【0001】
【発明の属する技術分野】
本発明は、タイヤ摩耗寿命を実質的に損なうことなしに降雪期においては氷雪路走行性能を維持すると共に降雪期以外では轍ワンダリング性能を向上させるようにした重荷重用空気入りタイヤに関する。
【0002】
【従来の技術】
従来、冬用重荷重用空気入りタイヤ、すなわち氷雪路走行性能を高めた重荷重用空気入りタイヤでは、接地面積を大きくするためにトレッド展開幅を広くしている(例えば、タイヤサイズ11R22.5の重荷重用空気入りタイヤでは210mm〜235mm)。しかし、冬用重荷重用空気入りタイヤは、近年、通年で使用されること(いわゆる履きつぶし)が多くなっており、このため降雪期以外の季節ではトレッド展開幅の広いことにより轍ワンダリング性能が悪化するという問題がある。
【0003】
この問題の対策として、例えば、タイヤショルダー部にタイヤ周方向にサイプ(細い切り込み)を入れることによりショルダー部剛性を低減して轍ワンダリング性能を改善しようとしているが、これでは不十分であり、更なる改善が望まれている。
【0004】
【特許文献1】
特開平5−201204号公報
【特許文献2】
特開平5−201210号公報
【特許文献3】
特開平7−81315号公報
【特許文献4】
特開平9−136510号公報
【0005】
【発明が解決しようとする課題】
本発明の目的は、タイヤ摩耗寿命を実質的に損なうことなしに降雪期においては氷雪路走行性能を維持し、降雪期以外では轍ワンダリング性能の向上を可能にした重荷重用空気入りタイヤを提供することにある。ここで、「タイヤ摩耗寿命」とは、新品時から走行によるトレッドゴムの摩耗により摩耗限度に至る時までの走行距離をいう。
【0006】
【課題を解決するための手段】
本発明の重荷重用空気入りタイヤは、トレッドを外側キャップトレッド層と内側キャップトレッド層との少なくとも二層構造とし、前記外側キャップトレッド層のJISA硬度を60〜65にすると共に、前記内側キャップトレッド層のショルダー部の耐摩耗性を、該ショルダー部を除いた内側キャップトレッド層の耐摩耗性の50〜95%にし、さらに、前記ショルダー部のタイヤ幅方向領域を、前記内側キャップトレッド層の幅方向一端から他端方向に1/2トレッド展開幅の5〜30%に亘る領域にしたことを特徴とする。
【0007】
このようにトレッドを外側キャップトレッド層と内側キャップトレッド層との少なくとも二層構造とし、外側キャップトレッド層のJISA硬度を60〜65と比較的低くして外側キャップトレッド層をいわゆるスノータイヤの構成にしたから、降雪期においては氷雪路走行性能を維持することが可能となる。
【0008】
また、トレッドを外側キャップトレッド層と内側キャップトレッド層との少なくとも二層構造とし、内側キャップトレッド層のショルダー部の耐摩耗性を、該ショルダー部を除いた内側キャップトレッド層の耐摩耗性の50〜95%にし、かつ内側キャップトレッド層のショルダー部のタイヤ幅方向領域を、内側キャップトレッド層の幅方向一端から他端方向に1/2トレッド展開幅の5〜30%に亘る領域にしたから、降雪期以外の季節において外側キャップトレッド層が摩滅して内側キャップトレッド層が現れたときに、内側キャップトレッド層のショルダー部が該ショルダー部を除いた内側キャップトレッド層よりも速く摩耗するようになるので、トレッド展開幅が狭くなると共にショルダー部がいわゆるラウンド状となるから(タイヤ子午線方向断面においてショルダー部外郭線が外に凸の曲線となる)、轍ワンダリング性能を向上させることが可能となる。
【0009】
【発明の実施の形態】
図1は本発明の重荷重用空気入りタイヤの一例を示すタイヤ子午線方向半断面図である。
【0010】
図1において、左右一対のビード部(図示せず)にはカーカス層1が装架され、トレッド2とカーカス層1との間にはベルト層3がタイヤ周方向にタイヤ1周に亘って配置されている。また、トレッド面には、タイヤ周方向に延びる複数の溝4が設けられている。
【0011】
トレッド2は、外側キャップトレッド層5と内側キャップトレッド層6との二層構造からなる。なお、図1ではトレッド2は二層構造となっているが、これに限定されることなく少なくとも二層構造であればよく、例えば、三層構造でも四層構造でもいずれでもよい。
【0012】
外側キャップトレッド層5は、降雪期において氷雪路走行性能を発揮させるために、その硬さをJISA硬度60〜65にしている。JISA硬度60未満では、外側キャップトレッド5が柔らか過ぎて操縦安定性が悪化することになり、一方、JISA硬度65超では硬くなり過ぎて氷雪路走行性能を維持できなくなるからである。外側キャップトレッド層5の厚さは、トレッド2の全体厚さの50%以上であればよく、50%〜70%であるのが好ましい。
【0013】
内側キャップトレッド層6では、轍ワンダリング性能を高めるために、そのショルダー部7の耐摩耗性を、ショルダー部7を除いた内側キャップトレッド層6の耐摩耗性の50〜95%にしている。ここで耐摩耗性とは、JIS K6264のランボーン試験の評価による。ショルダー部7には、例えば、耐チッピング性のよいジエン系ゴムを用いることが好ましい。ジエン系ゴムとしては、例えば、天然ゴム(NR)、ブタジエンゴム(BR)、スチレンーブタジエン共重合体ゴム(SBR)などを挙げることができる。
【0014】
ショルダー部7のタイヤ幅方向領域は、内側キャップトレッド層6の幅方向一端から他端方向に1/2トレッド展開幅の5〜30%に亘る領域8である。ショルダー部7のラウンド化にはこの程度のタイヤ幅方向領域があるのがよいからである。ここで、トレッド展開幅とは、2002年4月発行のJATMA(日本タイヤ規格)に記載の「空気圧700kPa、荷重26.72kNにおけるタイヤ接地面の幅方向長さ」をいう。
【0015】
つぎに、外側キャップトレッド層5の厚さがトレッド2の全体厚さの50%である本発明タイヤの55%摩耗時のタイヤ子午線方向トレッド形状を図2に、70%摩耗時のタイヤ子午線方向トレッド形状を図3にそれぞれ示す。図2および図3において、点Pは新品時における内側キャップトレッド層6の仮想幅方向端を表わす。図2および図3から判るように、摩耗時にプロファイル変化が生じてショルダー部7がラウンド化している。なお、1/2トレッド展開幅は、摩耗率により変化する。
【0016】
【実施例】
図1に示すトレッド二層構造のタイヤサイズ11R22.5の重荷重用空気入りタイヤを作製した。ここで、外側キャップトレッド層の厚さは、トレッドの全体厚さの50%である。また、外側キャップトレッド層、内側キャップトレッド層、内側キャップトレッド層のショルダー部は、カーボンブラックおよびオイルの量を変化させて耐摩耗性を調整することを除いて表1に示す配合内容(重量部)の配合物(ゴム組成物)に基づきそれぞれ構成した。耐摩耗性は、下記により評価した。
【0017】
【表1】
【0018】
得られたタイヤにつき下記により70%摩耗時の轍ワンダリング性能およびタイヤ摩耗寿命を評価した。この結果を表2に示す。なお、表2において、従来例のタイヤは、トレッドを上記の外側キャップトレッド層および内側キャップトレッド層と同じ配合物でトレッド全体厚さに対しそれぞれ50%に構成した二層のトレッド構造をしている。
【0019】
耐摩耗性の評価方法:
JIS K6264のランボーン試験により、外側キャップトレッド層、内側キャップトレッド層、および内側キャップトレッド層のショルダー部のゴムの摩耗量を測定することにより、評価した。ここで、ショルダー部の耐摩耗性は、内側キャップトレッド層の耐摩耗性を100としたときの指数値で表す。
【0020】
轍ワンダリング性能の評価方法:
70%摩耗時の従来例のタイヤ、実施例1〜4のタイヤ、および比較例1〜4のタイヤを、それぞれ、車輌に装着し、轍路面を走行することによる実車試験にて、車輌の安定性を評価し、感応評価点で表すことによった。ここで、轍ワンダリング性能は、従来例のタイヤの感応評価点を100としたときの指数値で表わす。
【0021】
タイヤ摩耗寿命の評価方法:
従来例の新品タイヤ、実施例1〜4の新品タイヤ、および比較例1〜4の新品タイヤを、それぞれ車両に装着し、走行することによる実車試験にて、摩耗限度に至るまでの走行距離を測定することにより評価した。
【0022】
ここで、タイヤ摩耗寿命は、従来例のタイヤの摩耗寿命を100としたときの指数で表わす。
【0023】
【表2】
【0024】
表2から明らかなように、本発明タイヤ(実施例1〜4)は、従来例のタイヤ、比較例1のタイヤおよび比較例3のタイヤに比し轍ワンダリング性能に優れていることがわかる。
【0025】
比較例1のタイヤはショルダー部の耐摩耗性が本発明の範囲よりも大きい場合であり、比較例3のタイヤはショルダー部のタイヤ幅方向領域が本発明の範囲よりも小さい場合である。
【0026】
比較例2のタイヤはショルダー部の耐摩耗性が本発明の範囲よりも小さい場合であり、轍ワンダリング性能には優れるが、タイヤ摩耗寿命がわるい。比較例4のタイヤはショルダー部のタイヤ幅方向領域が本発明の範囲よりも大きい場合であり、同様に轍ワンダリング性能には優れるが、タイヤ摩耗寿命がわるい。
【0027】
【発明の効果】
以上説明したように本発明の重荷重用空気入りタイヤは、トレッドを外側キャップトレッド層と内側キャップトレッド層との少なくとも二層構造とし、前記外側キャップトレッド層のJISA硬度を60〜65にすると共に、前記内側キャップトレッド層のショルダー部の耐摩耗性を、該ショルダー部を除いた内側キャップトレッド層の耐摩耗性の50〜95%にし、さらに、前記ショルダー部のタイヤ幅方向領域を、前記内側キャップトレッド層の幅方向一端から他端方向に1/2トレッド展開幅の5〜30%に亘る領域にしたため、タイヤ摩耗寿命を損なうことなしに降雪期においては氷雪路走行性能を維持し、降雪期以外では轍ワンダリング性能を向上できるので、通年での使用が可能となる。
【図面の簡単な説明】
【図1】本発明の重荷重用空気入りタイヤの一例を示すタイヤ子午線方向半断面図である。
【図2】本発明の重荷重用空気入りタイヤの一例の50%摩耗時のタイヤ子午線方向トレッド形状を示すタイヤ子午線方向半断面図である。
【図3】本発明の重荷重用空気入りタイヤの一例の70%摩耗時のタイヤ子午線方向トレッド形状を示すタイヤ子午線方向半断面図である。
【符号の説明】
1 カーカス層
2 トレッド
3 ベルト層
4 溝
5 外側キヤップトレッド層
6 内側キヤップトレッド層
7 ショルダー部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heavy-duty pneumatic tire that maintains running performance on snowy and snowy roads during a snowfall season and substantially improves rut wandering performance during a period other than the snowfall season without substantially impairing the tire wear life.
[0002]
[Prior art]
Conventionally, in a heavy-duty pneumatic tire for winter, that is, a heavy-duty pneumatic tire with improved running performance on icy and snowy roads, the tread development width is widened in order to increase the contact area (for example, a heavy load with a tire size of 11R22.5). 210mm to 235mm for heavy pneumatic tires). However, in recent years, pneumatic tires for heavy load for winter have been used throughout the year (so-called crushing), and the rudder wandering performance has been increased due to the wide tread deployment width in seasons other than the snowfall season. There is a problem that it gets worse.
[0003]
As a countermeasure against this problem, for example, an attempt is made to improve the rudder wandering performance by reducing the shoulder rigidity by making a sipe (narrow cut) in a tire circumferential direction in the tire shoulder, but this is insufficient. Further improvements are desired.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 5-201204 [Patent Document 2]
JP-A-5-201210 [Patent Document 3]
JP-A-7-81315 [Patent Document 4]
JP-A-9-136510
[Problems to be solved by the invention]
An object of the present invention is to provide a heavy-duty pneumatic tire that maintains running performance on icy and snowy roads during snowfall and substantially improves rut wandering performance during periods other than snowfall without substantially impairing tire wear life. Is to do. Here, the term "tire wear life" refers to the running distance from the time of new tire to the time when the tread rubber reaches its wear limit due to running.
[0006]
[Means for Solving the Problems]
The pneumatic tire for heavy load according to the present invention has a tread having at least a two-layer structure of an outer cap tread layer and an inner cap tread layer, the outer cap tread layer having a JISA hardness of 60 to 65, and the inner cap tread layer having a JISA hardness of 60 to 65. The wear resistance of the inner cap tread layer excluding the shoulder part from 50 to 95% of the wear resistance of the inner cap tread layer, and further, the tire width direction area of the shoulder part is changed to the width direction of the inner cap tread layer. It is characterized in that the region extends from 5 to 30% of the 1/2 tread development width from one end to the other end.
[0007]
As described above, the tread has at least a two-layer structure of the outer cap tread layer and the inner cap tread layer, and the outer cap tread layer has a relatively low JISA hardness of 60 to 65 to make the outer cap tread layer a so-called snow tire configuration. Therefore, it is possible to maintain the running performance on ice and snowy roads during the snowfall period.
[0008]
Further, the tread has at least a two-layer structure of an outer cap tread layer and an inner cap tread layer, and the abrasion resistance of the shoulder portion of the inner cap tread layer is reduced by the abrasion resistance of the inner cap tread layer excluding the shoulder portion. Because the tire width direction region of the shoulder portion of the inner cap tread layer is set to a region extending from one end in the width direction of the inner cap tread layer to 5% of the 1/2 tread development width in the other end direction. When the outer cap tread layer wears out and the inner cap tread layer appears in a season other than the snowfall season, the shoulder portion of the inner cap tread layer wears faster than the inner cap tread layer excluding the shoulder portion. The width of the tread becomes narrower and the shoulder becomes a so-called round shape. Shoulder outline in meridian cross-section a convex curve to the outside), it becomes possible to improve the rut wandering performance.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a half sectional view in the tire meridian direction showing an example of a pneumatic tire for heavy load of the present invention.
[0010]
In FIG. 1, a carcass layer 1 is mounted on a pair of left and right bead portions (not shown), and a belt layer 3 is arranged between the tread 2 and the carcass layer 1 in the tire circumferential direction over one circumference of the tire. Have been. In addition, a plurality of grooves 4 extending in the tire circumferential direction are provided on the tread surface.
[0011]
The tread 2 has a two-layer structure of an outer cap tread layer 5 and an inner cap tread layer 6. In FIG. 1, the tread 2 has a two-layer structure, but is not limited to this, and may have at least a two-layer structure. For example, the tread 2 may have a three-layer structure or a four-layer structure.
[0012]
The outer cap tread layer 5 has a hardness of JISA hardness 60 to 65 in order to exhibit running performance on ice and snowy roads during the snowfall period. If the JISA hardness is less than 60, the outer cap tread 5 is too soft, and the steering stability is deteriorated. On the other hand, if the JISA hardness is more than 65, the outer cap tread 5 becomes too hard to maintain ice and snow road running performance. The thickness of the outer cap tread layer 5 may be 50% or more of the total thickness of the tread 2, and is preferably 50% to 70%.
[0013]
In the inner cap tread layer 6, in order to enhance rudder wandering performance, the wear resistance of the shoulder portion 7 is set to 50 to 95% of the wear resistance of the inner cap tread layer 6 excluding the shoulder portion 7. Here, the abrasion resistance is based on the evaluation of the Lambourn test of JIS K6264. For the shoulder portion 7, for example, it is preferable to use a diene rubber having good chipping resistance. Examples of the diene rubber include natural rubber (NR), butadiene rubber (BR), and styrene butadiene copolymer rubber (SBR).
[0014]
The region of the shoulder portion 7 in the tire width direction is a region 8 extending from one end in the width direction of the inner cap tread layer 6 to 5% to 30% of the 1/2 tread development width in the other end direction. This is because the shoulder section 7 preferably has such a region in the tire width direction in the rounding. Here, the tread deployment width refers to “the width direction length of the tire contact surface at an air pressure of 700 kPa and a load of 26.72 kN” described in JATMA (Japanese Tire Standard) issued in April, 2002.
[0015]
FIG. 2 shows the tire tread shape at 55% wear of the tire of the present invention in which the thickness of the outer cap tread layer 5 is 50% of the total thickness of the tread 2, and FIG. The tread shape is shown in FIG. 2 and 3, a point P represents an end of the inner cap tread layer 6 in the virtual width direction at the time of new product. As can be seen from FIGS. 2 and 3, the profile changes at the time of wear, and the shoulder portion 7 is rounded. Note that the 1/2 tread development width changes depending on the wear rate.
[0016]
【Example】
A heavy duty pneumatic tire having a tread two-layer structure and a tire size of 11R22.5 shown in FIG. 1 was produced. Here, the thickness of the outer cap tread layer is 50% of the total thickness of the tread. In addition, the shoulder portions of the outer cap tread layer, the inner cap tread layer, and the inner cap tread layer have the composition shown in Table 1 (parts by weight) except that the wear resistance is adjusted by changing the amounts of carbon black and oil. )) (Rubber composition). The abrasion resistance was evaluated as follows.
[0017]
[Table 1]
[0018]
The obtained tires were evaluated for rut wandering performance at 70% wear and tire wear life as follows. Table 2 shows the results. In Table 2, the conventional tire has a two-layer tread structure in which the tread is made of the same composition as the outer cap tread layer and the inner cap tread layer and each of the treads is 50% of the total thickness of the tread. I have.
[0019]
Evaluation method of wear resistance:
It was evaluated by measuring the amount of rubber abrasion at the shoulder portions of the outer cap tread layer, the inner cap tread layer, and the inner cap tread layer by a JIS K6264 Lambourn test. Here, the wear resistance of the shoulder portion is represented by an index value when the wear resistance of the inner cap tread layer is set to 100.
[0020]
Evaluation method of rut wandering performance:
The stability of the vehicle was determined by mounting the conventional tire, the tires of Examples 1 to 4, and the tires of Comparative Examples 1 to 4 at 70% wear on a vehicle and running on a rutted road surface. The sex was evaluated and expressed as a sensitivity evaluation point. Here, the rut wandering performance is represented by an index value when the sensitivity evaluation point of the conventional tire is 100.
[0021]
Evaluation method of tire wear life:
The new tires of the conventional example, the new tires of Examples 1 to 4, and the new tires of Comparative Examples 1 to 4 were each mounted on a vehicle, and in actual vehicle tests by running, the running distance until the wear limit was reached. It was evaluated by measuring.
[0022]
Here, the tire wear life is represented by an index when the wear life of the conventional tire is taken as 100.
[0023]
[Table 2]
[0024]
As is clear from Table 2, the tires of the present invention (Examples 1 to 4) are more excellent in rut wandering performance than the conventional tire, the tire of Comparative Example 1, and the tire of Comparative Example 3. .
[0025]
The tire of Comparative Example 1 is a case where the wear resistance of the shoulder portion is larger than the range of the present invention, and the tire of Comparative Example 3 is a case where the region in the tire width direction of the shoulder portion is smaller than the range of the present invention.
[0026]
The tire of Comparative Example 2 has a case where the wear resistance of the shoulder portion is smaller than the range of the present invention, and is excellent in rut wandering performance, but has a poor tire wear life. The tire of Comparative Example 4 is a case where the region in the tire width direction of the shoulder portion is larger than the range of the present invention. Similarly, the tire has excellent rut wandering performance, but has a poor tire wear life.
[0027]
【The invention's effect】
As described above, the heavy duty pneumatic tire of the present invention has a tread having at least a two-layer structure of an outer cap tread layer and an inner cap tread layer, and the outer cap tread layer having a JISA hardness of 60 to 65, The wear resistance of the shoulder portion of the inner cap tread layer is set to 50 to 95% of the wear resistance of the inner cap tread layer excluding the shoulder portion. The width of the tread layer extends from one end in the width direction to the other end in the range of 5 to 30% of the development width of the tread, so that the running performance on ice and snow roads can be maintained during the snowfall period without impairing the tire wear life, and the snowfall period can be maintained. Other than that, the rut wandering performance can be improved, so that it can be used throughout the year.
[Brief description of the drawings]
FIG. 1 is a half sectional view in the tire meridian direction showing an example of a heavy-duty pneumatic tire of the present invention.
FIG. 2 is a half-sectional view in the tire meridian direction showing the tread shape in the tire meridian direction at the time of 50% wear of an example of the heavy duty pneumatic tire of the present invention.
FIG. 3 is a half-sectional view in the tire meridian direction showing a tread shape in the tire meridian direction at the time of 70% wear of an example of the heavy duty pneumatic tire of the present invention.
[Explanation of symbols]
1 Carcass Layer 2 Tread 3 Belt Layer 4 Groove 5 Outer Cap Tread Layer 6 Inner Cap Tread Layer 7 Shoulder