JP2004243249A - Method for sieving powder - Google Patents

Method for sieving powder Download PDF

Info

Publication number
JP2004243249A
JP2004243249A JP2003037172A JP2003037172A JP2004243249A JP 2004243249 A JP2004243249 A JP 2004243249A JP 2003037172 A JP2003037172 A JP 2003037172A JP 2003037172 A JP2003037172 A JP 2003037172A JP 2004243249 A JP2004243249 A JP 2004243249A
Authority
JP
Japan
Prior art keywords
sieving
powder
sieve
clogging
specific gravity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003037172A
Other languages
Japanese (ja)
Inventor
Shigeru Tanaka
茂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003037172A priority Critical patent/JP2004243249A/en
Publication of JP2004243249A publication Critical patent/JP2004243249A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sieving method which facilitates sieving and falling of powder of a small particle size and relatively small specific gravity without clogging. <P>SOLUTION: In the method for sieving the powder of a particle size of 2 to 50 μm and specific gravity of 0.8 to 2.0 through a sieving net, vibrations of an amplitude of ≥20 mm and frequencies of 200 to 1,000 times/min are applied to the sieving net 7 which has an elastic body 6 arranged on the sieving net as a means for preventing the clogging. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、粒子径が50μm以下の、比較的小さい粉体の篩い分け方法に関する。
【0002】
【従来の技術】
一般的に、粉体を篩い分けする方法としては、所定の目開きの網や多孔板等(本明細書では便宜上、篩い網という。)を枠に固定し、枠とともに篩い網を振動させて、目開きより大きな粒子を篩い網上に分離する方法が用いられる。しかしながら、この篩い分け方法では、篩い網の網目に粒子が目詰まりしてしまい、篩い分けの効率が低下してしまうという問題があった。
【0003】
この目詰まりを防止する方法としては、例えば、振動篩いに、2つの異なる振幅であって例えば振動数が500〜2000回/分の振動を与えることにより、例えば焼結鉄鉱石等の粉体を分級し、かつ目詰まりした粉、粒を除去できるようにした振動篩い方法が提案されている(例えば、特許文献1参照。)。
また、この他にも、各種の鉱石、土砂、硫安等の粉粒体を篩い分ける振動篩い機において、篩い網上に弛みを就けたワイヤーロープに設けた弾性体によって篩い網を打撃させて、篩い網の目詰まりを防止する方法が報告されている(例えば、特許文献2参照。)。
上記公報記載の方法によれば、焼結鉄鉱石や土砂等の粉体を目詰まりさせず篩い分け効率良く篩い分けることができるとされている。
【0004】
【特許文献1】
特開2001−96232号公報
【特許文献2】
特開平9−234425号公報
【0005】
【発明が解決しようとする課題】
しかしながら、本発明者は、上記の方法では、粒子径が50μm以下の如く小さく、かつ比重が鉄鉱石や土砂等の粉体と比較して小さい粉体については、目詰まり改善は十分ではなく、篩い落下速度が低下するという問題があることを知見した。
本発明は、上記従来の粉体の篩い分けに関して、本発明者が知見した問題を解決すべくなされたもので、粒子径が小さい粉体が目詰まりなく篩い落下し易い篩い分け方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために請求項1記載の発明は、粒子径1〜50μm、比重0.8〜2.0の粉体を篩い網を通して篩い分ける篩い分け方法であって、目詰まり防止手段としてその上に弾性体を配置した篩い網に振幅20mm以上、振動数200〜1000回/分の振動を与える篩い分け方法を提供する。
【0007】
以下、本発明の詳細を説明する。
本発明の篩い分け方法は、粒子径1〜50μm、比重0.8〜2.0の粉体を篩い網を通して篩い分けることを一つの特徴とする。
上記粉体の種類は特に限定されず、例えば、合成樹脂粉末、トナー、粉末コンパウンド等の合成樹脂やその配合物粉体;デンプン、木粉等の有機天然物粉体;炭酸カルシウム、ケイ酸カルシウム、ゼオライト、ハイドロキシアパタイト、フェライト、硫化亜鉛、硫化マグネシウム等の無機化合物粉体;鉄粉、銅粉、ニッケル合金粉等の金属粉;カーボンブラック、酸化チタン、ベンガラ等の無機顔料;フタロシアニンブルー、インジゴ等の有機顔料や染料等が挙げられる。
【0008】
本発明の篩い分け方法においては、粒子径が小さくかつ比重の小さい粉体であることが、一般的な篩い分け方法と比較して、目詰まりなく篩い落下し易い効果が生かされる。
従って、上記粉体の粒子径は1〜50μmのものが用いられる。粒子径が1μm未満であると、篩い落下が著しく低下し、粒子径が50μmを越えると、一般的な篩い分け方法との効果の差が小さくなる。より好ましくは粒子径が1〜40μmであり、更に好ましくは1〜15μmである。
【0009】
また、上記粉体の比重は0.8〜2.0のものが用いられる。比重が0.8未満であると、篩い落下が著しく低下し、比重が2.0を越えると、一般的な篩い分け方法との効果の差が小さくなる。より好ましくは比重が0.9〜1.8である。
【0010】
本発明における篩い網としては特に限定されず、網の線材は単体でも金属メッキが施されたものでも構わない。また、網を作製後金属メッキが施されたものでも構わない。前記線材としては、例えば、ステンレス鋼線、黄銅線、りん青銅線等の金属線や、ポリエステル繊維、ポリアミド繊維等の有機繊維等が挙げられる。
【0011】
前記金属メッキ用の金属としては、例えば、ニッケル、クロム、銅、金等が挙げられる。また、メッキの種類としては、特に限定されるものではない。金属メッキが施された線材により作製された網は、線材の表面が平滑であり微細な粒子の線材への付着を防止するので好適に用いられる。また、網を作製後金属メッキが施された網は、網目の移動による目開きがなく所定の開孔径を保持できるのでさらに好適に用いられる。なお、本明細書において開孔径とは、篩い網の開孔において、円形の場合は直径を、多角形の場合は内接円の直径をいう。
【0012】
本発明の篩い分け方法において用いられる篩い網は、粒子径の1.7〜6.5倍の開孔径を有するものであることが好ましい。篩い網の開孔径が、粒子径の1.7倍未満であると、目詰まりを生じやすく、篩い網の開孔径が、粒子径の6.5倍を越えると、大粒子を分別しにくい。
【0013】
本発明の篩い分け方法は、粉体を目詰まりなく篩い落下させるために、篩い網に与える振動の振幅は20mm以上が必要であり、25mm以上がより好ましい。また、その振動数は200〜1000回/分が必要である。振動数が200回/分未満であると、篩い落下性が悪く、1000回/分を超えると、篩い網が弾性体の衝撃で破損し寿命が短くなることがある。より好ましい振動数は200〜900回/分である。
【0014】
本発明の篩い分け方法は、篩い網上に目詰まり防止手段として弾性体を配置し、その篩い網に上記振動を与える。
上記弾性体の材質としては特に限定されず、例えば、スチレンブタジエンゴム、ハイスチレンゴム、ブタジエンゴム、イソプレンゴム、EPDM、NBR、クロロプレンゴム、ウレタンゴム、シリコンゴム、多硫化ゴム、水素化ニトリルゴム、フッ素ゴム、アクリルゴム、CSM、エチレンアクリルゴム、熱可塑性エラストマー等の合成ゴム;(メタ)アクリル系樹脂、スチレン系樹脂、酢酸ビニル系樹脂、塩化ビニル系樹脂、オレフィン系樹脂、フッ素系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、エポキシ系樹脂、ウレタン系樹脂、キシレン系樹脂、PET、メラミン樹脂、ユリア樹脂、マレイン酸樹脂等の合成樹脂;シリコン系樹脂等の有機ケイ素化合物等が挙げられ、なかでも、耐摩耗性の良好なシリコンゴム、フッ素系樹脂等が好ましい。なお、ガラスやセラミック等の比重が大きくて硬いものは、早期に篩い網を破損することがあるため好ましくない。
また、これらの弾性体は単独で用いられてもよく、2種類以上が併用されてもよい。
【0015】
上記弾性体の形状としては特に限定されず、篩い網上で弾ませることができる範囲で自由に設定できる。また、市販のタッピングゴム、タッピングボール、スライドディスク等を使用しても構わない。
【0016】
本発明の篩い分け方法においては、篩い後の粒子に溜まった静電気を除去するため、篩い受け器を導電性の材料とし、篩い受け器をアースすることが好ましい。篩い後の静電気が溜まった粒子はその後の工程での取扱い作業性等が低下してしまう。前記導電性の材料としては、例えば、鉄、銅、ステンレス、アルミニウム、マグネシウム、リチウム、ニッケル、クロム、チタン、亜鉛、鉛、錫、金、白金、銀等の金属類及びその合金が挙げられ、なかでも、ステンレスが好ましい。また、前記アースの方法としては、例えば、篩い受け器にリード線を直接接続したり、篩い受け器と接する台の下地を導電性の材料とし下地とリード線を接続したりして、リード線をアース端子等につなぐことにより除電させる。
【0017】
(作用)
粒子径が小さい粉体は比表面積が増大するため、表面エネルギーが相対的に大きくなる結果、粉体同士の凝集や網面への付着が激しくなり、粉体は目詰まりし易く、篩い落下し難くなると考えられ、さらに、粉体の比重が小さいと篩い落下し難くなると考えられる。
【0018】
本発明の篩い分け方法では、上述のような公報に記載された粉体よりも、粒子径が小さくかつ比重が小さい粉体でも、篩い網上に弾性体を配置しているので振動により弾性体が弾んで篩い網を打撃することにより、目詰まりなく篩い落下し易くなり、かつ一般的な篩い装置では用いない程の大きな振幅で、さらに特定の振動数とした振動を与えることにより、目詰まりなく篩い落下することが容易になったと考えられる。
【0019】
【発明の実施の形態】
以下、実施例を挙げて本発明をより詳しく説明する。なお、本発明は以下の実施例に限定されるものではない。
【0020】
(実施例1)
先ず平均粒子径5.0μm、CV値(標準偏差の平均に対する百分率)4.8%、比重1.2の合成樹脂粉体60gを用意した。次に、図1及び2に示す如く、篩い1に備えた直径200mmで開孔径32μmの標準篩いの篩い網7の上に板状(40mm×40mm×5mm)のシリコンゴム弾性体6を置き、上部に蓋2、下部に受け器3をセットした。
【0021】
次いで、篩い1を含む一セットを振とう機4(タイテック(株)社製、レシプロシェーカーSR−2S)の振とう箱10に挿入し、床面9の上に設置して固定具8で固定するように取り付けた。振とう機4は内部にある回転駆動機(図示せず)による回転運動を上下運動に変換して、振とう箱10に図1の矢印に示す如き上下方向の振動を与えた。前記振動は振幅40mm、振動数250回/分で1分間行った。なお、図2において矢印は篩い網7の振幅の範囲5を表す。
振動後、受け器内の粉体の重量を測定し、篩い落下率を下記計算式(1)により算出した。
篩い落下率(%)=100×B/A 式(1)
式中、Aは初期投入した粉体の重量(g)であり、Bは篩い落下した受け器内の粉体の重量(g)である。
また、振とう後の篩い網の目詰まりの割合を目視で観察し、目詰まり率を下記計算式(2)により算出した。
目詰まり率(%)=100×D/C 式(2)
式中、Cは篩い網全体の面積(mm)であり、Dは粉、粒が目詰まりしている面積(mm)である。
その結果は表1に示すとおりであった。
【0022】
(実施例2)
弾性体を球形(直径15mm)のテフロン(登録商標)ボール4個としたこと以外は実施例1と同じ条件で行った。
その結果は表1に示すとおりであった。
【0023】
(実施例3)
篩い網の開孔径を25μmとし、振動数を300回/分としたこと以外は実施例1と同じ条件で行った。
その結果は表1に示すとおりであった。
【0024】
(実施例4)
粉体の平均粒子径を10μm、比重を0.9とし、篩い網の開孔径を45μm、振動数を300回/分としたこと以外は実施例1と同じ条件で行った。
その結果は表1に示すとおりであった。
【0025】
(実施例5)
粉体の比重を1.8としたこと以外は実施例1と同じ条件で行った。
その結果は表1に示すとおりであった。
【0026】
(実施例6)
振幅を80mmとしたこと以外は実施例1と同じ条件で行った。
その結果は表1に示すとおりであった。
【0027】
(実施例7)
粉体の平均粒子径を40μmとし、篩い網の開孔径を105μmとしたこと以外は実施例1と同じ条件で行った。
その結果は表1に示すとおりであった。
【0028】
【表1】

Figure 2004243249
【0029】
以上のように、実施例では全て篩い落下率90%以上、目詰まり率5%以下と良好であった。
【0030】
(比較例1)
粉体の平均粒子径を0.5μmとしたこと以外は実施例1と同じ条件で行った。
その結果は表2に示すとおりであった。粉体粒子径が小さすぎるため、篩い落下率、目詰まり率が著しく低下した。
【0031】
(比較例2)
粉体の比重を0.7としたこと以外は実施例1と同じ条件で行った。
その結果は表2に示すとおりであった。粉体比重が小さいため、篩い落下率、目詰まり率が著しく低下した。
【0032】
(比較例3)
振動数を180回/分としたこと以外は実施例1と同じ条件で行った。
その結果は表2に示すとおりであった。振動数が不十分であったため、篩い落下率が著しく低下した。
【0033】
(比較例4)
弾性体を用いないこと以外は実施例1と同じ条件で行った。
その結果は表2に示すとおりであった。弾性体がないため振動により弾性体が弾んで篩い網を打撃することがなく、篩い落下率、目詰まり率が著しく低下した。
【0034】
(比較例5)
市販の電磁篩い器で振幅3mm、振動数3600回/分で弾性体を用いずに実施例1と同じ条件で行った。
その結果は表2に示すとおりであった。振幅が小さく、振動数が多いため、篩い落下率が低下し、目詰まり率も低下した。
【0035】
(比較例6)
粉体の平均粒子径を60μmとし、篩い網の開孔径を105μmとしたこと以外は比較例5と同じ条件で行った。
その結果は表2に示すとおりであった。粒子径が大きいため、篩い落下率、目詰まり率は実施例と同じく良好であった。
【0036】
(比較例7)
粉体の比重を3.0としたこと以外は比較例5と同じ条件で行った。
その結果は表2に示すとおりであった。比重が大きいため、篩い落下率、目詰まり率は比較的良好であった。
【0037】
【表2】
Figure 2004243249
【0038】
【発明の効果】
本発明は、上述の構成からなるので、粒子径1〜50μm、比重0.8〜2.0の粉体が目詰まりなく篩い落下し易い篩い分け方法を得ることが可能となった。
【図面の簡単な説明】
【図1】本発明の篩い分け方法を実施するために用いられる篩い分け装置の一例において篩いを外部に搬出した状態を示す模式的斜視図である。
【図2】図1における装置の篩いの模式的断面図である。
【符号の説明】
1 篩い
2 蓋
3 受け器
4 振とう機
5 振幅の範囲
6 弾性体
7 篩い網
8 固定具
9 床面
10 振とう箱[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for sieving relatively small powder having a particle diameter of 50 μm or less.
[0002]
[Prior art]
Generally, as a method of sieving powder, a mesh or a perforated plate having a predetermined aperture (for convenience in this specification, referred to as a sieve mesh) is fixed to a frame, and the sieve mesh is vibrated together with the frame. A method of separating particles larger than the mesh on a sieve screen is used. However, in this sieving method, there is a problem that particles are clogged in the mesh of the sieving net, and the sieving efficiency is reduced.
[0003]
As a method of preventing this clogging, for example, by giving a vibration sieve a vibration having two different amplitudes, for example, a frequency of 500 to 2,000 times / minute, a powder such as a sintered iron ore can be formed. A vibration sieving method has been proposed which is capable of classifying and removing clogged powders and grains (for example, see Patent Document 1).
In addition, in addition to this, in a vibrating sieving machine for sieving various ores, earth and sand, ammonium sulfate, and other powders, the sieving net is hit by an elastic body provided on a wire rope with slack on the sieving net, A method for preventing clogging of a sieve mesh has been reported (for example, see Patent Document 2).
According to the method described in the above publication, it is said that powder such as sintered iron ore and earth and sand can be sieved efficiently without clogging.
[0004]
[Patent Document 1]
JP 2001-96232 A [Patent Document 2]
JP-A-9-234425
[Problems to be solved by the invention]
However, the present inventor has found that, in the above method, for powders having a small particle size of 50 μm or less and a specific gravity smaller than powders of iron ore and earth and sand, the improvement of clogging is not sufficient, It has been found that there is a problem that the sieving fall speed is reduced.
The present invention has been made to solve the problems found by the present inventors with respect to the conventional powder sieving described above, and provides a sieving method in which powder having a small particle diameter is easily clogged without clogging. The purpose is to:
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is a sieving method for sieving powder having a particle diameter of 1 to 50 μm and a specific gravity of 0.8 to 2.0 through a sieve mesh, and as a means for preventing clogging. Provided is a sieving method for applying a vibration of 200 to 1000 times / min with an amplitude of 20 mm or more to a sieve mesh on which an elastic body is disposed.
[0007]
Hereinafter, details of the present invention will be described.
The sieving method of the present invention is characterized in that powder having a particle diameter of 1 to 50 μm and a specific gravity of 0.8 to 2.0 is sieved through a sieve mesh.
The type of the powder is not particularly limited, and examples thereof include synthetic resin powder such as synthetic resin powder, toner, and powder compound, and powder of a compound thereof; organic natural product powder such as starch and wood powder; calcium carbonate and calcium silicate , Zeolite, hydroxyapatite, ferrite, zinc sulfide, magnesium sulfide and other inorganic compound powders; metal powders such as iron powder, copper powder and nickel alloy powder; inorganic pigments such as carbon black, titanium oxide and red iron oxide; phthalocyanine blue, indigo And organic pigments and dyes.
[0008]
In the sieving method of the present invention, a powder having a small particle diameter and a small specific gravity makes use of the effect of being easily sieved and dropped without clogging as compared with a general sieving method.
Therefore, the powder having a particle diameter of 1 to 50 μm is used. When the particle size is less than 1 μm, the dropping through the sieve is significantly reduced, and when the particle size exceeds 50 μm, the difference in effect from the general sieving method becomes small. More preferably, the particle size is from 1 to 40 μm, even more preferably from 1 to 15 μm.
[0009]
Further, the powder having a specific gravity of 0.8 to 2.0 is used. When the specific gravity is less than 0.8, the drop of the sieve falls remarkably, and when the specific gravity exceeds 2.0, the difference in effect from the general sieving method becomes small. More preferably, the specific gravity is 0.9 to 1.8.
[0010]
The sieve mesh in the present invention is not particularly limited, and the wire of the mesh may be simple or metal-plated. Further, a metal plated after forming the net may be used. Examples of the wire include a metal wire such as a stainless steel wire, a brass wire, and a phosphor bronze wire, and an organic fiber such as a polyester fiber and a polyamide fiber.
[0011]
Examples of the metal for metal plating include nickel, chromium, copper, and gold. The type of plating is not particularly limited. A net made of a metal-plated wire is preferably used because the surface of the wire is smooth and fine particles are prevented from adhering to the wire. Further, a net which has been subjected to metal plating after the net has been produced is more preferably used because it can maintain a predetermined opening diameter without opening due to movement of the net. In the present specification, the diameter of the opening refers to the diameter of the opening of the sieve mesh in the case of a circle and the diameter of the inscribed circle in the case of a polygon.
[0012]
The sieve mesh used in the sieving method of the present invention preferably has a pore size of 1.7 to 6.5 times the particle size. If the pore size of the sieve mesh is less than 1.7 times the particle size, clogging is likely to occur. If the pore size of the sieve mesh exceeds 6.5 times the particle size, it is difficult to separate large particles.
[0013]
In the sieving method of the present invention, the amplitude of the vibration applied to the sieving net needs to be 20 mm or more, and more preferably 25 mm or more, in order to allow the powder to be sieved and dropped without clogging. Further, the frequency needs to be 200 to 1000 times / minute. If the frequency is less than 200 times / minute, the dropping property of the sieve is poor, and if the frequency is more than 1000 times / minute, the screen may be damaged by the impact of the elastic body and the life may be shortened. A more preferable frequency is 200 to 900 times / minute.
[0014]
According to the sieving method of the present invention, an elastic body is disposed on a sieve screen as a means for preventing clogging, and the vibration is applied to the screen.
The material of the elastic body is not particularly limited, for example, styrene butadiene rubber, high styrene rubber, butadiene rubber, isoprene rubber, EPDM, NBR, chloroprene rubber, urethane rubber, silicon rubber, polysulfide rubber, hydrogenated nitrile rubber, Synthetic rubber such as fluoro rubber, acrylic rubber, CSM, ethylene acrylic rubber, thermoplastic elastomer; (meth) acrylic resin, styrene resin, vinyl acetate resin, vinyl chloride resin, olefin resin, fluorine resin, polycarbonate Synthetic resins such as resin, polyamide resin, polyimide resin, epoxy resin, urethane resin, xylene resin, PET, melamine resin, urea resin, and maleic acid resin; and organic silicon compounds such as silicon resin. Of which, among others, silicon with good wear resistance Rubber, fluorine-based resins and the like are preferable. In addition, hard materials such as glass and ceramic having a large specific gravity are not preferred because the sieve mesh may be damaged at an early stage.
Further, these elastic bodies may be used alone, or two or more kinds may be used in combination.
[0015]
The shape of the elastic body is not particularly limited, and can be freely set within a range where the elastic body can be repelled on a sieve net. Further, a commercially available tapping rubber, tapping ball, slide disk or the like may be used.
[0016]
In the sieving method of the present invention, in order to remove static electricity accumulated in the particles after sieving, it is preferable that the sieving receiver is made of a conductive material and the sieving receiver is grounded. Particles in which static electricity has accumulated after sieving deteriorate the handling workability in the subsequent steps. Examples of the conductive material include iron, copper, stainless steel, aluminum, magnesium, lithium, nickel, chromium, titanium, zinc, lead, tin, gold, platinum, silver and other metals and alloys thereof, Among them, stainless steel is preferable. Further, as the method of grounding, for example, a lead wire is directly connected to a sieve receiver, or the base and the lead wire are connected to each other by using the base of the base in contact with the sieve receiver as a conductive material, and the lead wire is connected. Is connected to a ground terminal to eliminate static electricity.
[0017]
(Action)
Powders having a small particle diameter have a large specific surface area, so that the surface energy becomes relatively large.As a result, the powders agglomerate and adhere to the net surface intensely, and the powders are easily clogged and fall down by sieving. If the specific gravity of the powder is small, it is considered that the powder is difficult to fall through the sieve.
[0018]
In the sieving method of the present invention, even if the powder has a smaller particle diameter and a lower specific gravity than the powder described in the above-mentioned publication, the elastic body is arranged on the sieve mesh, so that the By striking the sieve mesh by bouncing, the sieve falls easily without clogging, and is given a large amplitude that is not used in general sieving equipment, and by giving vibration with a specific frequency, clogging It is thought that it became easier to drop without sieving.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to examples. Note that the present invention is not limited to the following examples.
[0020]
(Example 1)
First, 60 g of a synthetic resin powder having an average particle diameter of 5.0 μm, a CV value (percentage to the average of the standard deviation) of 4.8%, and a specific gravity of 1.2 was prepared. Next, as shown in FIGS. 1 and 2, a plate-shaped (40 mm × 40 mm × 5 mm) silicon rubber elastic body 6 is placed on a sieve mesh 7 of a standard sieve having a diameter of 200 mm and an opening diameter of 32 μm provided on the sieve 1. The lid 2 was set on the upper part, and the receiver 3 was set on the lower part.
[0021]
Next, one set including the sieve 1 is inserted into a shaking box 10 of a shaking machine 4 (manufactured by Taitec Co., Ltd., reciprocating shaker SR-2S), placed on a floor 9 and fixed with a fixture 8. I installed it. The shaker 4 converts the rotational motion of the internal rotary drive (not shown) into a vertical motion, and gives the shake box 10 a vertical vibration as shown by an arrow in FIG. The vibration was performed at an amplitude of 40 mm and a frequency of 250 times / minute for 1 minute. In FIG. 2, the arrow indicates the range 5 of the amplitude of the sieve mesh 7.
After the vibration, the weight of the powder in the receiver was measured, and the sieving drop rate was calculated by the following formula (1).
Sieve drop rate (%) = 100 × B / A Formula (1)
In the formula, A is the weight (g) of the initially charged powder, and B is the weight (g) of the powder in the receiver that has been sieved and dropped.
Further, the ratio of clogging of the sieve net after shaking was visually observed, and the clogging ratio was calculated by the following formula (2).
Clogging rate (%) = 100 × D / C Equation (2)
Wherein, C is the area of the entire sieve network (mm 2), D is flour, the area where the particle is clogged (mm 2).
The results were as shown in Table 1.
[0022]
(Example 2)
The procedure was performed under the same conditions as in Example 1 except that the elastic body was made of four spherical (diameter 15 mm) Teflon (registered trademark) balls.
The results were as shown in Table 1.
[0023]
(Example 3)
The operation was performed under the same conditions as in Example 1 except that the opening diameter of the sieve net was 25 μm and the frequency was 300 times / minute.
The results were as shown in Table 1.
[0024]
(Example 4)
The operation was performed under the same conditions as in Example 1 except that the average particle diameter of the powder was 10 μm, the specific gravity was 0.9, the opening diameter of the sieve net was 45 μm, and the frequency was 300 times / min.
The results were as shown in Table 1.
[0025]
(Example 5)
The procedure was performed under the same conditions as in Example 1 except that the specific gravity of the powder was set to 1.8.
The results were as shown in Table 1.
[0026]
(Example 6)
The test was performed under the same conditions as in Example 1 except that the amplitude was 80 mm.
The results were as shown in Table 1.
[0027]
(Example 7)
The procedure was performed under the same conditions as in Example 1 except that the average particle diameter of the powder was 40 μm and the opening diameter of the sieve net was 105 μm.
The results were as shown in Table 1.
[0028]
[Table 1]
Figure 2004243249
[0029]
As described above, in all the examples, the sieving drop rate was 90% or more and the clogging rate was 5% or less, which was good.
[0030]
(Comparative Example 1)
The operation was performed under the same conditions as in Example 1 except that the average particle diameter of the powder was 0.5 μm.
The results were as shown in Table 2. Since the powder particle diameter was too small, the sieving drop rate and the clogging rate were significantly reduced.
[0031]
(Comparative Example 2)
The experiment was performed under the same conditions as in Example 1 except that the specific gravity of the powder was set to 0.7.
The results were as shown in Table 2. Since the powder specific gravity was small, the sieving drop rate and the clogging rate were significantly reduced.
[0032]
(Comparative Example 3)
The operation was performed under the same conditions as in Example 1 except that the frequency was set to 180 times / minute.
The results were as shown in Table 2. Due to insufficient frequency, the sieving drop rate was significantly reduced.
[0033]
(Comparative Example 4)
Except not using an elastic body, it carried out on the same conditions as Example 1.
The results were as shown in Table 2. Since there was no elastic body, the elastic body did not bounce due to vibration and hit the sieve net, and the sieving drop rate and the clogging rate were significantly reduced.
[0034]
(Comparative Example 5)
This was carried out using a commercially available electromagnetic sieve at an amplitude of 3 mm and a frequency of 3600 times / minute under the same conditions as in Example 1 without using an elastic body.
The results were as shown in Table 2. Since the amplitude is small and the frequency is large, the falling rate of the sieve is reduced and the clogging rate is also reduced.
[0035]
(Comparative Example 6)
Comparative Example 5 was carried out under the same conditions as in Comparative Example 5, except that the average particle size of the powder was 60 µm, and the pore size of the sieve mesh was 105 µm.
The results were as shown in Table 2. Because of the large particle diameter, the sieving drop rate and the clogging rate were as good as in the examples.
[0036]
(Comparative Example 7)
The operation was performed under the same conditions as in Comparative Example 5 except that the specific gravity of the powder was set to 3.0.
The results were as shown in Table 2. Due to the large specific gravity, the sieving drop rate and the clogging rate were relatively good.
[0037]
[Table 2]
Figure 2004243249
[0038]
【The invention's effect】
Since the present invention has the above-mentioned configuration, it has become possible to obtain a sieving method in which powder having a particle diameter of 1 to 50 μm and a specific gravity of 0.8 to 2.0 can be easily sieved without clogging.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a state where a sieve has been carried out to the outside in an example of a sieving apparatus used for carrying out a sieving method of the present invention.
FIG. 2 is a schematic sectional view of a sieve of the apparatus in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sieve 2 Lid 3 Receptor 4 Shaker 5 Range of amplitude 6 Elastic body 7 Sieve net 8 Fixture 9 Floor 10 Shaking box

Claims (1)

粒子径1〜50μm、比重0.8〜2.0の粉体を篩い網を通して篩い分ける篩い分け方法であって、目詰まり防止手段としてその上に弾性体を配置した篩い網に振幅20mm以上、振動数200〜1000回/分の振動を与えることを特徴とする篩い分け方法。A particle size of 1 to 50 μm, a sieving method of sieving a powder having a specific gravity of 0.8 to 2.0 through a sieve net, wherein the sieve net having an elastic body disposed thereon as an anti-clogging means has an amplitude of 20 mm or more, A sieving method, wherein a vibration frequency of 200 to 1000 times / minute is given.
JP2003037172A 2003-02-14 2003-02-14 Method for sieving powder Pending JP2004243249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037172A JP2004243249A (en) 2003-02-14 2003-02-14 Method for sieving powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037172A JP2004243249A (en) 2003-02-14 2003-02-14 Method for sieving powder

Publications (1)

Publication Number Publication Date
JP2004243249A true JP2004243249A (en) 2004-09-02

Family

ID=33022064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037172A Pending JP2004243249A (en) 2003-02-14 2003-02-14 Method for sieving powder

Country Status (1)

Country Link
JP (1) JP2004243249A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130441A (en) * 2004-11-08 2006-05-25 Kowa Industry Co Ltd Separate frame and vibration separating device, and manufacturing method of separate frame
JP2007105629A (en) * 2005-10-13 2007-04-26 Kowa Industry Co Ltd Vibratory screening apparatus
CN103721933A (en) * 2013-12-31 2014-04-16 吴江华诚复合材料科技有限公司 Secondary filtering and material collecting bucket
JP2014079706A (en) * 2012-10-17 2014-05-08 Dalton Corp Vibrating sieve
WO2015129868A1 (en) * 2014-02-28 2015-09-03 株式会社クレハ Resinous tapping member, and separation/recovery method using same for separating and recovering polymer from polymer-containing liquid

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006130441A (en) * 2004-11-08 2006-05-25 Kowa Industry Co Ltd Separate frame and vibration separating device, and manufacturing method of separate frame
JP4688132B2 (en) * 2004-11-08 2011-05-25 株式会社興和工業所 Separation frame, vibration separation device, and method of manufacturing separation frame
JP2007105629A (en) * 2005-10-13 2007-04-26 Kowa Industry Co Ltd Vibratory screening apparatus
JP2014079706A (en) * 2012-10-17 2014-05-08 Dalton Corp Vibrating sieve
CN103721933A (en) * 2013-12-31 2014-04-16 吴江华诚复合材料科技有限公司 Secondary filtering and material collecting bucket
WO2015129868A1 (en) * 2014-02-28 2015-09-03 株式会社クレハ Resinous tapping member, and separation/recovery method using same for separating and recovering polymer from polymer-containing liquid
KR20160106695A (en) * 2014-02-28 2016-09-12 가부시끼가이샤 구레하 Resinous tapping member, and separation/recovery method using same for separating and recovering polymer from polymer-containing liquid
CN105960285A (en) * 2014-02-28 2016-09-21 株式会社吴羽 Resinous tapping member, and separation/recovery method using same for separating and recovering polymer from polymer-containing liquid
JPWO2015129868A1 (en) * 2014-02-28 2017-03-30 株式会社クレハ Resin tapping member and separation / recovery method for separating and recovering polymer from polymer-containing liquid using the same

Similar Documents

Publication Publication Date Title
JP5775752B2 (en) Method for recovering valuable metals from home appliances
JPH06285431A (en) Non-ferrous material selector
KR101632673B1 (en) Apparatus amd method for removing powder adhering to ironmaking material
CN107051865A (en) A kind of online metal dust screening machine and method for sieving suitable for 3D printing
JP2004243249A (en) Method for sieving powder
JP6365262B2 (en) Method for operating crushed sand production apparatus and crushed sand production apparatus
CN104162482A (en) Deironing and grading method for powder body
KR101415101B1 (en) A device system including sieves for filtering powders or granules without dissipating materials with rapidity
CN208976215U (en) A kind of dustless ultrasonic activation sieve
CN210632275U (en) Hierarchical magnetic separation system
CN207655487U (en) A kind of feed sieves
CN212633461U (en) Spiral type sphere particle screening machine
JP2001096232A (en) Vibration sieving device and vibration sieving method
CN214320492U (en) Underwater screening equipment
CN104971880A (en) Frame type vibration screen
CN211801630U (en) Sorting unit is used in processing of copper alloy powder
CN204842168U (en) Frame shale shaker
JPH11207262A (en) Method for sifting powder
CN210058921U (en) Sand and stone separator
CN212397232U (en) Bouncing rod sieve plate
JP7236524B2 (en) Method for collecting valuables from lithium ion secondary battery
CN215784806U (en) Multilayer graded alumina powder rocking sieve with noise reduction function
CN218797318U (en) Heavy micro powder sieve capable of preventing splashing
CN214516002U (en) Multistage tealeaves screening plant
CN116809234B (en) Lunar soil high gradient magnetic separation device