JP2004243228A - Flue gas denitrification apparatus with function of injecting and controlling reducing agent, and method for flue gas denitration - Google Patents

Flue gas denitrification apparatus with function of injecting and controlling reducing agent, and method for flue gas denitration Download PDF

Info

Publication number
JP2004243228A
JP2004243228A JP2003036020A JP2003036020A JP2004243228A JP 2004243228 A JP2004243228 A JP 2004243228A JP 2003036020 A JP2003036020 A JP 2003036020A JP 2003036020 A JP2003036020 A JP 2003036020A JP 2004243228 A JP2004243228 A JP 2004243228A
Authority
JP
Japan
Prior art keywords
reducing agent
section
reactor
flue gas
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003036020A
Other languages
Japanese (ja)
Inventor
Toshimichi Wada
敏通 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2003036020A priority Critical patent/JP2004243228A/en
Publication of JP2004243228A publication Critical patent/JP2004243228A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flue gas denitrification apparatus having a function of injecting and controlling a reducing agent, and a method for flue gas denitrification by which the injection and distribution state of the reducing agent can be controlled to a more proper state on the basis of the currently operated state of injection and distribution. <P>SOLUTION: In the flue gas denitrification apparatus equipped with a reactor, a reactor entrance duct, a reactor exit duct, and an injection device of the reducing agent, the cross section of the entrance duct is divided into a plurality of sections and each section is provided with an injection controlling means for the reducing agent to control the amount of the reducing agent. The cross section of the exit duct is divided into a plurality of sections corresponding to the sections of the entrance duct and the flow lines of the exhaust gas. The apparatus is also provided with detecting means for NOx concentrations in exit sections of the exit duct, detecting means for the average NOx concentration of respective specified points, and a computing unit to calculate the amount of the reducing agent to be supplied to the each section of the entrance duct to keep the NOx concentration in the each section to the average value. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は還元剤注入調整機能付排煙脱硝装置に関し、特に石炭焚きボイラ排ガスなどのように排ガス中に窒素酸化物(NOx)、ダスト、硫黄酸化物などを含むダーティ排ガスの処理に好適な還元剤注入調整機能付排煙脱硝装置および排煙脱硝方法に関する。
【0002】
【従来の技術】
図7は、排煙脱硝装置が設置されたプラントの一般的な系統図である。
図7において、ボイラ等の排ガス発生源1から排出された排ガスは、反応器入口ダクト4から触媒6を備えた反応器5に導入される。ここで、排ガス中のNOx濃度に見合った還元剤(ここではNHガスを使用)がNH注入管2およびNH注入ノズル3を経て反応器入口ダクト4内に注入される。排ガス中のNOxは反応器5内の触媒6の働きにより無害な窒素(N)ガスと水蒸気(HO)に分解され、反応器出口ダクト7を介して必要に応じて空気予熱器8で熱回収され、さらに必要に応じて脱硫装置9を経て煙突10より大気に排出される。
前記NH注入ノズル3から注入されるNHガス量は、試運転時に、反応器入口ダクト4内のNOx濃度分布またはガス流速分布(すなわち触媒層に流入するNOx量分布)に見合うNH注入分布となるように調整される。このNH注入分布の調整をより容易に行うため、またはよりNOx流入量の分布に見合うNH量の調整が可能な設備とすべく、各種のNH注入装置が提案されている(例えば、特許文献1参照)。
【0003】
図8には、従来のNH注入装置の概略図を示した。この装置では、反応器入口ダクト4内のNH注入量分布を、該反応器入口ダクト4内のNOx流入量分布に応じて、外部に設置されたNH調整弁17、21の操作により自在に調整できる構造としている。すなわち、図8において、NH配管15から供給されたNHガスは、希釈空気ファン13により供給された空気と混合器16で混合された後、各調整弁17、21に送り出される。NH調整弁17は6つの系統17−1、17−2、17−3、17−4、17−5および17−6に区画され、それぞれオリフィル18、NH注入管19および多数の吹出しノズル20と連設され、またNH調整弁21は2つの系統21−1および21−2に区画され、それぞれオリフィス22、NH注入管23および多数の吹出しノズル24で連設され、各吹出しノズル20、24からNHガス量が調整されて反応器入口ダクト4内に供給される。
【0004】
しかしながら、上記従来の装置では、プラントの連続運用において経時的に各NH吹出しノズルから吹き出されるNHガス量が変化したり、ボイラの燃焼状態変化によりNOx濃度の分布が変化した場合に対応するNH注入量の制御は考慮されていなかった。
従って、このように経時的に反応器入口ダクト4内のNH分散状態にアンバランスが生じた場合は、反応器入口および出口のNOx濃度を仮設計器にてトラバース測定し、必要に応じてNH調整弁17、21を試行錯誤的に開閉操作することによりNHの分散調整を行う必要があった。
しかし、プラントの運用条件は長期間一定に保って運転する必要があるのに対して、このNH分散調整作業には反応器出入口での排ガス分析、バルブ操作等に人手、費用、時間が必要であるため、プラントの運転を止めてこれらの作業を行うことが容易でなく、やむを得ず、NHの分散状態の悪い状態で継続運用されているのが実態であった。
【0005】
また、従来技術では、反応器入口ダクトに注入するNHの分散調整は、ボイラから排出されるNOx量分布に基づいて調整されているが、調整されるプラントの条件は、プラント建設直後のNH注入装置がクリーンな状態で調整されている。
しかし、その後、ボイラ燃焼調整または燃焼状態が経時変化する等により反応器入口ダクト内のNOx分布に変化が生じる場合がある。また、NH注入ノズルへの灰付着や注入管内部への錆び等の発生による各注入ノズルの吹き出し特性が経時的に変化するため、経時的にみた場合、必ずしも最適なNH注入分布が保持されず、NH注入分布のアンバランスが生じていた。
また、最近は規制緩和の一環として、火力プラントの定期検査から次の定期検査までの期間が長くなってきていることから、上記した経時的なNH注入分布のアンバランス傾向がより顕著となり、装置運用上、大きな問題となる場合があった。
【0006】
【特許文献1】
特許第1270584号明細書(特開昭53−67162号公報)
【0007】
【発明が解決しようとする課題】
本発明の課題は、上記従来技術の問題点を解決し、還元剤の注入分布状態を、実際に運用されている注入分布状態をベースにした、より適切な還元剤の注入分散状態に調整することができる還元剤注入調整機能付排煙脱硝装置および排煙脱硝方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者は、上記課題について鋭意検討した結果、▲1▼反応器の入口および出口ダクトの断面に複数に分割した断面を想定し、その出口ダクトの各断面部分にNOx検出器を設けて各々のNOx濃度およびその平均NOx濃度を検出し、▲2▼上記入口および出口ダクトの断面は、排ガス流れの流線に対応させて分割し、▲3▼かつ分割された入口ダクトの各断面に還元剤注入量調整機能を有するNH注入管系統をブロック化して設け、上記検出したNOx濃度から算出される適切な還元剤量を各ブロック毎に調整して注入することにより、上記課題を達成できることを見出し、本発明に到達した。
すなわち、本願で特許請求される発明は以下の通りである。
【0009】
(1)還元剤の存在下に排ガス中の窒素酸化物(NOx)を除去する反応器と、該反応器に排ガスおよび還元剤を供給する入口ダクトと、該反応器で処理された排ガスを系外に排出する出口ダクトと、前記入口ダクトに還元剤を供給する還元剤注入装置とを備えた排煙脱硝装置において、前記入口ダクトの断面を複数に区画し、該入口ダクトに注入する還元剤量を各区画毎に調整する還元剤注入調整手段を設けるとともに、前記出口ダクトの断面を該入口ダクトの断面の各区画と排ガスの流線に沿って対応するように複数に区画し、該出口ダクトの各区画の代表点の出口NOx濃度を検出する手段と、該各代表点のNOx濃度の平均値を検出する手段と、該検出された各区画のNOx濃度が該検出されたNOx濃度平均値となるように前記入口ダクトの各区画に供給する還元剤量を算出する演算器とを設け、該演算器により算出された各区画毎の還元剤量を前記還元剤注入調整手段によりそれぞれ調整して前記入口ダクトに供給するようにしたことを特徴とする還元剤注入調整機能付排煙脱硝装置。
(2)前記還元剤注入調整手段が、開度ロック機能を備えた制御弁であることを特徴とする(1)記載の還元剤注入調整機能付排煙脱硝装置。
【0010】
(3)脱硝触媒を備えた反応器の入口ダクトに還元剤を注入し、排ガスとともに該反応器に導いて該排ガス中の窒素酸化物(NOx)を除去する排煙脱硝方法において、該入口ダクトの断面を複数に区画するとともに、該反応器の出口ダクトの断面を該入口ダクトの断面の各区画と排ガスの流線に沿って対応するように複数に区画し、該出口ダクトの各区画の代表点の出口NOx濃度および各代表点のNOx濃度の平均値を検出し、該検出された各区画のNOx濃度が該検出された平均値となるように、前記入口ダクトの各区画に供給する還元剤量を自動的または手動操作により調整することを特徴とする排煙脱硝方法。
【0011】
【発明の実施の形態】
以下、本発明を図面により説明する。
図1は、本発明の一実施例を示すNH注入調整機能付排煙脱硝装置の概略説明図である。
図1において、排煙脱硝装置は、NHの存在下に排ガス中のNOxを除去する触媒6を備えた反応器5と、反応器5に排ガスおよびNHを供給する反応器入口ダクト4と、反応器5で処理された排ガスを系外に排出する反応器出口ダクト7と、前記反応器入口ダクト4の断面をAゾーン、Bゾーン、Cゾーンの3つの入口ゾーンに分割し、各入口ゾーンの入口NOx検出点25(25−1、25−2、25−3)から採取した排ガスのNOx濃度を検出する入口NOx計29と、各入口ゾーンに注入するNH量を後述の演算器37からの信号に基づいて調整するNH制御弁36(36−1、36−2および36−3)および各入口ゾーンに設置されたNH注入管31(31−1、31−2および31−3)と、反応器出口ダクト7の断面を前記入口ゾーンと排ガスの流線30(30−1、30−2、30−3)に対応させたAゾーン、Bゾーン、Cゾーンの3つのゾーンを想定し、該出口ゾーンの各出口NOx検出点32(32−1、32−2、32−3)から排ガスを採取して各出口NOx濃度およびその平均値を検出する出口NOx計35と、各出口ゾーンのNOx濃度が出口NOx濃度の平均値となるように各入口ゾーンに供給するNH量をそれぞれ算出する演算器37とを有する。
【0012】
ダクト内を複数の区画に分割する方法は、ボイラ(図示せず)の燃焼調整またはアンモニア注入管31内の錆の発生や注入ノズル部への灰付着等の複合的な要因により経時的にアンモニアの吹出し分布が変化する特性を考慮して行われ、ダクト内断面の分割数(望ましくは3分割以上)や分割形状が決定される。決定された各入口ゾーンの代表的な各位置に入口NOx検出点25−1、25−2、25−3が設置される。また前記NH制御弁36−1、36−2、36−3にはそれぞれ開度ロック機能が設けられている。
図2には、図1のNH注入部の詳細系統説明図を示した。図2において、図8の従来のNH注入装置と異なる点は、6系統に分割されたNH調整弁17の代わりに開度ロック機能を備えた3系統のNH制御弁36−1、36−2、36−3を設け、それぞれAゾーン、BゾーンおよびCゾーンに設置されたNH注入管31−1、31−2、31−3を介して各ゾーンに供給するNH量の調整を可能にした点である。
上記装置において、まず、反応器入口ダクト4に供給される初期のNHの分散調整は、ボイラ排ガスのNOx流入分布(反応器入口ダクトのNOx濃度分布)に基づいて行われる。図3は、図1の入口NOx濃度の検出系統説明図である。図3において、A、B、Cの各入口ゾーンに設けられた入口NOx検出点25−1、25−2、25−3から採取した排ガスをミキサー27で混合した後、これを入口NOx計29にバルブ28を介して供給し、排ガスのNOx濃度が計測され、このNOx濃度に見合ったNHが各入口ゾーンのダクト内に供給されるように各NH制御弁36−1、36−2、36−3の開度が調整され、該開度がロックされて継続した運転が行われる。
【0013】
装置の継続運転により経時的にNH注入分布のアンバランスが崩れ、NOx流入分布に対して入口ダクト内に注入されるNH注入分布がマッチしない状態となった場合には、下記の操作が行われ、反応器出口ダクト7内の3つの出口ゾーンにおける各出口NOx濃度が、出口NOx濃度の平均値となるように、対応する各入口ゾーンから注入するNH量が算出され、該NH量が各NH注入管31−1、31−2、31−3から供給されるため、経時変化に対して実運用上問題ない、より適切な範囲のNH分散調整を行うことが可能となる。
【0014】
基本的には、反応器入口ダクトに注入するNHの分散調整は、反応器出口NOx濃度分布がより均一になるように調整される。この理由は仮に反応器出口NOx分布にばらつきがある場合、反応器出口NOx計の測定値が若干の位置ずれにより大きく影響を受けること、一般的に入口NOx濃度のばらつきはその平均濃度に対してばらつき割合が小さいこと等から出口NOx濃度を均一に調整することにより、NH注入モル比(NH/NOxのモル比)も脱硝性能上問題とならない範囲内のばらつきとなるためである。
このように出口NOx濃度をより均一になるよう調整すべく、NH注入装置に対して次のような方法でNHの分散状態を較正する。
【0015】
(i) 反応器出口ダクトの排ガス中のNOx濃度の平均値を測定する。
具体的には、切替えバルブ33−1、33−2、33−3を閉にし、切替えバルブ33−4を開にして各出口NOx検出点32−1、32−2、32−3から採取した排ガスをミキサー34で混合した後、これを出口NOx計35に供給して反応器出口ダクト7の平均NOx濃度を測定する。
(ii)その後、Aゾーンの出口NOxの検出点32−1の排ガスのみを出口NOx計35に供給してAゾーンの反応器出口NOx濃度を測定する。そのためには切替えバルブ33−1のみを開にし、他のバルブ33−2、33−3および32−4を閉にする。
【0016】
(iii) (i) で測定された出口ダクトの排ガスのNOx濃度の平均値(設定値)と、(ii)で測定されたAゾーンの出口NOx濃度の信号を演算器37に導き、該Aゾーンの出口NOx濃度が平均値となるために必要なNH量が算出され、算出されたNH量が反応器入口ダクト4のAゾーンに注入されるようにNH制御弁36−1の開度を調整し、この状態が維持されるように制御弁36−1の開度をロックする。
(iv)同様の操作をBゾーンおよびCゾーンについて行い、それぞれのNH制御弁36−2、36−3の開度を調整し、その状態が維持されるようにこれらの制御弁の開度をロックする。
(v) その後、通常運用でAゾーン、Bゾーン、Cゾーンの平均NOx濃度(平均値)を用いた運用モードに戻る。
【0017】
図4は、上記一連の調整を行った前後の出口NOx濃度分布を示した。図4から、調整前では、出口NOx濃度分布(実線)のばらつきが大きくなっているが、調整後には出口NOx濃度分布は破線で示したようになり、NOx濃度分布のばらつきが小さくなり、より適切な出口NOx濃度分布に調整されたことがわかる。
また、例えば、図5に示すような中央部分の出口NOx濃度が高い分布となっている場合には、Bゾーンに対してはBゾーン内の出口NOx濃度が平均NOx濃度(平均値)となるように調整される。なお、中央部のNOx濃度分布が低い場合も同様である。
【0018】
このような調整を行うことにより、調整前の出口NOx濃度の局部的に高い箇所または低い個所の出口NOx濃度が大幅に改善され、これにより、前記したNH分散のばらつき(標準偏差)が大幅に改善されることになる。
図6には、出口NOx濃度(または入口NH量)ばらつき(モル比ばらつき)と脱硝性能低下ファクタ(脱硝性能低下割合を触媒量の低下割合で表したもの)の関係図を示したが、NH分散ばらつきがある程度以上となると、急激に脱硝性能低下を生じる。換言すれば、本発明のようにある程度のラフなNH分散調整を行うことによって経時的な脱硝性能低下を実質的に問題ない範囲に抑制することができる。
【0019】
上記の実施例ではNH調整弁36−1、36−2、36−3を自動的に調整する方法を採用したが、各ゾーンの出口NOx濃度を確認しながら手動によりNH調整弁の調整するようにしてもよい。
また、入口NOx検出点25は、必ずしも各区画に対応した数を設置する必要はなく、反応器入口ダクトの排ガス中のNOx濃度の代表点を検出すればよい。従って、ボイラ出口NOx濃度のばらつきが小さいプラントに対しては入口NOx検出点は1点であってもよい。
【0020】
【発明の効果】
本発明の還元剤注入調整機能付排煙脱硝装置および排煙脱硝方法によれば、反応器入口ダクトに注入するアンモニアの分散調整が容易となり、反応器出口ダクトの出口NOx濃度分布をより均一にすることが可能となり、これにより、脱硝性能の向上および同一脱硝性能を得るために必要なアンモニア使用量を節減することができる。また反応器出口ダクト内の局部的に高いリークアンモニア濃度を低減することができ、後流機器への影響を軽減できる。さらに局部的に高い出口NOx濃度を軽減できることから脱硝装置の運転管理が容易となる。さらにまたアンモニア分散調整が容易となるため、例えば部分負荷または燃料種の変更による反応器に流入するNOx量に見合った最適なアンモニア分散状態で装置の運用を行うことができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示すNH注入調整機能付排煙脱硝装置の概略説明図。
【図2】図1のNH注入部の詳細系統説明図。
【図3】図1の入口NOx濃度の検出系統説明図。
【図4】NH分布調整前後の出口NOx濃度のばらつきを示す図。
【図5】NH分布調整前後の他の出口NOx濃度のばらつきを示す図。
【図6】モル比ばらつきと脱硝性能低下ファクタの関係図。
【図7】従来技術の排煙脱硝装置を組込んだプラントの系統図。
【図8】従来技術による流体注入混合装置(NH注入装置)の概略図。
【符号の説明】
1…排ガス発生源、2…NH注入管、3…NH注入ノズル、4…反応器入口ダクト、5…反応器、6…触媒、7…反応器出口ダクト、25(25−1、25−2、25−3)…入口NOx検出点、29…入口NOx計、30(30−1、30−2、30−3)…排ガス流れ流線、32(32−1、32−2、32−3)…出口NOx検出点、33(33−1、33−2、33−3、33−4)…切替えバルブ、35…出口NOx計、36(36−1、36−2、36−3)…NH制御弁、37…演算器。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flue gas denitration apparatus having a reducing agent injection adjusting function, and more particularly to a reduction method suitable for treating dirty exhaust gas containing nitrogen oxides (NOx), dust, sulfur oxide, etc. in the exhaust gas such as a coal-fired boiler exhaust gas. TECHNICAL FIELD The present invention relates to a flue gas denitration apparatus and a flue gas denitration method with an agent injection adjustment function.
[0002]
[Prior art]
FIG. 7 is a general system diagram of a plant in which a flue gas denitration apparatus is installed.
In FIG. 7, exhaust gas discharged from an exhaust gas generation source 1 such as a boiler is introduced from a reactor inlet duct 4 to a reactor 5 having a catalyst 6. Here, a reducing agent (here, NH 3 gas is used) corresponding to the NOx concentration in the exhaust gas is injected into the reactor inlet duct 4 via the NH 3 injection pipe 2 and the NH 3 injection nozzle 3. The NOx in the exhaust gas is decomposed into harmless nitrogen (N 2 ) gas and water vapor (H 2 O) by the action of the catalyst 6 in the reactor 5, and is passed through the reactor outlet duct 7 as required, to the air preheater 8. , And is discharged to the atmosphere from a chimney 10 via a desulfurization device 9 as necessary.
NH 3 amount of gas injected from the NH 3 injection nozzles 3, at the time of commissioning the reactor NOx concentration distribution or gas flow velocity distribution in the inlet duct 4 (i.e. NOx weight distribution flowing into the catalyst layer) NH 3 injection distribution commensurate with It is adjusted so that Various NH 3 injection devices have been proposed in order to more easily adjust the NH 3 injection distribution, or to provide a facility capable of adjusting the NH 3 amount in accordance with the distribution of the NOx inflow amount (for example, see, for example, Japanese Patent Application Laid-Open No. H11-157572). Patent Document 1).
[0003]
FIG. 8 shows a schematic diagram of a conventional NH 3 injection apparatus. In this apparatus, the distribution of the NH 3 injection amount in the reactor inlet duct 4 can be freely adjusted by operating the NH 3 regulating valves 17 and 21 installed outside according to the distribution of the NOx inflow amount in the reactor inlet duct 4. Adjustable structure. That is, in FIG. 8, the NH 3 gas supplied from the NH 3 pipe 15 is mixed with the air supplied by the dilution air fan 13 in the mixer 16 and then sent out to the respective regulating valves 17 and 21. The NH 3 regulating valve 17 is divided into six systems 17-1, 17-2, 17-3, 17-4, 17-5, and 17-6, each having an orifice 18, an NH 3 injection pipe 19, and a number of outlet nozzles. The NH 3 regulating valve 21 is divided into two systems 21-1 and 21-2, each of which is connected to an orifice 22, an NH 3 injection pipe 23, and a number of outlet nozzles 24. The NH 3 gas amount is adjusted from 20 and 24 and supplied into the reactor inlet duct 4.
[0004]
However, the above-described conventional apparatus copes with a case where the amount of NH 3 gas blown out from each NH 3 blow nozzle changes over time in a continuous operation of the plant or a change in the NOx concentration distribution due to a change in the combustion state of the boiler. The control of the NH 3 injection amount to be performed was not considered.
Therefore, when the NH 3 dispersion state in the reactor inlet duct 4 is imbalanced with time as described above, the NOx concentrations at the reactor inlet and outlet are traversely measured by a temporary design device, and NH 3 It was necessary to adjust the dispersion of NH 3 by opening and closing the three adjusting valves 17 and 21 by trial and error.
However, while it is necessary to operate the plant while keeping the operating conditions constant for a long period of time, this NH 3 dispersion adjustment work requires manpower, cost, and time for exhaust gas analysis and valve operation at the inlet and outlet of the reactor. Therefore, it is not easy to stop the operation of the plant to perform these operations, and it is unavoidable that the plant is continuously operated in a state where the dispersion state of NH 3 is poor.
[0005]
Further, in the related art, the dispersion of NH 3 injected into the reactor inlet duct is adjusted based on the distribution of the amount of NOx discharged from the boiler. 3. The injection device is adjusted in a clean state.
However, thereafter, there is a case where the NOx distribution in the reactor inlet duct changes due to boiler combustion adjustment or a change in combustion state over time. In addition, since the blowing characteristics of each injection nozzle change with time due to ash adhered to the NH 3 injection nozzle or rust inside the injection pipe, an optimum NH 3 injection distribution is not necessarily maintained when viewed with time. However, there was an imbalance in the NH 3 injection distribution.
As part of recent deregulation, since the period from the periodic inspection of the thermal power plant to the next periodic inspection is becoming longer, unbalanced trends over time NH 3 injection distribution mentioned above becomes more remarkable, There was a case where a serious problem occurred in the operation of the device.
[0006]
[Patent Document 1]
Patent No. 1270584 (JP-A-53-67162)
[0007]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems of the prior art and adjust the injection distribution state of the reducing agent to a more appropriate injection dispersion state of the reduction agent based on the injection distribution state actually operated. It is an object of the present invention to provide a flue gas denitration apparatus and a flue gas denitration method with a reducing agent injection adjusting function which can be performed.
[0008]
[Means for Solving the Problems]
As a result of diligent studies on the above problems, the present inventor has assumed that (1) a cross section obtained by dividing the inlet and outlet ducts of the reactor into a plurality of sections, and a NOx detector is provided at each cross section of the outlet duct. (2) The cross section of the inlet and outlet ducts is divided in accordance with the flow line of the exhaust gas flow, and (3) is reduced to each cross section of the divided inlet duct. The above object can be attained by providing an NH 3 injection pipe system having a function of adjusting the amount of injected agent in a block manner, and adjusting and injecting an appropriate amount of reducing agent calculated from the detected NOx concentration for each block. And arrived at the present invention.
That is, the invention claimed in the present application is as follows.
[0009]
(1) A reactor for removing nitrogen oxides (NOx) in exhaust gas in the presence of a reducing agent, an inlet duct for supplying the exhaust gas and the reducing agent to the reactor, and an exhaust gas treated in the reactor In a flue gas denitration apparatus comprising an outlet duct for discharging to the outside and a reducing agent injection device for supplying a reducing agent to the inlet duct, a reducing agent for dividing the cross section of the inlet duct into a plurality of parts and injecting the inlet duct Providing a reducing agent injection adjusting means for adjusting the amount for each section, dividing the outlet duct into a plurality of sections so as to correspond to each section of the section of the inlet duct along the flow line of the exhaust gas, and Means for detecting the outlet NOx concentration at the representative point of each section of the duct; means for detecting the average value of the NOx concentration at each of the representative points; Value so that An arithmetic unit for calculating an amount of reducing agent supplied to each section of the duct; adjusting the amount of reducing agent for each section calculated by the arithmetic unit by the reducing agent injection adjusting means and supplying the adjusted amount of reducing agent to the inlet duct; A flue gas denitration device with a reducing agent injection adjustment function, characterized in that:
(2) The flue gas denitration apparatus with a reducing agent injection adjusting function according to (1), wherein the reducing agent injection adjusting means is a control valve having an opening lock function.
[0010]
(3) In a flue gas denitration method for injecting a reducing agent into an inlet duct of a reactor equipped with a denitration catalyst and guiding the reducing agent together with the exhaust gas to the reactor to remove nitrogen oxides (NOx) in the exhaust gas, the inlet duct Is sectioned into a plurality of sections, and the section of the outlet duct of the reactor is divided into a plurality of sections so as to correspond to the sections of the section of the inlet duct along the streamlines of the exhaust gas. An average value of the outlet NOx concentration at the representative point and the average value of the NOx concentration at each representative point are detected, and the detected NOx concentration of each section is supplied to each section of the inlet duct so as to become the detected average value. A flue gas denitration method comprising automatically or manually adjusting the amount of a reducing agent.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings.
FIG. 1 is a schematic explanatory view of a flue gas denitration apparatus with an NH 3 injection adjusting function showing one embodiment of the present invention.
In Figure 1, flue gas denitration apparatus, a reactor 5 equipped with a catalyst 6 for removing NOx in the exhaust gas in the presence of NH 3, and the reactor 5 the reactor inlet duct 4 which supplies the exhaust gas and NH 3 in The reactor outlet duct 7 for discharging the exhaust gas treated in the reactor 5 out of the system, and the cross section of the reactor inlet duct 4 are divided into three inlet zones A zone, B zone and C zone. An inlet NOx meter 29 for detecting the NOx concentration of exhaust gas collected from the inlet NOx detection points 25 (25-1, 25-2, 25-3) of the zone, and an arithmetic unit to be described later which calculates the amount of NH 3 injected into each inlet zone The NH 3 control valves 36 (36-1, 36-2 and 36-3) which are adjusted based on the signal from the 37, and the NH 3 injection pipes 31 (31-1, 31-2 and 31) installed in each inlet zone. -3) and reactor outlet duct 7 are assumed to correspond to the inlet zone and the exhaust gas streamline 30 (30-1, 30-2, 30-3), and three zones A, B, and C are assumed. An outlet NOx meter 35 that collects exhaust gas from each outlet NOx detection point 32 (32-1, 32-2, 32-3) and detects each outlet NOx concentration and its average value, and the outlet NOx concentration in each outlet zone A calculator 37 for calculating the amount of NH 3 supplied to each of the inlet zones so as to obtain an average value of the NOx concentration.
[0012]
The method of dividing the inside of the duct into a plurality of sections is based on the following factors: combustion adjustment of a boiler (not shown), rust generation in the ammonia injection pipe 31 and ash adhesion to the injection nozzle, and the like. The number of divisions (preferably three or more) and the division shape of the inner cross section of the duct are determined in consideration of the characteristics of the change of the blowout distribution. Inlet NOx detection points 25-1, 25-2, and 25-3 are set at representative positions of each of the determined entrance zones. Also, the respective opening lock function in NH 3 control valve 36-1,36-2,36-3 are provided.
FIG. 2 shows a detailed system explanatory diagram of the NH 3 injection section of FIG. In FIG. 2, the difference from the conventional NH 3 injection device of FIG. 8 is that instead of the NH 3 adjusting valve 17 divided into six systems, three systems of NH 3 control valves 36-1 having an opening degree lock function, 36-2 and 36-3 are provided, and the amount of NH 3 supplied to each zone via NH 3 injection pipes 31-1, 31-2 and 31-3 installed in the A zone, the B zone and the C zone, respectively. The point is that adjustment is possible.
In the above apparatus, first, the initial dispersion adjustment of NH 3 supplied to the reactor inlet duct 4 is performed based on the NOx inflow distribution of the boiler exhaust gas (NOx concentration distribution of the reactor inlet duct). FIG. 3 is an explanatory diagram of the detection system of the inlet NOx concentration in FIG. In FIG. 3, exhaust gas collected from inlet NOx detection points 25-1, 25-2, and 25-3 provided in each of the inlet zones A, B, and C is mixed by a mixer 27 and then mixed with an inlet NOx meter 29. supplied via a valve 28, the measured NOx concentration in the exhaust gas, the NH 3 control valve so that the NH 3 commensurate with the NOx concentration is fed into the duct of each inlet zone 36-1 and 36-2 , 36-3 are adjusted, the openings are locked, and continuous operation is performed.
[0013]
Over time collapsing unbalance of NH 3 injection distribution by continuous operation of the device, when the NH 3 injection distribution injected into the inlet duct against NOx flux distribution in a state that does not match, the following operations is performed, each outlet NOx concentration at the three exit zone in the reactor outlet duct 7, to an average value of the outlet NOx concentration, the amount of NH 3 to be injected from the corresponding inlet zone is calculated, the NH 3 Since the amount is supplied from each of the NH 3 injection pipes 31-1, 31-2 and 31-3, it is possible to perform the NH 3 dispersion adjustment in a more appropriate range that does not cause a problem in practical operation with respect to aging. Become.
[0014]
Basically, the dispersion of NH 3 injected into the reactor inlet duct is adjusted so that the reactor outlet NOx concentration distribution becomes more uniform. The reason for this is that if there is a variation in the NOx distribution at the reactor outlet, the measured value of the NOx meter at the reactor outlet is greatly affected by a slight displacement. This is because, by adjusting the outlet NOx concentration to be uniform because the variation ratio is small, the NH 3 injection molar ratio (the molar ratio of NH 3 / NOx) is also within a range that does not cause a problem in denitration performance.
In order to adjust the outlet NOx concentration to be more uniform as described above, the dispersion state of NH 3 is calibrated to the NH 3 injection device by the following method.
[0015]
(I) The average value of the NOx concentration in the exhaust gas from the reactor outlet duct is measured.
Specifically, the switching valves 33-1, 33-2, and 33-3 were closed, and the switching valve 33-4 was opened to collect from the outlet NOx detection points 32-1, 32-2, and 32-3. After mixing the exhaust gas with a mixer 34, the mixed gas is supplied to an outlet NOx meter 35, and the average NOx concentration in the reactor outlet duct 7 is measured.
(Ii) Thereafter, only the exhaust gas at the detection point 32-1 of the NOx at the outlet of the A zone is supplied to the outlet NOx meter 35, and the NOx concentration at the reactor at the A zone is measured. For this purpose, only the switching valve 33-1 is opened, and the other valves 33-2, 33-3, and 32-4 are closed.
[0016]
(Iii) The average value (set value) of the NOx concentration of the exhaust gas of the outlet duct measured in (i) and the signal of the NOx concentration in the A zone measured in (ii) are guided to the arithmetic unit 37, The amount of NH 3 required for the outlet NOx concentration of the zone to be an average value is calculated, and the NH 3 control valve 36-1 is set so that the calculated NH 3 amount is injected into the A zone of the reactor inlet duct 4. The opening is adjusted, and the opening of the control valve 36-1 is locked so that this state is maintained.
(Iv) The same operation is performed for the B zone and the C zone to adjust the opening degrees of the respective NH 3 control valves 36-2 and 36-3, and to maintain the state thereof, the opening degrees of these control valves. To lock.
(V) Thereafter, the operation mode returns to the operation mode using the average NOx concentration (average value) of the A zone, the B zone, and the C zone in the normal operation.
[0017]
FIG. 4 shows the outlet NOx concentration distribution before and after the above series of adjustments. From FIG. 4, before the adjustment, the dispersion of the outlet NOx concentration distribution (solid line) is large, but after the adjustment, the outlet NOx concentration distribution becomes as shown by the broken line, and the dispersion of the NOx concentration distribution becomes small. It can be seen that the outlet NOx concentration distribution was adjusted appropriately.
Further, for example, when the outlet NOx concentration in the central portion has a high distribution as shown in FIG. 5, the outlet NOx concentration in the B zone becomes the average NOx concentration (average value) for the B zone. Is adjusted as follows. The same applies to the case where the NOx concentration distribution at the center is low.
[0018]
By performing such an adjustment, the outlet NOx concentration at a locally high or low outlet NOx concentration before the adjustment is greatly improved, whereby the above-described variation (standard deviation) of the NH 3 dispersion is significantly increased. Will be improved.
Figure 6 is shows the relationship view of the outlet NOx concentration (or inlet NH 3 amount) variation (mole ratio variation) and denitration performance degradation factor (a denitration performance reduction ratio a representation at a reduced rate of catalytic amount), When the dispersion in NH 3 dispersion exceeds a certain level, the denitration performance is rapidly lowered. In other words, by performing a certain degree of rough NH 3 dispersion adjustment as in the present invention, it is possible to suppress a temporal decrease in the denitration performance to a range in which there is substantially no problem.
[0019]
In the above embodiment, the method of automatically adjusting the NH 3 adjusting valves 36-1, 36-2, and 36-3 is adopted, but the NH 3 adjusting valve is manually adjusted while checking the outlet NOx concentration of each zone. You may make it.
In addition, the number of inlet NOx detection points 25 does not necessarily need to be set corresponding to each section, and a representative point of NOx concentration in exhaust gas of the reactor inlet duct may be detected. Therefore, for a plant in which the variation in the NOx concentration at the boiler outlet is small, the number of inlet NOx detection points may be one.
[0020]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the flue gas denitration apparatus with a reducing agent injection adjusting function and the flue gas denitration method of the present invention, the dispersion adjustment of the ammonia injected into the reactor inlet duct becomes easy, and the outlet NOx concentration distribution of the reactor outlet duct is made more uniform. This makes it possible to improve the denitration performance and reduce the amount of ammonia used to obtain the same denitration performance. In addition, locally high leakage ammonia concentration in the reactor outlet duct can be reduced, and the influence on downstream equipment can be reduced. Further, since the locally high outlet NOx concentration can be reduced, the operation management of the denitration device becomes easy. Furthermore, since the ammonia dispersion adjustment is facilitated, the apparatus can be operated in an optimal ammonia dispersion state corresponding to the amount of NOx flowing into the reactor due to, for example, a change in the partial load or fuel type.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory diagram of a flue gas denitration apparatus with an NH 3 injection adjusting function showing one embodiment of the present invention.
FIG. 2 is a detailed system explanatory diagram of an NH 3 injection unit in FIG. 1;
FIG. 3 is an explanatory diagram of a detection system of an inlet NOx concentration in FIG. 1;
FIG. 4 is a diagram showing variations in outlet NOx concentration before and after adjusting NH 3 distribution.
FIG. 5 is a diagram showing variations in other outlet NOx concentrations before and after adjusting NH 3 distribution.
FIG. 6 is a graph showing a relationship between a molar ratio variation and a denitration performance reduction factor.
FIG. 7 is a system diagram of a plant incorporating a conventional flue gas denitration apparatus.
FIG. 8 is a schematic view of a fluid injection mixing device (NH 3 injection device) according to the prior art.
[Explanation of symbols]
1 ... an exhaust gas generating source, 2 ... NH 3 inlet tube, 3 ... NH 3 injection nozzles, 4 ... reactor inlet duct, 5 ... reactor, 6 ... catalyst, 7 ... reactor outlet duct, 25 (25-1,25 -2, 25-3): Inlet NOx detection point, 29: Inlet NOx meter, 30 (30-1, 30-2, 30-3) ... Exhaust gas flow line, 32 (32-1, 32-2, 32) -3) Exit NOx detection point, 33 (33-1, 33-2, 33-3, 33-4) Switching valve, 35 Exit NOx meter, 36 (36-1, 36-2, 36-3) ) ... NH 3 control valve 37 ... calculator.

Claims (3)

還元剤の存在下に排ガス中の窒素酸化物(NOx)を除去する反応器と、該反応器に排ガスおよび還元剤を供給する入口ダクトと、該反応器で処理された排ガスを系外に排出する出口ダクトと、前記入口ダクトに還元剤を供給する還元剤注入装置とを備えた排煙脱硝装置において、前記入口ダクトの断面を複数に区画し、該入口ダクトに注入する還元剤量を各区画毎に調整する還元剤注入調整手段を設けるとともに、前記出口ダクトの断面を該入口ダクトの断面の各区画と排ガスの流線に沿って対応するように複数に区画し、該出口ダクトの各区画の代表点の出口NOx濃度を検出する手段と、該各代表点のNOx濃度の平均値を検出する手段と、該検出された各区画のNOx濃度が該検出されたNOx濃度平均値となるように前記入口ダクトの各区画に供給する還元剤量を算出する演算器とを設け、該演算器により算出された各区画毎の還元剤量を前記還元剤注入調整手段によりそれぞれ調整して前記入口ダクトに供給するようにしたことを特徴とする還元剤注入調整機能付排煙脱硝装置。A reactor for removing nitrogen oxides (NOx) in the exhaust gas in the presence of the reducing agent, an inlet duct for supplying the exhaust gas and the reducing agent to the reactor, and discharging the exhaust gas treated in the reactor to the outside of the system In a flue gas denitration apparatus provided with an outlet duct for supplying a reducing agent to the inlet duct, a cross section of the inlet duct is divided into a plurality of sections, and an amount of the reducing agent to be injected into the inlet duct is set to each of the sections. Along with a reducing agent injection adjusting means for adjusting each section, the section of the outlet duct is divided into a plurality of sections corresponding to each section of the section of the inlet duct and the streamline of exhaust gas, and each section of the outlet duct is provided. Means for detecting the exit NOx concentration at the representative point of the section, means for detecting the average value of the NOx concentration at each representative point, and the detected NOx concentration of each section becomes the detected NOx concentration average value. So that the entrance duck And a calculator for calculating the amount of reducing agent to be supplied to each section. The amount of reducing agent for each section calculated by the calculator is adjusted by the reducing agent injection adjusting means and supplied to the inlet duct. A flue gas denitration apparatus with a reducing agent injection adjustment function, characterized in that: 前記還元剤注入調整手段が、開度ロック機能を備えた制御弁であることを特徴とする請求項1記載の還元剤注入調整機能付排煙脱硝装置。2. The flue gas denitration apparatus with a reducing agent injection adjusting function according to claim 1, wherein the reducing agent injection adjusting means is a control valve having an opening lock function. 脱硝触媒を備えた反応器の入口ダクトに還元剤を注入し、排ガスとともに該反応器に導いて該排ガス中の窒素酸化物(NOx)を除去する排煙脱硝方法において、該入口ダクトの断面を複数に区画するとともに、該反応器の出口ダクトの断面を該入口ダクトの断面の各区画と排ガスの流線に沿って対応するように複数に区画し、該出口ダクトの各区画の代表点の出口NOx濃度および各代表点のNOx濃度の平均値を検出し、該検出された各区画のNOx濃度が該検出された平均値となるように、前記入口ダクトの各区画に供給する還元剤量を自動的または手動操作により調整することを特徴とする排煙脱硝方法。In a flue gas denitration method in which a reducing agent is injected into an inlet duct of a reactor equipped with a denitration catalyst and is introduced to the reactor together with exhaust gas to remove nitrogen oxides (NOx) in the exhaust gas, a cross section of the inlet duct is formed. Along with dividing into a plurality of sections, the section of the outlet duct of the reactor is sectioned into a plurality of sections corresponding to the sections of the section of the inlet duct along the streamline of the exhaust gas, and the representative point of each section of the outlet duct is The average value of the outlet NOx concentration and the NOx concentration of each representative point is detected, and the amount of the reducing agent supplied to each section of the inlet duct so that the detected NOx concentration of each section becomes the detected average value. The flue gas denitration method, wherein the method is adjusted automatically or manually.
JP2003036020A 2003-02-14 2003-02-14 Flue gas denitrification apparatus with function of injecting and controlling reducing agent, and method for flue gas denitration Pending JP2004243228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003036020A JP2004243228A (en) 2003-02-14 2003-02-14 Flue gas denitrification apparatus with function of injecting and controlling reducing agent, and method for flue gas denitration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003036020A JP2004243228A (en) 2003-02-14 2003-02-14 Flue gas denitrification apparatus with function of injecting and controlling reducing agent, and method for flue gas denitration

Publications (1)

Publication Number Publication Date
JP2004243228A true JP2004243228A (en) 2004-09-02

Family

ID=33021232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003036020A Pending JP2004243228A (en) 2003-02-14 2003-02-14 Flue gas denitrification apparatus with function of injecting and controlling reducing agent, and method for flue gas denitration

Country Status (1)

Country Link
JP (1) JP2004243228A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027102A (en) * 2009-07-24 2011-02-10 General Electric Co <Ge> Model-based tuning of ammonia distribution and control for reduced operating cost of selective catalytic reduction
JP2011062663A (en) * 2009-09-18 2011-03-31 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Method for treating exhaust gas
CN102772999A (en) * 2012-08-30 2012-11-14 陕西师范大学 Flue gas denitration device for magnetic sound field synergetic oxidation-absorption method
CN105983302A (en) * 2016-05-31 2016-10-05 邢红涛 Component detection and ammonia spraying control system of SCR denitrification process
CN106076115A (en) * 2016-05-31 2016-11-09 邢红涛 The flow field detecting system of SCR denitration technique
CN106166444A (en) * 2016-08-29 2016-11-30 华电电力科学研究院 A kind of classification spray ammonia equipment for denitrifying flue gas and method
CN106474887A (en) * 2016-11-09 2017-03-08 山西华仁通电力科技有限公司 A kind of W flame high efficiency boiler denitrating system
WO2018193108A1 (en) * 2017-04-20 2018-10-25 Mitsubishi Hitachi Power Systems Europe Gmbh Method for operating a flue gas denitrification reactor which catalytically denitrifies flue gas, and flue gas denitrification system having a flue gas denitrification reactor suitable for carrying out the method
CN110568129A (en) * 2019-09-26 2019-12-13 北京国电龙源环保工程有限公司 SCR denitration outlet mixing and partition flue gas NOx concentration detection system and method thereof
CN111359432A (en) * 2020-04-15 2020-07-03 浙江浙能温州发电有限公司 Denitration ammonia injection system and method capable of realizing flexible partition based on NOx mass flow difference distribution

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027102A (en) * 2009-07-24 2011-02-10 General Electric Co <Ge> Model-based tuning of ammonia distribution and control for reduced operating cost of selective catalytic reduction
DE102010036348B4 (en) 2009-07-24 2022-10-06 General Electric Co. Model-based fine-tuning of ammonia distribution and regulation to reduce operating costs of selective catalytic reduction
JP2011062663A (en) * 2009-09-18 2011-03-31 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd Method for treating exhaust gas
CN102772999A (en) * 2012-08-30 2012-11-14 陕西师范大学 Flue gas denitration device for magnetic sound field synergetic oxidation-absorption method
CN102772999B (en) * 2012-08-30 2013-07-10 陕西师范大学 Flue gas denitration device for magnetic sound field synergetic oxidation-absorption method
CN105983302B (en) * 2016-05-31 2019-08-27 邢红涛 The composition detection and spray ammonia control system of SCR denitration process
CN106076115A (en) * 2016-05-31 2016-11-09 邢红涛 The flow field detecting system of SCR denitration technique
CN105983302A (en) * 2016-05-31 2016-10-05 邢红涛 Component detection and ammonia spraying control system of SCR denitrification process
CN106166444A (en) * 2016-08-29 2016-11-30 华电电力科学研究院 A kind of classification spray ammonia equipment for denitrifying flue gas and method
CN106474887A (en) * 2016-11-09 2017-03-08 山西华仁通电力科技有限公司 A kind of W flame high efficiency boiler denitrating system
WO2018193108A1 (en) * 2017-04-20 2018-10-25 Mitsubishi Hitachi Power Systems Europe Gmbh Method for operating a flue gas denitrification reactor which catalytically denitrifies flue gas, and flue gas denitrification system having a flue gas denitrification reactor suitable for carrying out the method
CN110568129A (en) * 2019-09-26 2019-12-13 北京国电龙源环保工程有限公司 SCR denitration outlet mixing and partition flue gas NOx concentration detection system and method thereof
CN110568129B (en) * 2019-09-26 2024-03-12 国能龙源环保有限公司 SCR denitration outlet mixing and zoning flue gas NOx concentration detection system and method thereof
CN111359432A (en) * 2020-04-15 2020-07-03 浙江浙能温州发电有限公司 Denitration ammonia injection system and method capable of realizing flexible partition based on NOx mass flow difference distribution
CN111359432B (en) * 2020-04-15 2023-09-08 浙江浙能温州发电有限公司 NOx mass flow difference distribution-based denitration ammonia injection system and method capable of realizing flexible partition

Similar Documents

Publication Publication Date Title
JP5931506B2 (en) Denitration apparatus and reducing agent distribution adjustment method for denitration apparatus
CN205461808U (en) SCR denitration catalyst on -line measuring with spout ammonia and optimize automatic regulating system
CN106621804A (en) Fume ammonia injection mixing device and SCR (selective catalytic reduction) fume denitrification system
JP2004243228A (en) Flue gas denitrification apparatus with function of injecting and controlling reducing agent, and method for flue gas denitration
KR101535938B1 (en) SCR System Including Bypass System By GPS
KR100788982B1 (en) Exhaust Gas of High Temperature Denitrifing System For A Co-Generation System and Denitrifing Method using the System
WO2011090258A2 (en) System for denitrifying exhaust gas capable of preventing blockages in a urea water inflow path and an injection nozzle, and device for supplying urea water capable of preventing the coagulation of urea water
CN109092035A (en) A kind of device and its working method for adjusting denitration spray ammonia flow adding feedforward based on cascade PID
WO2011162513A2 (en) Reducing-agent supply device and an exhaust gas nitrogen-removal system using the same
CN112657333A (en) Ammonia spraying and uniformly distributing device and denitration ammonia spraying system
CN107008144B (en) Device for realizing SCR flue gas denitration multistage ammonia spraying and flue gas denitration method
JP4662166B2 (en) Denitration equipment with reducing agent injection distribution adjustment function
CN214051165U (en) Denitration exhaust-heat boiler
CN112370964A (en) Method and system for improving comprehensive performance of SCR system of coal-fired power plant boiler
KR100884657B1 (en) Exhaust Gas of High Temperature Denitrifing System and Denitrifing Method using the System
CN204307526U (en) For the mixed cigarette thermoregulating system of boiler SCR denitration system
JPS6344925A (en) Denitration treatment of exhaust gas
CN214635422U (en) Air preheater anti-blocking treatment device based on denitration ammonia escape control
CN109224854A (en) Denitrating flue gas gridding method rotation samples ammonia and nitrogen oxides monitoring device combining
CN107115733B (en) Blowing ash removal and gaseous agent injection device of bag type dust collector
CN207941379U (en) A kind of gas ammonia transport system
CN208457995U (en) One kind is for guaranteeing the mixed uniformly device of economizer gas bypass high and low temperature fluid
CN112657334A (en) Denitration exhaust-heat boiler
CN206875420U (en) Fluidized-bed combustion boiler denitrification apparatus based on cyclone separator
Zhang et al. Study on optimization experiment of SCR denitrification technologies in a coal-fired power plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081225