下の平均粒径の微細なモノマー水分散体を得ることができる。また、モノマー水分散体中には、分散質であるモノマー混合物が同時にモノマー水分散体中に取り込まれるため、モノマー混合物が性質の異なる2種類のラジカル重合性モノマーを含有する場合にも所望の共重合組成比のポリマーの水分散体を得ることができる。
【0018】
前記注入圧力は高いほど得られるモノマー水分散体の粒径も小さくなり好ましい。前記注入圧力は6.5×10 Pa以上、さらには1.8×10 Pa以上であるのが好ましい。注入圧力6.5×10 Pa未満では、一般的な回転式乳化機との差別化が難しく、注入圧力からの高いエネルギー効率でモノマー水分散体を製造することができず、得られるモノマー水分散体の平均粒径が大きくなる。大きな粒径のモノマー水分散体を用いて重合して得られたポリマー分散体は必然的に大きな粒径のポリマー分散体となる。当該ポリマー分散体を、水系剥離剤として用いた場合には適正な厚みの処理物とはならず、また形成された皮膜の均一性にも劣り、粘着テープ等に用いた場合、接着力の低下等の悪影響を及ばす。一方、一般的な装置の性能上から前記注入圧力の上限は、3.1×10 Pa程度である。
【0019】
また注入初速度は、得られるモノマー水分散体の平均粒径を適正に制御する点から、150m/sec以上であることが好ましい。さらには370m/sec以上であることが好ましい。一方、装置の安定運転の点から、注入初速度は、630m/sec以下、さらには560m/sec以下であることが好ましい。
【0020】
前記ポリマー水分散体の製造方法には、ラジカル重合性モノマーとして、水への溶解性が悪い非極性モノマーと水への溶解性が良い極性モノマーとを含む場合にも好適に適用できる。水への溶解性が悪い非極性モノマーとしては、たとえば、炭素数が8以上の長鎖アルキル基を有する(メタ)アクリル酸エステルがあげられる。また、水への溶解性が良い極性モノマーとしては、たとえば、アクリル酸、メタクリル酸およびアクリロニトリルから選ばれるいずれか少なくとも1種があげられる。
【0021】
本発明のポリマー水分散体の製造方法は、前述の通り、モノマー混合物が性質の異なる2種類のラジカル重合性モノマーを含有する場合にも所望の共重合組成比のポリマーの水分散体を得ることができる。たとえば、剥離性ポリマーを調製する場合には、炭素数が8以上の長鎖アルキル基を有する(メタ)アクリル酸エステルを少なくとも1種類用いるとともに、得られる剥離性ポリマーの皮膜の耐熱性の向上や、塗布する基材への投錨性等の改良のために、極性基を持つモノマーを併用することができる。
【0022】
前記ポリマー水分散体の製造方法において、モノマー混合物100重量部(乾燥重量)に対し、分散剤(乾燥重量)が10重量部以下の割合で配合されているのが好ましい。本発明のポリマー水分散体は、分散剤の前記使用量を10重量部以下と少なくした場合にもモノマー水分散体の体積平均粒径を小さくして、かつ得られるポリマー水分散体の保存安定性を良好に維持できる。また、分散剤の前記使用量は剥離剤としての特性からは少なければ少ない程良く、分散剤が剥離処理面に接した粘着剤に移行したり、粘着剤の接着力を低下させることがなく、粘着剤の汚染の原因もなくなる。分散剤の前記使用量は、3重量部以下とするのがより好ましい。一方、保存安定性の良好な水分散体を得るには、分散剤の使用量を0.2重量部以上、さらには0.5重量部以上とするのが好ましい。
【0023】
前記ポリマー水分散体の製造方法において、モノマー水分散体の体積平均粒径が、1μm以下の微細粒子であることが好ましい。本発明のモノマー水分散体は、前記微細粒子であっても保存安定性が良好である。前記体積平均粒径は、好ましくは0.05〜0.5μmである。なお、モノマー水分散体を、共重合して得られるポリマーの水分散体の体積平均粒径も1μm以下、より好ましくは0.05〜0.5μm以下である。
【0024】
また本発明は、前記製造方法により得られたポリマー水分散体に関する。さらには前記ポリマー水分散体を含有してなる水系剥離剤に関する。前記本発明のポリマー水分散体は各種用途において使用できるが、特に水系剥離剤として有用であり、粘着体の粘着面への汚染性等の問題が生じない薄層の塗工物を提供することができる。
【0025】
【発明の実施の形態】
本発明のポリマー水分散体は、少なくとも2種類のラジカル重合性モノマーを含有するモノマー混合物、開始剤および分散剤を含有する被分散水溶液を、モノマー水分散体とした後、共重合することにより得られる。
【0026】
ラジカル重合性モノマーは、特に制限されないが、前述の通り、剥離性ポリマーの水分散体を製造するにあたっては、水への溶解性が悪い非極性モノマーと水への溶解性が良い極性モノマーとを含むことが好ましい。
【0027】
水への溶解性が悪い非極性モノマーとしては、たとえば、炭素数が8以上の長鎖アルキル基を有する(メタ)アクリル酸エステルがあげられる。炭素数が7以下では剥離性の点で不都合がある。炭素数が8以上の長鎖アルキル基としては、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、ヘキサデシル基、オクタデシル基、エイコシル基等があげられ、通常、長鎖アルキル基の炭素数は8〜22程度である。当該炭素数は12〜20であるのが、ポリマーの剥離性の点からより好ましい。一方、水への溶解性が良い極性モノマーとしては、たとえば、アクリル酸、メタクリル酸、アクリロニトリル等があげられる。
【0028】
前記非極性モノマーと極性モノマーとの割合は、非極性モノマー1モル部に対して、極性モノマーを0.2〜120モル部とするのが好適である。極性モノマーが0.2モル部以下では、得られるポリマーの皮膜の耐熱性の改善効果と基材に対する投錨性の向上が不十分である。120モル部を超える場合には剥離特性に影響を及ぼし、剥離力が大きくなり望ましくない。
【0029】
なお、モノマー混合物には、得られるポリマーの性質に応じて、各種モノマーを含有させることができる。前記剥離性ポリマーの水分散体を製造する際には、前記例示の非極性モノマー、極性モノマーの他に、ポリマーの剥離性を損なわない範囲で他のモノマーをさらに含有させることもできる。
【0030】
開始剤としては、一般的にラジカル重合に用いられる油溶性、水溶性のいずれも使用できるが、モノマー水分散体中に取り込まれ、モノマー混合物を懸濁重合させることができる、モノマーとの相溶性の良い油溶性開始剤が好適である。油溶性開始剤としては、たとえば、2,2′−アゾビスイソブチロニトリル、2,2−アゾビス−2,4−ジメチルバレロニトリル、2,2′−アゾビス−2−メチルブチロニトリル、過酸化ベンゾイル、クメンハイドロパーオキサイド、t−ブチルハイドロパーオキサイド、イソブチリルパーオキサイド、ジクミルパーオキサイド等が用いられる。開始剤の使用量は、通常のラジカル重合の場合と同様であり、モノマー混合物100重量部に対して、0.1〜10重量部が好適である。
【0031】
分散剤としては、モノマー混合物を微細な油滴として、安定に分散させるのに適したものが好ましい。分散剤は、アニオン系、カチオン系、ノニオン系の分散剤を単独で、または併用系で用いることができる。分散剤の使用量は、前述の通り、モノマー混合物100重量部に対して、10重量部以下が望ましい。
【0032】
分散剤の具体例としては、たとえば、ステアリン酸ナトリウム、オレイン酸カリウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウム等のアニオン系分散剤;ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル、ソルビタンモノステアレート、ソルビタンモノオレート、ポリエチレングリコールモノステアレート等のノニオン系分散剤;セチルトリメチルアンモニウムクロライド、ステアリルトリメチルアンモニウムクロライド、ジステアリルジメチルアンモニウムクロライド等のカチオン系分散剤等があげられる。
【0033】
被分散水溶液は、少なくとも2種類のラジカル重合性モノマーを含有するモノマー混合物、開始剤および分散剤を含有する。被分散水溶液中には、さらに、得られるポリマーの分子量を制御するために、モノマー混合物との相溶性の良い連鎖移動剤を用いることもできる。また被分散水溶液中には各種の添加剤を加えることもできる。被分散水溶液は、油分(水以外の成分)の濃度が、通常、20〜60重量%程度に調製するのが好ましい。さらに好ましくは30〜50重量%である。
【0034】
被分散水溶液は、予め、前記各成分を混合して調製しておく。また、被分散水溶液は、例えば回転式乳化機等の一般的な高速乳化により予備乳化分散しておくことができる。
【0035】
本発明のポリマー水分散体の製造方法では、前記被分散水溶液を、前記超高圧、超高速度で噴射する。これにより体積平均粒径が、サブミクロン以下の微細なモノマー水分散体を得ることができる。
【0036】
前記被分散水溶液を超高圧、超高速度で噴射する乳化分散機としては、超高圧ジェット流反転式乳化分散機(日本BEE社製)を用いることができる。図1は当該乳化分散機の概念図である。当該乳化分散機は、被分散水溶液を供給する注入口1を有し、注入口1に続き超高圧、超高速度で被分散水溶液を噴射させるノズルアッセンブリー2を有する。噴射液は噴射口2aを通過して吸収(ABC)セル4内に導入される。ノズルアッセンブリー2によって噴射口2aの流量を調整して超高圧、超高速度を制御できる。注入口1と噴射口2aの間にはカップリング3が交換可能に設けられている。カップリング3により層流と乱流を形成でき、噴射液は噴射前にプレミキシングすることができる。吸収セル4は複数連結されており、リテーナー5により保持されている。また吸収セル4の連結部にはPEEKシール6がされている。混合物の噴射方向の吸収セル4の末端にはリバース用プラグ7またはフィード用プラグ7′が交換可能に設けられている。噴射口2と吸収セル4の間には排出口8(または注入口8′)が設けられている。
【0037】
上記製造方法では、たとえば、前記超高圧ジェット流反転式乳化分散機(日本ビーイーイ社製)を図2の態様で用いる。被分散水溶液は、高圧ポンプ等により注入口1に供給され、超高圧、超高速度で噴射口2aを通過して吸収(ABC)セル4内に導入される。当該混合物の噴射方向の吸収セル4の末端はリバース用プラグ7が設けられている。超高速度で噴射された前記被分散水溶液の第一流体は、セル4の中心部を通ってリバース用プラグ7に当たって反転し、反転した第二流体はセル4の内部の外側を逆流して、噴射口2aと吸収セル4の間に設けられた排出口8より得られる。第二流体はシール6の窪みでミキシングされる。たとえば、ベルヌイの定理より求められる注入初速度630m/secで噴射された超高速度の混合物は、反転して逆流する液と接触してエネルギーを交換し、リバース用プラグ7の部分での第一流体の流速は2m/secとなり、エネルギーが効率良く液の乳化分散に転化されたことがわかる。
【0038】
次いで、得られたモノマー水分散体には、通常のラジカル重合反応を行い、モノマー混合物を共重合する。共重合にあたっては、モノマー水分散体に水を加え、油分濃度を適宜に調整することができる。通常、油分濃度を、20〜60重量%程度に調整するのが好ましい。
【0039】
共重合は、加熱により行う。加熱温度は、モノマー混合物の種類に応じて適宜に調整できる。通常は、60〜80℃程度である。共重合は、窒素等の不活性ガスの雰囲気下で行うのが好ましい。
【0040】
こうして、サブミクロン以下の平均粒径を持つポリマーの水分散体が得られる。得られたポリマーの重量平均分子量は特に制限されないが、0.5〜50万程度のものが好ましい。特に1〜30万のものが好適である。重量平均分子量が0.5万未満では剥離性ポリマーとして用いた場合には、耐熱性が不十分であり、50万を超えると剥離性皮膜としての形成能に劣る傾向があり望ましくない。
【0041】
【実施例】
以下に、本発明について実施例をあげて詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0042】
実施例1
(被分散水溶液の調製)
オクタデシルメタクリレート184g、アクリロニトリル190g、1−ドデカンチオール3g、アゾビスイソブチロニトリル1g 塩化ステアリルトリメチルアンモニウム8g、モノステアリン酸ポリエチレングリコール(エチレングリコールの付加モル数が140)3gに対して、油分が45重量%となるように水を加えて被分散水溶液を調製した。
【0043】
(水分散体の製造)
次いで、上記被分散水溶液を、図2に示す態様の超高圧ジェット流反転式乳化分散装置のDeBEE2000(日本ビーイーイ社製)を用いて、注入圧力1.8×10 Pa、注入初速度:370m/secで分散を行った。得られたモノマー水分散体の体積平均粒径は0.2μmであった。なお、注入圧力は、AUTOCLAVE ENGINEERS社のInstrument QualityPressure Gaugesにより測定した値である。注入初速度は注入圧力によりノズル形状をもとに理論的に求めた計算値である。
【0044】
得られたモノマー水分散体に対して、水を加えて油分を33重量%に調整した。これを冷却管、窒素導入口、温度センサーを取り付けたフラスコに入れ、窒素置換を十分に行った後、70℃に加温し、懸濁重合を行い、ポリマー水分散体を得た。得られたポリマー水分散体の体積平均粒径は0.2μmであった。
【0045】
実施例2
(被分散水溶液の調製)
オクタデシルメタクリレート134g、アクリロニトリル210g、アクリル酸30g、2−メルカプトエタノール1.6g、過酸化ベンゾイル1gおよびポリオキシエチレンラウリルエーテル硫酸アンモニウム11gに対して、油分が45重量%となるように水を加えて被分散水溶液を調製した。
【0046】
(水分散体の製造)
実施例1において、上記被分散水溶液を用いたこと以外は実施例1と同じ条件で分散を行い、モノマー水分散体を得た。得られたモノマー水分散体の体積平均粒径は0.2μmであった。また、得られたモノマー水分散体に対して、実施例1と同様に懸濁重合を行った。得られたポリマー水分散体の体積平均粒径は0.2μmであった。
【0047】
実施例3
(被分散水溶液の調製)
オクタデシルアクリレート190g、アクリロニトリル154g、1−ドデカンチオール3g、アゾビスイソブチロニトリル0.8g、塩化ステアリルトリメチルアンモニウム10gおよびモノステアリン酸ポリエチレングリコール(エチレングリコールの付加モル数が140)3.5gに対して、油分が45重量%となるように水を加えて被分散水溶液を調製した。
【0048】
(水分散体の製造)
実施例1において、上記被分散水溶液を用いたこと以外は実施例1と同じ条件で分散を行い、モノマー水分散体を得た。得られたモノマー水分散体の体積平均粒径は0.3μmであった。また、得られたモノマー水分散体に対して、実施例1と同様に懸濁重合を行った。得られたポリマー水分散体の体積平均粒径は0.3μmであった。
【0049】
実施例4
(被分散水溶液の調製)
オクタデシルメタクリレート170g、メタアクリル酸204g、1−ドデカンチオール4g、アゾビスイソブチロニトリル1gおよびポリオキシエチレンラウリルエーテル硫酸アンモニウム11gに対して、油分が45重量%となるように水を加えて被分散水溶液を調製した。
【0050】
(水分散体の製造)
実施例1において、上記被分散水溶液を用いたこと以外は実施例1と同じ条件で分散を行い、モノマー水分散体を得た。得られたモノマー水分散体の体積平均粒径は0.3μmであった。また、得られたモノマー水分散体に対して、実施例1と同様に懸濁重合を行った。得られたポリマー水分散体の体積平均粒径は0.3μmであった。
【0051】
比較例1
オクタデシルメタクリレート184g、アクリロニトリル190g、1−ドデカンチオール3gおよびポリオキシエチレンアルキルエーテル硫酸アンモニウム11gに対して、油分が45重量%となるように水を加えて被分散水溶液を調製した。
【0052】
このものをホモミキサーFK−2(特殊機化工業(株)製)で8000rpmで1分間の乳化分散を行った。得られた乳化分散物(モノマー水分散体)の体積平均粒径は0.2μmであった。得られた乳化分散物を冷却管、窒素導入口,温度センサーを取り付けたフラスコに入れ、窒素置換を行った後、70℃に加温し、開始剤として過硫酸アンモニウム1gを加えて撹拌下に乳化重合を行った。得られた乳化重合物の体積平均粒径は0.2μmであった。
【0053】
比較例2
オクタデシルメタクリレート134g、アクリロニトリル210g、アクリル酸30g、2−メルカプトエタノール1.6g、過酸化ベンゾイル1gおよびポリオキシエチレンラウリルエーテル硫酸アンモニウム11gに対して油分が45重量%となるように水を加えて被分散水溶液を調製した。
【0054】
このものをホモミキサーFK−2(特殊機化工業(株)製)で8000rpmで1分間の乳化分散を行った。得られたモノマー水分散体の体積平均粒径は2μmであった。次いで、この乳化分散を実施例1と同様の条件で懸濁重合を行った。得られたポリマー水分散体の体積平均粒径は2μmであった。
【0055】
実施例および比較例で得られたポリマー水分散体または乳化重合物について、以下の評価を行った。結果を表1に示す。
【0056】
[体積平均粒径]
粘度分布測定装置((株)堀場製作所)にて、レーザー回折(散乱式)を行い得られた水分散体中の被分散体の体積平均粒径(μm)を求めた。
【0057】
[皮膜の汚染性]
ポリマー水分散体または乳化重合物をポリエチレンテレフタレートフィルム(厚み38μm)上に厚み0.2μmとなるように塗工し、熱風乾燥機にて120℃で3分間の乾燥条件で剥離性皮膜を形成した剥離シートを作製した。この剥離シートとポリエステル粘着テープNo31B(日東電工(株)製)を貼り合せて、50℃で3日間保存して試験用サンプルとした。
【0058】
(剥離力)
ポリエステル粘着テープNo31Bの剥離シートからの剥離力(N/20mm)をテンシロン引っ張り試験機((株)東洋製作所製)で引っ張り速度300mm/minで測定した(剥離角180°,23℃)。
【0059】
(残接力)
ポリエステル粘着テープNo31Bを剥離シートから剥がした後、当該粘着テープをSUS304ステンレス板に貼り付けて、30分後の接着力を上記の試験機で同様の条件で測定した。残接力は、剥離シートに非接触のNo31B粘着テープ(ブランク)のSUS304ステンレス板に対する接着力を100%とし、その接着力値との比較における値を%で表示した。
【0060】
【表1】

Figure 2004244587
表1から、実施例のポリマー水分散体は、いずれも体積平均粒径が1μm以下であり、剥離力が軽く、かつ残接力が高く有用な剥離剤であることが分かる。これから実施例で得られたポリマー水分散体は、所望の組成比の共重合体であることが分かる。一方、比較例1はモノマー混合物の種類、組成比が実施例1と同じであるが、得られたポリマー水分散体は剥離力が大きくて、残接力が低いことが分かる。これから比較例1で得られたポリマー水分散体は、所望の組成比の共重合体が得られいないことが分かる。比較例2はモノマー混合物の種類、組成比が実施例2と同じであるが、得られたポリマー水分散体は体積平均粒径が大きい。そのため残接力が低く実用的ではない。
【図面の簡単な説明】
【図1】本発明の製造方法に用いる乳化分散機の一例である。
【図2】図1の乳化分散機の一態様である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a polymer aqueous dispersion and a polymer aqueous dispersion obtained by the method. The polymer aqueous dispersion of the present invention can be applied to various uses. For example, it is useful as a water-based release agent, a water-based antiblocking agent, a water-based slip agent, a water-based water repellent and the like used for paper base materials and various plastic base materials such as polyvinyl chloride and polyolefin. Particularly, it is useful as an aqueous release agent for a release sheet, and a release sheet coated with the aqueous release agent of the present invention is suitable for protecting and preserving an adhesive surface such as an adhesive tape or an adhesive sheet.
[0002]
[Prior art]
In general, in an adhesive body such as an adhesive tape or an adhesive sheet, in order to protect the adhesive surface, a release sheet is attached to the adhesive surface, or the adhesive body is wound into a roll to form a substrate. Is stuck on the back. A release agent is applied to the release surface of the release sheet or the back surface of the substrate in order to improve the releasability during use.
[0003]
Conventionally, a silicone-based release agent or a release agent comprising a polymer having a long-chain hydrocarbon group such as a long-chain alkyl group (hereinafter referred to as a long-chain alkyl-based release agent) has been used as the release agent. In recent years, long-chain alkyl-based release agents have attracted attention because they have superior re-adhesiveness, writing properties, and printability as compared with silicone-based release agents. For example, it has been proposed to use a polymer obtained by reacting an alkyl isocyanate with ethylene vinyl alcohol as a solvent-type release agent (for example, see Patent Document 1).
[0004]
Further, a technique for converting a long-chain alkyl-based release agent to an aqueous solution has been proposed in consideration of work environment and pollution. For example, a long-chain alkyl-based release agent is obtained by reacting raw materials under stirring in water (for example, see Patent Document 2). Further, an aqueous dispersion obtained by emulsifying and dispersing a release polymer having a long-chain alkyl group in water is used as an aqueous release agent (for example, see Patent Documents 3 and 4).
[0005]
The aqueous release agent comprising an aqueous dispersion of the release polymer having a long-chain alkyl group is dispersed in the aqueous dispersion obtained so that the coating product is generally considered to be useful. It is required that the aqueous dispersion be a fine one having a volume average particle diameter of 1 μm or less, and have excellent storage stability and dispersion stability. For this reason, a large amount of an emulsifier is necessarily used in the production of the aqueous dispersion. The amount of the emulsifier in these aqueous dispersions is generally 10 to 100 parts by weight (dry weight) based on 100 parts by weight (dry weight) of the release agent polymer.
[0006]
However, when an aqueous dispersion (water-based release agent or the like) produced by using a large amount of an emulsifier is applied to an adhesive or the like with a release sheet coated on various substrates, a release film formed on the release sheet is obtained. A part of the adhesive migrates to the surface of the pressure-sensitive adhesive such as a pressure-sensitive adhesive body, and has an adverse effect such as a decrease in the adhesive strength of the pressure-sensitive adhesive and a contamination of the surface of the adherend adhered to the pressure-sensitive adhesive body.
[0007]
Further, the aqueous release agent can be obtained by a method of emulsifying and dispersing a radical polymerizable monomer having a long-chain alkyl group together with a polar monomer in water, followed by emulsion copolymerization (for example, see Patent Document 5). This method is considered to be a useful method for obtaining an aqueous dispersion of a release polymer having a volume average particle diameter of submicron or less with a relatively small amount of emulsifier. However, the radical polymerizable monomer having a long-chain alkyl group and the polar monomer copolymerized therewith have significantly different solubility in water. Therefore, in the case of ordinary emulsion polymerization, the solubilization rates of the monomers in the micelles are different, and it has been difficult to obtain a copolymer having an intended composition ratio. Therefore, the obtained aqueous release agent has not been obtained having the intended properties. On the other hand, it was difficult to obtain an aqueous dispersion of a release polymer having a volume average particle size of submicron or less by ordinary suspension polymerization.
[0008]
[Patent Document 1]
Japanese Patent Publication No. 60-30355
[0009]
[Patent Document 2]
JP-A-61-113678
[0010]
[Patent Document 3]
JP-A-9-111197
[0011]
[Patent Document 4]
JP-A-9-29756
[0012]
[Patent Document 5]
JP-A-4-222886
[0013]
[Problems to be solved by the invention]
The present invention provides a method for producing an aqueous dispersion of a polymer having a small volume average particle diameter and a desired copolymer composition ratio from two or more kinds of radically polymerizable monomers using a small amount of an emulsifier and the production method. It is an object of the present invention to provide an aqueous polymer dispersion. Still another object of the present invention is to provide a water-based release agent which uses an aqueous dispersion of the polymer and does not affect the adhesive properties of an adhesive such as an adhesive.
[0014]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the above-mentioned object can be achieved by the following manufacturing method, and have accomplished the present invention.
[0015]
That is, the present invention provides a monomer mixture containing at least two kinds of radically polymerizable monomers, an aqueous solution to be dispersed containing an initiator and a dispersing agent, at an injection pressure of 6.5 × 10 4. 7 The present invention relates to a method for producing a polymer aqueous dispersion, which comprises dispersing a monomer aqueous dispersion by spraying at a pressure of Pa or more to form a monomer aqueous dispersion, and then copolymerizing the monomer aqueous dispersion.
[0016]
In the method for producing a polymer aqueous dispersion, the aqueous solution to be dispersed is filled with an injection pressure of 6.5 × 10 7 ~ 3.1 × 10 8 It is preferable to inject at Pa, the initial injection speed: 150 to 630 m / sec.
[0017]
In the present invention, an aqueous solution to be dispersed containing a dispersoid (initiator and monomer mixture) and a dispersion medium (dispersant and water) is injected at a pressure of 6.5 × 10 4 7 The monomer mixture is dispersed in water by jetting at an ultra-high pressure of Pa or more at an ultra-high speed and at an ultra-high speed to form a monomer aqueous dispersion of fine particles. In addition, since the dispersoid and the dispersion medium are injected at an ultra-high pressure and an ultra-high speed, high energy can be efficiently used for the production of the monomer aqueous dispersion. A fine monomer aqueous dispersion having the following average particle size can be obtained. In addition, since the monomer mixture which is a dispersoid is simultaneously incorporated into the monomer aqueous dispersion, the desired coexistence is obtained even when the monomer mixture contains two types of radically polymerizable monomers having different properties. An aqueous dispersion of a polymer having a polymerization composition ratio can be obtained.
[0018]
The higher the injection pressure, the smaller the particle size of the obtained aqueous monomer dispersion, which is preferable. The injection pressure is 6.5 × 10 7 Pa or more, and further 1.8 × 10 8 It is preferably Pa or more. Injection pressure 6.5 × 10 7 If it is less than Pa, it is difficult to differentiate from a general rotary emulsifier, it is not possible to produce a monomer aqueous dispersion with high energy efficiency from the injection pressure, and the average particle size of the obtained monomer aqueous dispersion is large. Become. A polymer dispersion obtained by polymerization using an aqueous monomer dispersion having a large particle size necessarily becomes a polymer dispersion having a large particle size. When the polymer dispersion is used as an aqueous release agent, it does not become a processed product having an appropriate thickness, and the formed film has poor uniformity. And so on. On the other hand, the upper limit of the injection pressure is 3.1 × 10 8 It is about Pa.
[0019]
The initial injection speed is preferably 150 m / sec or more from the viewpoint of appropriately controlling the average particle size of the obtained aqueous monomer dispersion. Further, it is preferably at least 370 m / sec. On the other hand, from the viewpoint of stable operation of the apparatus, the initial injection speed is preferably 630 m / sec or less, more preferably 560 m / sec or less.
[0020]
The method for producing a polymer aqueous dispersion can be suitably applied to a case where a non-polar monomer having poor solubility in water and a polar monomer having good solubility in water are contained as radical polymerizable monomers. Examples of the nonpolar monomer having poor solubility in water include (meth) acrylic acid esters having a long-chain alkyl group having 8 or more carbon atoms. The polar monomer having good solubility in water includes, for example, at least one selected from acrylic acid, methacrylic acid, and acrylonitrile.
[0021]
As described above, the method for producing a polymer aqueous dispersion of the present invention is to obtain a polymer aqueous dispersion having a desired copolymer composition ratio even when the monomer mixture contains two types of radically polymerizable monomers having different properties. Can be. For example, when preparing a releasable polymer, at least one (meth) acrylate having a long-chain alkyl group having 8 or more carbon atoms is used, and at the same time, the heat resistance of the resulting film of the releasable polymer is improved. Further, a monomer having a polar group can be used in combination for improving anchoring property to a substrate to be coated.
[0022]
In the method for producing an aqueous polymer dispersion, it is preferable that the dispersant (dry weight) is blended in an amount of 10 parts by weight or less based on 100 parts by weight (dry weight) of the monomer mixture. The polymer aqueous dispersion of the present invention can reduce the volume average particle diameter of the monomer aqueous dispersion even when the amount of the dispersant used is reduced to 10 parts by weight or less, and maintain the storage stability of the obtained polymer aqueous dispersion. Good performance can be maintained. In addition, the amount of the dispersant used is preferably as small as possible from the properties of the release agent, and the dispersant does not migrate to the adhesive in contact with the release treated surface, without reducing the adhesive force of the adhesive, The cause of adhesive contamination is eliminated. The use amount of the dispersant is more preferably 3 parts by weight or less. On the other hand, in order to obtain an aqueous dispersion having good storage stability, the amount of the dispersant used is preferably 0.2 parts by weight or more, more preferably 0.5 parts by weight or more.
[0023]
In the method for producing a polymer aqueous dispersion, it is preferable that the volume average particle diameter of the monomer aqueous dispersion is fine particles of 1 μm or less. The aqueous monomer dispersion of the present invention has good storage stability even with the fine particles. The volume average particle size is preferably 0.05 to 0.5 μm. In addition, the volume average particle diameter of the aqueous dispersion of the polymer obtained by copolymerizing the monomer aqueous dispersion is also 1 μm or less, more preferably 0.05 to 0.5 μm or less.
[0024]
The present invention also relates to a polymer aqueous dispersion obtained by the production method. Further, the present invention relates to an aqueous release agent containing the polymer aqueous dispersion. Although the polymer aqueous dispersion of the present invention can be used in various applications, it is particularly useful as an aqueous release agent, and provides a thin-layer coated product that does not cause problems such as contamination on the adhesive surface of the adhesive. Can be.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
The aqueous polymer dispersion of the present invention is obtained by forming a monomer mixture containing at least two kinds of radically polymerizable monomers, an aqueous solution to be dispersed containing an initiator and a dispersant into a monomer aqueous dispersion, and then copolymerizing the same. Can be
[0026]
The radically polymerizable monomer is not particularly limited, but as described above, when producing an aqueous dispersion of a releasable polymer, a non-polar monomer having poor solubility in water and a polar monomer having good solubility in water are used. It is preferred to include.
[0027]
Examples of the nonpolar monomer having poor solubility in water include (meth) acrylic acid esters having a long-chain alkyl group having 8 or more carbon atoms. If the number of carbon atoms is 7 or less, there is an inconvenience in terms of peelability. Examples of the long-chain alkyl group having 8 or more carbon atoms include octyl group, nonyl group, decyl group, undecyl group, dodecyl group, hexadecyl group, octadecyl group, and eicosyl group. Is about 8 to 22. It is more preferable that the number of carbon atoms be 12 to 20 from the viewpoint of polymer releasability. On the other hand, examples of polar monomers having good solubility in water include acrylic acid, methacrylic acid, and acrylonitrile.
[0028]
It is preferable that the ratio of the non-polar monomer to the polar monomer is 0.2 to 120 mol parts per 1 mol part of the non-polar monomer. When the amount of the polar monomer is 0.2 mol part or less, the effect of improving the heat resistance of the resulting polymer film and the improvement of the anchoring property to the substrate are insufficient. If the amount exceeds 120 mol parts, the peeling properties are affected, and the peeling force is increased, which is not desirable.
[0029]
In addition, various monomers can be contained in the monomer mixture according to the properties of the obtained polymer. When producing the aqueous dispersion of the releasable polymer, in addition to the non-polar monomer and the polar monomer described above, other monomers may be further contained as long as the releasability of the polymer is not impaired.
[0030]
As the initiator, any of oil-soluble and water-soluble initiators generally used for radical polymerization can be used, but they are incorporated into an aqueous monomer dispersion and can be subjected to suspension polymerization of a monomer mixture. Good oil-soluble initiators are preferred. Examples of the oil-soluble initiator include 2,2'-azobisisobutyronitrile, 2,2-azobis-2,4-dimethylvaleronitrile, 2,2'-azobis-2-methylbutyronitrile, Benzoyl oxide, cumene hydroperoxide, t-butyl hydroperoxide, isobutyryl peroxide, dicumyl peroxide and the like are used. The amount of the initiator used is the same as in the case of ordinary radical polymerization, and is preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the monomer mixture.
[0031]
As the dispersant, those suitable for stably dispersing the monomer mixture as fine oil droplets are preferable. As the dispersant, an anionic, cationic, or nonionic dispersant can be used alone or in combination. As described above, the use amount of the dispersant is desirably 10 parts by weight or less based on 100 parts by weight of the monomer mixture.
[0032]
Specific examples of the dispersant include, for example, anionic dispersants such as sodium stearate, potassium oleate, and sodium polyoxyethylene alkyl ether sulfate; polyoxyethylene cetyl ether, polyoxyethylene oleyl ether, sorbitan monostearate, and sorbitan Nonionic dispersants such as monooleate and polyethylene glycol monostearate; and cationic dispersants such as cetyltrimethylammonium chloride, stearyltrimethylammonium chloride and distearyldimethylammonium chloride.
[0033]
The aqueous solution to be dispersed contains a monomer mixture containing at least two kinds of radically polymerizable monomers, an initiator and a dispersant. In the aqueous solution to be dispersed, a chain transfer agent having good compatibility with the monomer mixture may be used in order to control the molecular weight of the obtained polymer. Various additives can be added to the aqueous solution to be dispersed. The aqueous solution to be dispersed is preferably prepared so that the concentration of the oil component (components other than water) is usually about 20 to 60% by weight. More preferably, it is 30 to 50% by weight.
[0034]
The aqueous solution to be dispersed is prepared by mixing the above components in advance. The aqueous solution to be dispersed can be preliminarily emulsified and dispersed by a general high-speed emulsification such as a rotary emulsifier.
[0035]
In the method for producing a polymer aqueous dispersion according to the present invention, the aqueous solution to be dispersed is injected at the ultrahigh pressure and the ultrahigh speed. As a result, a fine monomer aqueous dispersion having a volume average particle size of submicron or less can be obtained.
[0036]
As the emulsifying and dispersing machine for injecting the aqueous solution to be dispersed at an ultrahigh pressure and an ultrahigh speed, an ultrahigh pressure jet flow reversal emulsifying and dispersing machine (manufactured by Nippon BEE Co., Ltd.) can be used. FIG. 1 is a conceptual diagram of the emulsifying and dispersing machine. The emulsifying and dispersing machine has an inlet 1 for supplying an aqueous solution to be dispersed, and a nozzle assembly 2 for ejecting the aqueous solution to be dispersed at an ultrahigh pressure and an ultrahigh speed following the inlet 1. The jet liquid is introduced into the absorption (ABC) cell 4 through the jet port 2a. The nozzle assembly 2 adjusts the flow rate of the injection port 2a to control an ultra-high pressure and an ultra-high speed. A coupling 3 is replaceably provided between the injection port 1 and the injection port 2a. A laminar flow and a turbulent flow can be formed by the coupling 3, and the injection liquid can be premixed before injection. The plurality of absorption cells 4 are connected and held by a retainer 5. Further, a PEEK seal 6 is provided at a connection portion of the absorption cell 4. At the end of the absorption cell 4 in the direction of injection of the mixture, a reverse plug 7 or a feed plug 7 'is exchangeably provided. An outlet 8 (or an inlet 8 ′) is provided between the injection port 2 and the absorption cell 4.
[0037]
In the above-mentioned production method, for example, the ultrahigh-pressure jet flow inversion type emulsifying and dispersing machine (manufactured by Nippon BEE Co., Ltd.) is used in the mode of FIG. The aqueous solution to be dispersed is supplied to the injection port 1 by a high-pressure pump or the like, and is introduced into the absorption (ABC) cell 4 through the injection port 2a at an ultra-high pressure and an ultra-high speed. A reverse plug 7 is provided at the end of the absorption cell 4 in the injection direction of the mixture. The first fluid of the aqueous solution to be dispersed injected at an ultra-high speed passes through the center of the cell 4 and hits the reverse plug 7 to be inverted. The inverted second fluid flows back outside the inside of the cell 4, It is obtained from the outlet 8 provided between the injection port 2a and the absorption cell 4. The second fluid is mixed in the depression of the seal 6. For example, the super-high-speed mixture injected at the initial injection speed of 630 m / sec determined by Bernoulli's theorem contacts the liquid that reverses and flows backward to exchange energy, and the first mixture at the portion of the reverse plug 7. The flow velocity of the fluid was 2 m / sec, indicating that the energy was efficiently converted to emulsified dispersion of the liquid.
[0038]
Next, the obtained monomer aqueous dispersion is subjected to a usual radical polymerization reaction to copolymerize the monomer mixture. In the copolymerization, water is added to the aqueous monomer dispersion, and the oil concentration can be appropriately adjusted. Usually, it is preferable to adjust the oil concentration to about 20 to 60% by weight.
[0039]
The copolymerization is performed by heating. The heating temperature can be appropriately adjusted according to the type of the monomer mixture. Usually, it is about 60 to 80 ° C. The copolymerization is preferably performed in an atmosphere of an inert gas such as nitrogen.
[0040]
Thus, an aqueous dispersion of a polymer having an average particle size of submicron or less is obtained. The weight average molecular weight of the obtained polymer is not particularly limited, but is preferably about 0.5 to 500,000. Particularly, those having 10,000 to 300,000 are preferable. When the weight average molecular weight is less than 50,000, when used as a peelable polymer, the heat resistance is insufficient, and when it exceeds 500,000, the ability to form a peelable film tends to be inferior, which is not desirable.
[0041]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
[0042]
Example 1
(Preparation of aqueous solution to be dispersed)
For 184 g of octadecyl methacrylate, 190 g of acrylonitrile, 3 g of 1-dodecanethiol, 1 g of azobisisobutyronitrile, 8 g of stearyltrimethylammonium chloride, and 3 g of polyethylene glycol monostearate (addition mole number of ethylene glycol is 140), the oil content is 45 weight. % Of water to prepare an aqueous solution to be dispersed.
[0043]
(Production of aqueous dispersion)
Next, an injection pressure of 1.8 × 10 3 was applied to the aqueous solution to be dispersed using DeBEE2000 (manufactured by Nippon BEE Co., Ltd.) of an ultra-high pressure jet flow inversion type emulsifying and dispersing apparatus shown in FIG. 8 Dispersion was performed at Pa and an initial injection speed of 370 m / sec. The volume average particle diameter of the obtained monomer aqueous dispersion was 0.2 μm. The injection pressure is a value measured by Instrument Quality Pressure Gauges of AUTOCLAVE ENGINEERS. The initial injection speed is a calculated value theoretically obtained based on the nozzle shape based on the injection pressure.
[0044]
Water was added to the obtained monomer aqueous dispersion to adjust the oil content to 33% by weight. This was placed in a flask equipped with a cooling tube, a nitrogen inlet, and a temperature sensor. After sufficiently performing nitrogen replacement, the mixture was heated to 70 ° C. to perform suspension polymerization to obtain a polymer aqueous dispersion. The volume average particle diameter of the obtained polymer aqueous dispersion was 0.2 μm.
[0045]
Example 2
(Preparation of aqueous solution to be dispersed)
To 134 g of octadecyl methacrylate, 210 g of acrylonitrile, 30 g of acrylic acid, 1.6 g of 2-mercaptoethanol, 1 g of benzoyl peroxide and 11 g of polyoxyethylene lauryl ether ammonium sulfate, water was added so that the oil content would be 45% by weight and dispersed. An aqueous solution was prepared.
[0046]
(Production of aqueous dispersion)
In Example 1, dispersion was performed under the same conditions as in Example 1 except that the aqueous solution to be dispersed was used, to obtain a monomer aqueous dispersion. The volume average particle diameter of the obtained monomer aqueous dispersion was 0.2 μm. In addition, suspension polymerization was performed on the obtained monomer aqueous dispersion in the same manner as in Example 1. The volume average particle diameter of the obtained polymer aqueous dispersion was 0.2 μm.
[0047]
Example 3
(Preparation of aqueous solution to be dispersed)
For 190 g of octadecyl acrylate, 154 g of acrylonitrile, 3 g of 1-dodecanethiol, 0.8 g of azobisisobutyronitrile, 10 g of stearyltrimethylammonium chloride and 3.5 g of polyethylene glycol monostearate (addition mole number of ethylene glycol is 140) Water was added so that the oil content became 45% by weight to prepare an aqueous solution to be dispersed.
[0048]
(Production of aqueous dispersion)
In Example 1, dispersion was performed under the same conditions as in Example 1 except that the aqueous solution to be dispersed was used, to obtain a monomer aqueous dispersion. The volume average particle size of the obtained monomer aqueous dispersion was 0.3 μm. In addition, suspension polymerization was performed on the obtained monomer aqueous dispersion in the same manner as in Example 1. The volume average particle diameter of the obtained polymer aqueous dispersion was 0.3 μm.
[0049]
Example 4
(Preparation of aqueous solution to be dispersed)
Water was added to 170 g of octadecyl methacrylate, 204 g of methacrylic acid, 4 g of 1-dodecanethiol, 1 g of azobisisobutyronitrile and 11 g of ammonium polyoxyethylene lauryl ether sulfate so that the oil content became 45% by weight, and the aqueous solution to be dispersed was added. Was prepared.
[0050]
(Production of aqueous dispersion)
In Example 1, dispersion was performed under the same conditions as in Example 1 except that the aqueous solution to be dispersed was used, to obtain a monomer aqueous dispersion. The volume average particle size of the obtained monomer aqueous dispersion was 0.3 μm. In addition, suspension polymerization was performed on the obtained monomer aqueous dispersion in the same manner as in Example 1. The volume average particle diameter of the obtained polymer aqueous dispersion was 0.3 μm.
[0051]
Comparative Example 1
Water was added to 184 g of octadecyl methacrylate, 190 g of acrylonitrile, 3 g of 1-dodecanethiol and 11 g of polyoxyethylene alkyl ether ammonium sulfate so that the oil content became 45% by weight to prepare an aqueous solution to be dispersed.
[0052]
This was emulsified and dispersed for 1 minute at 8000 rpm using a homomixer FK-2 (manufactured by Tokushu Kika Kogyo Co., Ltd.). The volume average particle diameter of the obtained emulsified dispersion (monomer aqueous dispersion) was 0.2 μm. The obtained emulsified dispersion is placed in a flask equipped with a cooling tube, a nitrogen inlet, and a temperature sensor, and after purging with nitrogen, the mixture is heated to 70 ° C., 1 g of ammonium persulfate is added as an initiator, and the mixture is emulsified with stirring. Polymerization was performed. The volume average particle size of the obtained emulsion polymer was 0.2 μm.
[0053]
Comparative Example 2
134 g of octadecyl methacrylate, 210 g of acrylonitrile, 30 g of acrylic acid, 1.6 g of 2-mercaptoethanol, 1 g of benzoyl peroxide and 11 g of polyoxyethylene lauryl ether ammonium sulfate were added with water so that the oil content was 45% by weight, and the aqueous solution to be dispersed was added. Was prepared.
[0054]
This was emulsified and dispersed for 1 minute at 8000 rpm using a homomixer FK-2 (manufactured by Tokushu Kika Kogyo Co., Ltd.). The volume average particle diameter of the obtained aqueous monomer dispersion was 2 μm. Next, suspension polymerization of this emulsified dispersion was carried out under the same conditions as in Example 1. The volume average particle diameter of the obtained polymer aqueous dispersion was 2 μm.
[0055]
The following evaluations were performed on the polymer aqueous dispersions or emulsion polymers obtained in Examples and Comparative Examples. Table 1 shows the results.
[0056]
[Volume average particle size]
The volume average particle size (μm) of the dispersion in the obtained aqueous dispersion was determined by performing a laser diffraction (scattering method) with a viscosity distribution measuring device (Horiba, Ltd.).
[0057]
[Film contamination]
The aqueous polymer dispersion or the emulsion polymer was applied on a polyethylene terephthalate film (thickness: 38 μm) so as to have a thickness of 0.2 μm, and a peelable film was formed by drying with a hot air drier at 120 ° C. for 3 minutes. A release sheet was prepared. This release sheet and a polyester adhesive tape No. 31B (manufactured by Nitto Denko Corporation) were bonded together and stored at 50 ° C. for 3 days to obtain a test sample.
[0058]
(Peeling force)
The peeling force (N / 20 mm) of the polyester adhesive tape No. 31B from the release sheet was measured with a Tensilon tensile tester (manufactured by Toyo Seisakusho) at a pulling speed of 300 mm / min (peeling angles 180 °, 23 ° C.).
[0059]
(Remaining force)
After peeling off the polyester adhesive tape No31B from the release sheet, the adhesive tape was attached to a SUS304 stainless steel plate, and the adhesive force after 30 minutes was measured by the above-mentioned tester under the same conditions. The residual force was expressed as% in comparison with the adhesive force of the No31B pressure-sensitive adhesive tape (blank), which was not in contact with the release sheet, with the SUS304 stainless steel plate, as 100%.
[0060]
[Table 1]
Figure 2004244587
From Table 1, it can be seen that the polymer aqueous dispersions of the examples are all useful release agents having a volume average particle diameter of 1 μm or less, a low release force and a high residual contact force. From this, it can be seen that the polymer aqueous dispersion obtained in the examples was a copolymer having a desired composition ratio. On the other hand, Comparative Example 1 has the same type and composition ratio of the monomer mixture as in Example 1, but it can be seen that the obtained aqueous polymer dispersion has a large peeling force and a low residual force. From this, it can be seen that a copolymer having a desired composition ratio was not obtained in the polymer aqueous dispersion obtained in Comparative Example 1. Comparative Example 2 has the same type and composition ratio of the monomer mixture as in Example 2, but the obtained polymer aqueous dispersion has a large volume average particle size. Therefore, the residual contact force is low and not practical.
[Brief description of the drawings]
FIG. 1 is an example of an emulsifying and dispersing machine used in the production method of the present invention.
FIG. 2 is an embodiment of the emulsifying and dispersing machine of FIG.

Claims (9)

少なくとも2種類のラジカル重合性モノマーを含有するモノマー混合物、開始剤および分散剤を含有する被分散水溶液を、注入圧力:6.5×10 Pa以上で噴射することにより分散させてモノマー水分散体とした後、当該モノマー水分散体を共重合することを特徴とするポリマー水分散体の製造方法。A monomer mixture containing at least two types of radically polymerizable monomers, an aqueous solution to be dispersed containing an initiator and a dispersing agent are dispersed by jetting at an injection pressure of 6.5 × 10 7 Pa or more to disperse the monomer aqueous dispersion. And then copolymerizing the monomer aqueous dispersion to produce a polymer aqueous dispersion. 被分散水溶液を、注入圧力:6.5×10 〜3.1×10 Pa、注入初速度:150〜630m/secで噴射することを特徴とする請求項1記載のポリマー水分散体の製造方法。The polymer aqueous dispersion according to claim 1, wherein the aqueous solution to be dispersed is injected at an injection pressure of 6.5 × 10 7 to 3.1 × 10 8 Pa and an initial injection speed of 150 to 630 m / sec. Production method. ラジカル重合性モノマーとして、水への溶解性が悪い非極性モノマーと水への溶解性が良い極性モノマーとを含むことを特徴とする請求項1または2記載のポリマー水分散体の製造方法。The method for producing a polymer aqueous dispersion according to claim 1 or 2, wherein the radical polymerizable monomer includes a non-polar monomer having poor solubility in water and a polar monomer having good solubility in water. 水への溶解性が悪い非極性モノマーが、炭素数が8以上の長鎖アルキル基を有する(メタ)アクリル酸エステルであることを特徴とする請求項1〜3のいずれかに記載のポリマー水分散体の製造方法。The polymer water according to any one of claims 1 to 3, wherein the nonpolar monomer having poor solubility in water is a (meth) acrylate ester having a long-chain alkyl group having 8 or more carbon atoms. A method for producing a dispersion. 水への溶解性が良い極性モノマーが、アクリル酸、メタクリル酸およびアクリロニトリルから選ばれるいずれか少なくとも1種であることを特徴とする請求項1〜3のいずれかに記載のポリマー水分散体の製造方法。The polymer according to any one of claims 1 to 3, wherein the polar monomer having good solubility in water is at least one selected from acrylic acid, methacrylic acid, and acrylonitrile. Method. モノマー混合物100重量部(乾燥重量)に対し、分散剤(乾燥重量)が10重量部以下の割合で配合されていることを特徴とする請求項1〜5のいずれかに記載のポリマー水分散体の製造方法。The polymer aqueous dispersion according to any one of claims 1 to 5, wherein the dispersant (dry weight) is blended in an amount of 10 parts by weight or less based on 100 parts by weight (dry weight) of the monomer mixture. Manufacturing method. モノマー水分散体の体積平均粒径が、1μm以下の微細粒子であることを特徴とする請求項1〜6のいずれかに記載のポリマー水分散体の製造方法。The method for producing a polymer aqueous dispersion according to any one of claims 1 to 6, wherein the volume average particle diameter of the monomer aqueous dispersion is fine particles of 1 µm or less. 請求項1〜7のいずれかに記載の製造方法により得られたポリマー水分散体。A polymer aqueous dispersion obtained by the production method according to claim 1. 請求項8記載のポリマー水分散体を含有してなる水系剥離剤。An aqueous release agent comprising the polymer aqueous dispersion according to claim 8.
JP2003038397A 2003-02-17 2003-02-17 Method for producing polymer water dispersion and polymer water dispersion Expired - Fee Related JP4301492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038397A JP4301492B2 (en) 2003-02-17 2003-02-17 Method for producing polymer water dispersion and polymer water dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038397A JP4301492B2 (en) 2003-02-17 2003-02-17 Method for producing polymer water dispersion and polymer water dispersion

Publications (2)

Publication Number Publication Date
JP2004244587A true JP2004244587A (en) 2004-09-02
JP4301492B2 JP4301492B2 (en) 2009-07-22

Family

ID=33022940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038397A Expired - Fee Related JP4301492B2 (en) 2003-02-17 2003-02-17 Method for producing polymer water dispersion and polymer water dispersion

Country Status (1)

Country Link
JP (1) JP4301492B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224848A (en) * 2011-04-04 2012-11-15 Mitsubishi Rayon Co Ltd Production method of aqueous dispersive polymer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951906A (en) * 1982-09-16 1984-03-26 Sumitomo Chem Co Ltd Production of graft copolymer
JPH05178913A (en) * 1991-12-27 1993-07-20 Kao Corp Production of fine polymer particles having uniform particle diameter
JPH05222886A (en) * 1991-03-13 1993-08-31 Fuji Zouen Kk Mounting jig of gate
JPH06298875A (en) * 1993-04-16 1994-10-25 Showa Highpolymer Co Ltd Silicone copolymer emulsion
JPH0892524A (en) * 1994-09-19 1996-04-09 Nippon Shokubai Co Ltd Aqueous composite resin dispersion and its production
JPH11286504A (en) * 1998-01-28 1999-10-19 Natl Starch & Chem Investment Holding Corp Production of epoxy-acryl hybrid emulsion
JP2001031769A (en) * 1999-07-21 2001-02-06 Kao Corp Production of emulsion
JP2002038057A (en) * 2000-07-28 2002-02-06 Dainippon Ink & Chem Inc Water-base coating material composition containing silicone resin
JP2002363289A (en) * 2001-06-11 2002-12-18 Nitto Denko Corp Method for producing aqueous polymer dispersion and the aqueous polymer dispersion

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5951906A (en) * 1982-09-16 1984-03-26 Sumitomo Chem Co Ltd Production of graft copolymer
JPH05222886A (en) * 1991-03-13 1993-08-31 Fuji Zouen Kk Mounting jig of gate
JPH05178913A (en) * 1991-12-27 1993-07-20 Kao Corp Production of fine polymer particles having uniform particle diameter
JPH06298875A (en) * 1993-04-16 1994-10-25 Showa Highpolymer Co Ltd Silicone copolymer emulsion
JPH0892524A (en) * 1994-09-19 1996-04-09 Nippon Shokubai Co Ltd Aqueous composite resin dispersion and its production
JPH11286504A (en) * 1998-01-28 1999-10-19 Natl Starch & Chem Investment Holding Corp Production of epoxy-acryl hybrid emulsion
JP2001031769A (en) * 1999-07-21 2001-02-06 Kao Corp Production of emulsion
JP2002038057A (en) * 2000-07-28 2002-02-06 Dainippon Ink & Chem Inc Water-base coating material composition containing silicone resin
JP2002363289A (en) * 2001-06-11 2002-12-18 Nitto Denko Corp Method for producing aqueous polymer dispersion and the aqueous polymer dispersion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012224848A (en) * 2011-04-04 2012-11-15 Mitsubishi Rayon Co Ltd Production method of aqueous dispersive polymer

Also Published As

Publication number Publication date
JP4301492B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP3638957B2 (en) Aqueous (meth) acrylic latex polymer for exfoliation
EP0546746B1 (en) Nonionic, ph-neutral pressure sensitive adhesive
US7030175B2 (en) Ink jet latex having reactive surfactant stabilization
JP2007126635A (en) Binder and inkjet ink composition
KR20070083672A (en) Emulsion polymerization of hydrophobic monomers
JP2007077371A (en) Water-based ink for ink-jet recording
WO2009098883A1 (en) Method for producing inorganic composite water-dispersed resin
JP2017043653A (en) Colored fine particle dispersion
WO1999061484A1 (en) Aqueous emulsion and process for producing the same
JP2017218546A (en) Manufacturing method of colored fine particle dispersion
JP4301492B2 (en) Method for producing polymer water dispersion and polymer water dispersion
JP2009091487A (en) Water-based ink for ink-jet recording
JP4822483B2 (en) Method for producing polymer water dispersion and polymer water dispersion
JP4849753B2 (en) Method for producing acrylic emulsion
JP2006257316A (en) Manufacturing method of polymer emulsion and emulsion type pressure sensitive adhesive
JPS58185668A (en) Production of copolymer emulsion adhesive having excellent water resistance
JP4428881B2 (en) Water-based acrylic pressure-sensitive adhesive composition
JP2013213210A (en) Resin emulsion for aqueous inkjet ink, and composition for aqueous inkjet ink, and ink coated material using the resin emulsion
JP2004306022A (en) Dispersion agent for light calcium carbonate
JPH11335509A (en) Water borne composition
JP4055645B2 (en) Emulsion-type pressure-sensitive adhesive and pressure-sensitive adhesive sheet using the pressure-sensitive adhesive
JP2002129031A (en) Aqueous dispersion of polymer and method for producing the same
JPH11181210A (en) Stabilized aqueous hardenable composition
JP4385861B2 (en) Aqueous resin dispersion for processing decorative decorative paper, and decorative decorative paper obtained using the same
JP2003201378A (en) Process for producing aqueous emulsion of ethylene/ glycidyl acrylate copolymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090416

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150501

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees