JP2004243301A - Exhaust gas cleaning device using graphite silica as contact material - Google Patents

Exhaust gas cleaning device using graphite silica as contact material Download PDF

Info

Publication number
JP2004243301A
JP2004243301A JP2003079085A JP2003079085A JP2004243301A JP 2004243301 A JP2004243301 A JP 2004243301A JP 2003079085 A JP2003079085 A JP 2003079085A JP 2003079085 A JP2003079085 A JP 2003079085A JP 2004243301 A JP2004243301 A JP 2004243301A
Authority
JP
Japan
Prior art keywords
dioxins
exhaust gas
graphite silica
tower
contact material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003079085A
Other languages
Japanese (ja)
Inventor
Haruo Morimoto
晴夫 森本
Yoichi Matsubara
洋一 松原
Tsunehisa Araiso
恒久 荒磯
Hiroshi Saito
寛 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIZEN KANKYO SOGO KENKYUSHO K
SHIZEN KANKYO SOGO KENKYUSHO KK
Original Assignee
SHIZEN KANKYO SOGO KENKYUSHO K
SHIZEN KANKYO SOGO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIZEN KANKYO SOGO KENKYUSHO K, SHIZEN KANKYO SOGO KENKYUSHO KK filed Critical SHIZEN KANKYO SOGO KENKYUSHO K
Priority to JP2003079085A priority Critical patent/JP2004243301A/en
Publication of JP2004243301A publication Critical patent/JP2004243301A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system for decomposing and removing dioxins contained in an exhaust gas from a waste incinerator. <P>SOLUTION: Graphite silica 2, which is an ore containing reduced iron, is installed as a contact material in a packed tower 1 and the tower is preheated by the exhaust gas. Water is sprayed in the tower so as to generate high-temperature water vapor. It is confirmed that, in the tower, hydrolysis reaction by the high-temperature water vapor, a far infrared ray effect from the ore, and dechlorination reaction by the iron catalyst are carried out simultaneously and the dioxins contained in the exhaust gas are reduced to about 1/100. Furthermore, although the discharged water from the system contains the dioxins, the amount of the dioxins is very small and can be cleaned with a simple treatment including settling and filtration or the like, so that the water can be recycled. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、可燃性廃棄物の焼却処理等により発生する排煙中のダイオキシン類を簡易な設備と方法で分解除去するものである。
【0002】
【従来の技術】
通常の排煙中ダイオキシン類処理法は排煙に活性炭、消石灰などを吹き込みバグフィルターを用いるものである。これは単にダイオキシン類を吸着、捕集しただけで、その毒性に変りはなく安全に処理するためには新たな処理設備と莫大なコストがかかる。
【0003】
【発明が解決しようとする課題】
そこで本発明は排煙を浄化する充填塔内部で分解反応を起こすことによりダイオキシン類の処理を行うものである。
【0004】
【課題を解決するための手段】
本発明は充填塔内部に黒鉛珪石をつめて排煙の熱で黒鉛珪石を加温し散水する事により発生する高温水蒸気や黒鉛珪石から放射される遠赤外線及び黒鉛珪石が持つ鉄触媒作用によりダイオキシン類を分解しようとするものである。
【0005】
【発明の実施の形態】
本発明の必須構成要素である黒鉛珪石は先第三系黒色硬質泥岩類中の断層破砕部に産し、酸化珪素を主体にした炭素を含有する黒色の鉱石で、著しく脂感のある粉状、フレーク状、角礫状を呈して産出される。
【0006】
ガラスビード法(定量)及び炭素含有量分析(動力炉核燃料開発事業団)による黒鉛珪石の鉱石の塊の成分組成を表1に粉末の成分組成を表2に示す。
【0007】
【表1】

Figure 2004243301
【0008】
【表2】
Figure 2004243301
【0009】
黒鉛珪石は常温で強力に遠赤外線を放射する物質で、図2の赤外線放射エネルギー測定結果(北海道立工業試験場)に示すように、4.0〜14.0μmになだらかなピークを持つ黒体放射ライン(理論上の理想曲線のこと)に近い理想的な遠赤外線放射特性を示し、安定した高い放射率を示す。高温域においてはそれが著しい。
【0010】
本発明の実施の形態を説明する。一般的に遠赤外線とは0.8〜1000μmの波長帯をさすが、黒鉛珪石から放射される波長は図2に示すように2.5〜14.0μmに特有な放射帯を持っている。有機物はその構造により固有の吸収スペクトルを持っており、ダイオキシン類もまたその例外ではない。ベンゼン環をつなぐ酸素結合は3μmの波長に吸収を持ち伸縮振動(ゴム紐のように伸縮すること)を激しくする。一方ベンゼン環に結合している塩素原子は13〜17μmに吸収を持ち変角振動(振り子の様に動くこと)を起こす(化1)。このようにエネルギーを吸収したダイオキシン分子は励起状態に有り反応性が高くなっている。
【0011】
【化1】
Figure 2004243301
【0012】
焼却炉から排出される煙は数百度から千度近い温度があり、その熱により黒鉛珪石は高温状態となる。そこに適量の水を散布することにより高温水蒸気を発生させ、ダイオキシン類の加水分解反応を起こし分解する(化2)。
【0013】
【化2】
Figure 2004243301
【0014】
黒鉛珪石は鉄を数%含有しており、その鉄は黒鉛の結晶中に取り込まれているため還元状態(第一鉄)になっている。第一鉄は反応性に富み、その触媒効果により脱塩素化反応を起こすことが知られている。ダイオキシンから塩素原子を脱離させることにより、無毒化することができる(化3)。
【0015】
【化3】
Figure 2004243301
【0016】
焼却炉からの排煙を充填塔(1)の中に導き、黒鉛珪石(2)の層を通過させる。ノズル(3)は黒鉛珪石(2)充填層の上にあり表面温度を200〜400℃程度に保ちつつ黒鉛珪石に付着したダイオキシンを含む煤を洗い流す。そのため黒鉛鉱石の表面は常に清浄に保たれ分解反応は滞る事無く進行する。
【0017】
煙を水で洗浄することにより排煙中の煤、塩化水素、窒素酸化物、硫黄酸化物も除去できる。
【0018】
発生する汚水は排水処理施設で処理し循環再利用する。
【0019】
【実施例】
実際に小型焼却炉の排煙中ダイオキシン類分解実験を行った結果、図3、図4に示すように、充填塔入り口のダイオキシン濃度は300ng−TEQ/mNだったが出口では3.9ng−TEQ/mNに減少していた。さらに汚水に含まれるダイオキシン濃度も2000pg−TEQ/Lと激減しており、このことは充填塔内部でのダイオキシン類の分解反応によるものと考えられる。
【0020】
さらに図5、図6のように異性体分布をみても処理前と処理後では大きくパターンが変わっておりこのことは分解反応を裏づける大きな要因である。
【0021】
【発明の効果】
以上の様に本発明では従来ダイオキシンを発生しやすいと言われてきた条件を敢えて作り出し(200〜400℃の温度を数秒間保持する)、黒鉛珪石の遠赤外線効果、高温水蒸気、触媒作用によりダイオキシン類を分解するという点に大きな特徴を持っている。従来のバグフィルターを用いた処理法に比べ非常に簡易な設備、安価なコストでの提供が可能となる。
【図面の簡単な説明】
【図1】本発明の概略説明図
【図2】赤外線放射エネルギー測定結果
【図3】排煙中ダイオキシン類測定結果
【図4】排水中ダイオキシン類測定結果
【図5】ダイオキシン類異性体分布グラフ(充填塔入口)
【図6】ダイオキシン類異性体分布グラフ(充填塔出口)
【符号の説明】
1 充填塔
2 黒鉛珪石
3 ノズル[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention decomposes and removes dioxins in flue gas generated by incineration of combustible waste by simple equipment and method.
[0002]
[Prior art]
The conventional method of treating dioxins in flue gas uses a bag filter by blowing activated carbon, slaked lime, etc. into the flue gas. This involves simply adsorbing and trapping dioxins, without any change in toxicity and requiring new processing equipment and enormous costs for safe processing.
[0003]
[Problems to be solved by the invention]
Accordingly, the present invention is to treat dioxins by causing a decomposition reaction inside a packed tower for purifying flue gas.
[0004]
[Means for Solving the Problems]
The present invention relates to dioxin by high-temperature steam generated by filling graphite silica in a packed tower and heating and spraying the graphite silica with the heat of flue gas, far-infrared rays radiated from graphite silica, and iron catalysis of graphite silica. They are trying to break down classes.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Graphite silica, which is an essential component of the present invention, is a black ore containing carbon mainly composed of silicon oxide, which is produced at the fault crushed part in Pre-Tertiary black hard mudstone, and is a powdery substance with an extremely greasy feeling. It is produced in the form of flakes and breccia.
[0006]
Table 1 shows the composition of the graphite silica ore lumps by the glass bead method (quantitative determination) and the carbon content analysis (Power Reactor Nuclear Fuel Development Corporation), and Table 2 shows the composition of the powder.
[0007]
[Table 1]
Figure 2004243301
[0008]
[Table 2]
Figure 2004243301
[0009]
Graphite silica is a substance that emits far-infrared rays at room temperature, and as shown in the infrared radiation energy measurement result (Hokkaido Prefectural Industrial Testing Laboratory) in FIG. 2, black body radiation having a gentle peak at 4.0 to 14.0 μm. It shows ideal far-infrared radiation characteristics close to the line (theoretical ideal curve) and shows a stable high emissivity. This is remarkable in the high temperature range.
[0010]
An embodiment of the present invention will be described. Generally, far-infrared rays refer to a wavelength band of 0.8 to 1000 μm, but the wavelength radiated from graphite silica has a specific radiation band of 2.5 to 14.0 μm as shown in FIG. Organic substances have unique absorption spectra due to their structures, and dioxins are no exception. The oxygen bond connecting the benzene rings has an absorption at a wavelength of 3 μm and intensifies stretching vibration (stretching like a rubber string). On the other hand, the chlorine atom bonded to the benzene ring has an absorption at 13 to 17 μm and causes bending vibration (moving like a pendulum) (Formula 1). The dioxin molecules that have absorbed energy in this way are in an excited state and have high reactivity.
[0011]
Embedded image
Figure 2004243301
[0012]
The smoke discharged from the incinerator has a temperature of several hundred degrees to nearly 1,000 degrees, and the heat causes the graphite silica to reach a high temperature state. By spraying an appropriate amount of water there, high-temperature steam is generated, causing a hydrolysis reaction of dioxins and decomposing (chemical formula 2).
[0013]
Embedded image
Figure 2004243301
[0014]
Graphite silica contains several percent of iron, and the iron is in a reduced state (ferrous iron) because it is incorporated into graphite crystals. Ferrous iron is known to be highly reactive and to cause a dechlorination reaction by its catalytic effect. Detoxification can be achieved by removing chlorine atoms from dioxin (Chem. 3).
[0015]
Embedded image
Figure 2004243301
[0016]
The flue gas from the incinerator is directed into the packed tower (1) and passes through a layer of graphite silica (2). The nozzle (3) is on the graphite silica (2) packed layer, and rinses soot containing dioxin attached to the graphite silica while maintaining the surface temperature at about 200 to 400 ° C. Therefore, the surface of the graphite ore is always kept clean and the decomposition reaction proceeds without delay.
[0017]
By cleaning the smoke with water, soot, hydrogen chloride, nitrogen oxides and sulfur oxides in the flue gas can also be removed.
[0018]
The generated sewage is treated at a wastewater treatment facility and recycled.
[0019]
【Example】
As a result of actually conducting an experiment for decomposing dioxins in flue gas from a small incinerator, as shown in FIGS. 3 and 4, the dioxin concentration at the entrance of the packed tower was 300 ng-TEQ / m 3 N, but 3.9 ng at the exit. −TEQ / m 3 N. Furthermore, the concentration of dioxin contained in the sewage is also drastically reduced to 2000 pg-TEQ / L, which is considered to be due to the decomposition reaction of dioxins inside the packed tower.
[0020]
Further, as shown in FIG. 5 and FIG. 6, the pattern is greatly changed before and after the isomer distribution in the isomer distribution, which is a major factor supporting the decomposition reaction.
[0021]
【The invention's effect】
As described above, in the present invention, conditions that are conventionally considered to easily generate dioxin are intentionally created (a temperature of 200 to 400 ° C. is maintained for several seconds), and dioxin is produced by the far-infrared effect, high-temperature steam, and catalytic action of graphite silica. It has a great feature in decomposing kinds. Very simple equipment can be provided at a low cost as compared with a processing method using a conventional bag filter.
[Brief description of the drawings]
1 is a schematic explanatory view of the present invention. FIG. 2 is a measurement result of infrared radiation energy. FIG. 3 is a measurement result of dioxins in flue gas. FIG. 4 is a measurement result of dioxins in waste water. (Packing tower entrance)
FIG. 6: Distribution graph of dioxin isomers (outlet of packed tower)
[Explanation of symbols]
1 packed tower 2 graphite silica 3 nozzle

Claims (3)

排煙中のダイオキシン類に黒鉛珪石からの遠赤外線を放射することにより分子間に伸縮振動と変角振動を起こさせ分解反応を促進させる方法。A method of radiating far-infrared rays from graphite silica to dioxins in flue gas to cause stretching vibration and bending vibration between molecules to accelerate the decomposition reaction. 排煙により加熱された黒鉛珪石に散水し発生する高温水蒸気によりダイオキシン類の加水分解反応を起こし分解する方法。A method in which dioxins are hydrolyzed and decomposed by high-temperature steam generated by sprinkling water on graphite silica heated by flue gas. ダイオキシン類に結合する塩素原子を黒鉛珪石に含まれる鉄を触媒として脱塩素化反応を起こし分解する方法。A method in which chlorine atoms bonded to dioxins are dechlorinated by the dechlorination reaction using iron contained in graphite silica as a catalyst.
JP2003079085A 2003-02-14 2003-02-14 Exhaust gas cleaning device using graphite silica as contact material Pending JP2004243301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003079085A JP2004243301A (en) 2003-02-14 2003-02-14 Exhaust gas cleaning device using graphite silica as contact material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003079085A JP2004243301A (en) 2003-02-14 2003-02-14 Exhaust gas cleaning device using graphite silica as contact material

Publications (1)

Publication Number Publication Date
JP2004243301A true JP2004243301A (en) 2004-09-02

Family

ID=33028047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003079085A Pending JP2004243301A (en) 2003-02-14 2003-02-14 Exhaust gas cleaning device using graphite silica as contact material

Country Status (1)

Country Link
JP (1) JP2004243301A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019033687A1 (en) * 2017-08-14 2019-02-21 张达积 Automobile and diesel exhaust-gas infrared steam reformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019033687A1 (en) * 2017-08-14 2019-02-21 张达积 Automobile and diesel exhaust-gas infrared steam reformer

Similar Documents

Publication Publication Date Title
Sakthivel et al. Photocatalytic decomposition of leather dye: comparative study of TiO2 supported on alumina and glass beads
Dou et al. Enhanced adsorption of gaseous mercury on activated carbon by a novel clean modification method
Nath et al. An investigation of LiNbO3 photocatalyst coating on concrete surface for improving indoor air quality
Mohseni Gas phase trichloroethylene (TCE) photooxidation and byproduct formation: photolysis vs. titania/silica based photocatalysis
CN101461990A (en) Method for analyzing and processing persistent organic pollutants by microwave assisted base catalysis
CN104437075A (en) Method for carrying out catalytic pyrolysis treatment on volatile organic gas by utilizing microwave heating
CN112222149A (en) Thermal desorption waste incineration fly ash treatment system and process
Wang et al. Deep removal of organic matter in glyphosate contained industrial waste salt by dielectric barrier discharge plasma
JP2001254929A (en) Method and device for treating dioxin
CN108479385A (en) Bioxin decomposer and its processing method
Shen et al. Decomposition of gas-phase chloroethenes by UV/O3 process
CN102068782A (en) Method for treating persistent organic pollutants through microwave hydrothermal reaction
Hu et al. Degradation of trichloroethylene by double dielectric barrier discharge (DDBD) plasma technology: Performance, product analysis and acute biotoxicity assessment
US20050108925A1 (en) Method of reducing air pollutant emissions from combustion facilities
JP2002153834A (en) Treatment method and treatment equipment for making ash and soil pollution-free
JP2004243301A (en) Exhaust gas cleaning device using graphite silica as contact material
Van Oost et al. Destruction of toxic organic compounds in a plasmachemical reactor
JP2004322010A (en) Dioxins decomposition method using microwave plasma
Shen et al. Treatment of gas-phase trichloroethene in air by the UV/O3 process
Zhang et al. Effect of calcium hydroxide on the characteristics of volatile organic compounds emission during sewage sludge incineration
JP2011036772A (en) Mechanism for deodorizing and cleaning voc gas
JP3096706U (en) Dioxin dechlorination treatment using pyroelectric effect of graphite silica
JP4494334B2 (en) Equipment for treating harmful substances such as organic halogen compounds
JP2000334062A (en) Microwave-solvothermal treatment of harmful organic compound
JP3782971B2 (en) Method for reducing the content of polychlorinated dibenzodioxins and -furans in waste gases of chemical high temperature treatment