JP2004242720A - Drunken behavior evaluation method - Google Patents

Drunken behavior evaluation method Download PDF

Info

Publication number
JP2004242720A
JP2004242720A JP2003032998A JP2003032998A JP2004242720A JP 2004242720 A JP2004242720 A JP 2004242720A JP 2003032998 A JP2003032998 A JP 2003032998A JP 2003032998 A JP2003032998 A JP 2003032998A JP 2004242720 A JP2004242720 A JP 2004242720A
Authority
JP
Japan
Prior art keywords
drinking
alcohol
value
sake
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003032998A
Other languages
Japanese (ja)
Inventor
Yoshinori Wakai
芳則 若井
Yoshifumi Kiyokawa
良文 清川
Tomoko Nagano
知子 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIZAKURA SAKE BREWING CO
Original Assignee
KIZAKURA SAKE BREWING CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIZAKURA SAKE BREWING CO filed Critical KIZAKURA SAKE BREWING CO
Priority to JP2003032998A priority Critical patent/JP2004242720A/en
Publication of JP2004242720A publication Critical patent/JP2004242720A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method to evaluate objectively a condition of drunken behavior of a drinker by not only the depth of drunkenness but also various aspects including an exaltation feeling, a degree of excitement and a mood such as feeling good, bad or the like as well as a degree of relaxation which defers according to the constitution of strength against an alcoholic drink and a type of the alcoholic drink. <P>SOLUTION: An electrocardiogram of an examinee with alcoholic drinking is measured and a spectrum analysis of the electrocardiogram data is carried out. Then, the condition of drunkenness is evaluated by a variation of the heart rate (HR value) obtained from the result of the above analysis and comparison analysis of high-frequency spectral value (HF value) and a ratio of LF/HF (LF value: low-frequency spectral value) which is an index of an active mass of the sympathetic nerve before and after drinking. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、飲酒による酔いの状態を様々な面から客観的に評価するための技術に関する。
【0002】
【従来の技術】
従来より、車両の運転者の飲酒状態を判断するために、アルコールセンサを用いて運転者の呼気中アルコール濃度を測定し、その数値によって判定する方法が広く採用されている。このような飲酒状態検出装置が、例えば下記の特許文献1及び2に記載されている。
【0003】
また、特許文献3において、飲酒の量や種類に応じて酔いの状態を明確に報知する装置が開示されている。同文献の装置は、被験者の脈拍若しくは心拍、呼気中のアルコール濃度から算出した血中アルコール濃度、又は飲酒したアルコール量及びその後の時間経過から算出した血中アルコール濃度に基づいて、酔態状態をいくつかの段階に分けて表示するというものである。
【0004】
【特許文献1】特開平6−50918号公報
【特許文献2】特開平9−292354号公報
【特許文献1】特開平9−168516号公報
【0005】
【発明が解決しようとする課題】
一般に飲酒による酔いの状態及び程度は、単に飲酒量だけでなく、酒の種類や所謂酒に「強い」又は「弱い」等と評される飲酒者の体質等によっても異なることが経験的に知られている。また、酒の種類によって、例えば日本酒と焼酎やビールとでは酔い方に違いがあるとも言われている。しかしながら、上述した従来の装置は、いずれも単に酔いの深さを一定の基準で一律に判断するものであり、飲酒者の体質や飲んだ酒の種類により異なる酔い方を判定・評価するものではない。
【0006】
そこで本発明は、上述した従来の問題点に鑑みてなされたものであり、その目的は、飲酒者の酔いの状態を酔いの深さだけでなく、その体質や酒の種類によって異なる高揚感、興奮度、気分が良い悪い等の心地良さ、リラックス度をも含む様々な面から客観的に評価する方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明によれば、上記目的を達成するために、飲酒した被験者の心電図を測定し、該心電図データを用いて酔いの状態を評価することを特徴とする酔態評価方法が提供される。
【0008】
更に、前記心電図データのスペクトル解析を行い、その解析結果を用いて酔いの状態を評価することができる。
【0009】
或る実施例では、心電図スペクトル解析から得られるスペクトル成分の内、副交感神経活動量の指標となる高周波スペクトル値(HF値)、及び交感神経活動量の指標であるLF/HF比(LF値:低周波スペクトル値)を飲酒前後で比較することによって評価を行う。更に、心電図から得られる心拍数の変化(心拍変動=HR値)についても、酒の種別及び酒に強い・弱いという飲酒者の体質によって違いが認められ、これを用いて酔いの状態を評価することができる。
【0010】
特に、HF値は、リラックス度の指標ともなるので、その飲酒後の変化量の大小によって酔いの心地よさを判断できる。LF/HF比は、興奮度、高揚感、又は飲酒時における外交的な症状(陽気又は陰鬱になる等)の指標となることから、LF/HF比の変化程度を飲酒前後で比較することによって、飲酒時の楽しい気分を判定する指標となる。また、これら以外のスペクトル成分(VLF、ULF等)も飲酒状態に相関性がある成分と考えられ、これらを用いて評価することも可能である。
【0011】
後述するように、本願発明者らが行った試験結果によれば、各種アルコール飲料による酔いの状態を比較した場合、試験終了後に各被験者が感じた酔いの印象度を調査した結果とHF値、LF/HF比の間に相関関係が認められることから、これらの値を評価することによって酔いの状態を客観的に評価できる。また、一般に言われる「酒に弱い」「酒に強い」体質の違いは、呼気中アルコール濃度の測定結果から明確に区別できるものでなかったが、心電図スペクトル解析から得られたHF値、LF/HF比、心拍変動(HR値)は、両体質間で明らかに異なる傾向を示すことが確認された。
【0012】
従って、本発明の評価方法を用いることによって、酒に弱い・強い体質の違い及びそれによる酔いの状態の違いが明らかになり、飲酒者の体質に対応して異なるアルコール飲料を開発し、又は飲酒者がより楽しめる酒質を検索することが可能になる。
【0013】
【発明の実施の形態】
本願発明者らは、男女合計12名の被験者に対して、清酒純米酒・原料アルコール・米焼酎(蒸留酒)・ビール・ワイン・清酒普通酒・清酒吟醸酒・清酒にごり酒(本醸造)の8種類のアルコール飲料を試験酒として、酔いの状態を下記の要領で試験した。
試験方法:
被験者は、昼食後約1.5時間経過した後にアルコール13.5%換算300ml(体重60kg当たり)の各試験酒を15分間以内で飲酒した。飲酒約30分前から夕食前まで心電図を記録した。飲酒終了5分後から呼気中アルコール濃度を測定した。全測定は飲酒開始から約4〜5時間で終了した。
測定・分析方法:
(1)呼気中アルコール濃度:市販のアルコール濃度測定装置を用いて約5分毎に測定。
(2)心拍数の測定:ホルター型心電計、及び心電図解析装置「DSC−3100」(日本光電工業株式会社製)を使用。
(3)心拍数の解析: スペクトル解析ソフト「MemCalc」(株式会社ジー・エム・エス製)を使用。
(4)アンケート調査: 各被験者に試験中の意識や気分について、▲1▼飲酒後30分、▲2▼飲酒後1時間、▲3▼飲酒後2時間、▲4▼飲酒後3時間に分けてアンケートを実施した。
【0014】
以下に試験結果について、添付部面を参照しつつ詳細に説明する。尚、試験に先立って各被験者に、アルコール代謝物であるアセトアルデヒド分解酵素の有無(高活性か低活性か)を調べるパッチテストを行い、所謂酒に「強い」体質(パッチテスト「−」)と「弱い」体質(パッチテスト「+」)とに分類した。
【0015】
図1は、飲酒後の被験者における呼気中アルコール濃度の消失を示している。
被験者の呼気中アルコール濃度の消失傾向は3つのタイプに分かれた。図中太い実線で示す酒に強い体質の被験者は、消失が4時間以内と早く、太い二点鎖線で示す酒に弱い体質の被験者は、消失が非常に遅く、飲酒後5時間以上経過しても呼気中にアルコールが検出された。細い実線で示す第3のタイプは、飲酒頻度の低いパッチテスト「−」の被験者と多量飲酒習慣のあるパッチテスト「+」の被験者とに見られた傾向であった。
【0016】
図2(A)は、パッチテスト(+)の酒に弱い被験者における呼気中アルコール濃度の飲酒後の経過をアルコール飲料の種別に平均値で示している。呼気中アルコールの消失傾向には、飲酒後約2時間まではアルコール飲料の種別により差が認められた。しかし、その後は、いずれのアルコール飲料の場合にも消失速度が略同じで、検出限界の0.05μg/ml以下になるまで約4〜5時間を要するという傾向を示した。
【0017】
図2(B)は、パッチテスト(−)の酒に強い被験者における呼気中アルコール濃度の飲酒後の経過をアルコール飲料の種別に平均値で示している。図2(A)に示す酒に弱い被験者と異なり、呼気中アルコールの消失傾向は、アルコール飲料の種別による差が認められず、飲酒後4時間でほぼ検出限界に達した。このように、純アルコール換算で同量を飲酒した場合、呼気中アルコール濃度から得られるアルコール代謝傾向は、アルコール飲料の種別によって大きな影響は受けないと解される。
【0018】
図3は、アルコール消失傾向に差が認められなかった酒に強い被験者の場合に、アルコール飲料の種別による血圧の経時変化を示している。全般的に、血圧は飲酒後低下する傾向を示した。アルコール飲料の種別によって血圧低下の程度に差が認められ、飲酒2時間後において、日本酒は最も下がらなかった米焼酎の約2.5倍も大きく低下した。日本酒の中でも、特に純米酒と普通酒とは大きく低下した。図示していないが、最低血圧についても、最高血圧の場合よりも程度は小さいものの、アルコール飲料の種別によって血圧低下の程度に差が認められた。その場合にも、純米酒・普通酒は血圧が大きく低下する傾向が認められた。しかし、いずれのアルコール飲料についても、最大血圧又は最低血圧と呼気中アルコール濃度との間に有意な相関は認められなかった。
【0019】
ここで、アルコール摂取と血圧変化との関係について以下のように考察する。
体内に取り込まれたアルコールは肝臓でアセトアルデヒドに代謝されるが、パッチテスト(+)の酒に弱い人はアセトアルデヒド分解酵素を持たない又は少ないので、血中のアセトアルデヒド濃度が高くなり、パッチテスト(−)の酒に強い人でも、アセトアルデヒドの分解がアルコール摂取量に追いつかなくなると血中に貯まるようになる。血中のアセトアルデヒドが増加すると、血中には、もう一つの二日酔い原因物質と言われるカテコールアミンを分泌促進させる作用が働く。また、アセトアルデヒドは、毒性が強く二日酔いの原因物質といわれている反面、熊本県立大の奥田教授により報告されているように、その代謝物が血管拡張効果をもつこと、及び心臓交感神経系でアセトアルデヒドは交感神経様の作用を示すことから、本願発明者らは、血圧変化に影響しているのではないかと推察した。また、血圧変化と心拍変動とは関連していることから、本願発明者らは、心拍変動に関連した数値を用いることによって酔いの深さの程度を検証・評価できると考えた。
【0020】
更に、交感神経及び副交感神経について説明すると、心臓自律神経系には交感神経と副交感神経とがあって互いに相反する作用を示す。一般に、日中起きている時に、交感神経は活発に働きかつ副交感神経は抑制されるのに対し、この反対に夜就寝中は、副交感神経が活発となりかつ交感神経は抑制される。また、副交感神経は、音楽を聞いたり良い香りをかいだりすると高くなることが報告され、リラックス度を示す指標である。
【0021】
飲酒によって、交感神経系はアセトアルデヒドの影響を受け、酔った時の主な諸症状である顔面紅潮、頻脈、発汗、口中のネバネバ感、眩しくなると言った症状が起こる。これに対し、副交感神経系はアルコールによる影響を受け、顔色蒼白、瞳孔収縮、徐脈等の症状やアルコールの麻酔効果による大脳麻痺でゆったりした気分になる。そして、これら2つの神経系のどちらが強いかによって、酔った気分の良い悪いが決まると考えられる。
【0022】
このように、飲酒後に血圧が大きく変化(低下)すること、血圧の変動にはアセトアルデヒドが関与すること、及び副交感神経系には、アルコールとアセトアルデヒドとが関与することから、本願発明者らは、酔いの状態及びその程度を酔い心地等の様々な面から客観的に考察する手段として、心拍変動を用いることが可能であるとの考えに至った次第である。以下に更に詳細に検討する。
【0023】
ホルター型心電計を用いて被験者から測定される心電図から、その心拍変動をスペクトル解析することによって、次のような心電図データが得られる。
心拍変動スペクトル解析値:
・HR(b/分): 1分間の心拍数。
・HF(ms・ms): 高周波数領域(0.15〜0.40Hz)。呼吸数の周期に一致し、副交感神経の活動量を示す。この値が高いとリラックス状態にあると解される。
・LF(ms・ms): 低周波数領域(0.04〜0.15Hz)。体温調節や血圧変動と関連し、主に交感神経活動量を示すが、副交感神経活動量も含まれる。
・LF/HF比: LF値から副交感神経の影響を極力小さくした交感神経の活動量を示す。この値が高いと意識のはっきりした興奮(高揚)状態を示す。
【0024】
先ず、パッチテスト(+)の酒に弱い被験者とパッチテスト(−)の酒に強い被験者とについて、同量を飲酒した場合における心拍変動(HR)を測定した。
図4は、清酒純米酒を同量飲酒した後の心拍数の変化を示している。酒に弱い被験者では、心拍数が飲酒後増加し、飲酒前の状態に戻るのに3時間以上要したのに対し、酒に強い被験者では、飲酒後或る短い時間で心拍数は減少し、その後ほぼ一定となる傾向が認められた。
【0025】
図5は、清酒純米酒を同量飲酒した後のHF値の変化を示している。リラックスの指標となるHF値は、酒に強い人の場合周期的に増加する傾向が認められ、リラックスした良い酔いの状態を示している。他方、酒に弱い被験者の場合、HF値は減少し、約1時間でほぼ0となり、ストレスを感じていたが、その後1時間程経過して寝てしまったために徐々に増加を示した。このように、酔いの状態と心拍変動から得られる解析値とは関連していることが確認された。
【0026】
更に、アルコール飲料の種別による差について分析した。尚、以下に説明する各データは、いずれも飲酒終了時を0値とし、飲酒終了からの変化値で示している。
【0027】
図6は、飲酒後の心拍数(HR値)の経時変化をアルコール飲料の種別により示している。飲酒後の心拍数(HR)は、その変化量や経時変化にアルコール飲料の種別によって異なる傾向を示した。日本酒では、平常時と同様に飲酒直後に大きく増加した後減少し、また増加するという周期性が認められた。ワインやビールを飲酒した場合、増減の変化が最も少なく、米焼酎や原料アルコールを飲酒した場合に減少が大きくなった。アミノ酸等の含まれない原料アルコールや日本酒の中でも雑味の少ない普通酒で大きく減少する理由は、アルコールによる副交感神経の活性化によるものと考えられ、アルコール以外の成分が多い日本酒やワイン、ビールでは、このアルコールの作用を妨げる成分があるのではないかと考えられる。
【0028】
図7は、飲酒後の副交感神経活動量(HF値)の経時変化をアルコール飲料の種別により示している。リラックスの指標であるHF値については、その変化量や経時変化にアルコール飲料の種別による違いが認められた。HF値の変化量は、米焼酎を飲酒した場合に最も小さく、経時変化は、清酒普通酒を飲酒した場合に平常時に一番近く、飲酒時のストレスが無くなり易いと解される。また、原料アルコールでは、飲酒後に最も大きくマイナス側に変化し、ストレスが大きいと思われる。
【0029】
図8は、これらHF値の変化を被験者の体質別に比較した結果を示している。
同じアルコール飲料を摂取した場合、明らかに酒に弱いタイプの被験者はHF値のマイナス側への変化が大きく、より強いストレスを感じていることが分かる。
また、米焼酎の場合には、酒に強い被験者と弱い被験者とで変化量の差が日本酒の場合よりも少ないことが分かる。従って、HF値が示すストレスと言う観点から酔いの状態を客観的に評価することが可能であると解される。
【0030】
図9は、飲酒後の副交感神経活動量(HF値)の経時変化を日本酒の種別によって示している。純米酒・吟醸酒・普通酒・本醸造にごり酒の4種を飲酒した場合におけるHF値の変化から、リラックス度と関連するHF値は、同じ日本酒でもその種別により差のあることが認められた。
【0031】
図10は、交感神経活動量(LF/HF比)の経時変化をアルコール飲料の種別によって示している。交感神経の活動量を示すLF/HF比は飲酒後増加し、その変化量はアルコール飲料の種別によって異なる傾向を示した。特に純米酒では、飲酒後平常時よりも高く推移し、興奮状態となることを示した。他方、ビールや普通酒は変化が最も小さく、酔いによる興奮がほとんど見られないと思われる。また、LF/HF比は、呼気中アルコール濃度がその検出限界まで低くなる測定開始後200分以降に減少する傾向を示した。
【0032】
上記分析結果から、飲酒後における心拍数の変化、HF値及びLF/HF比の変化が酔いの状態を、単に酔いの深さだけでなく、その体質や酒の種類によって異なる高揚感、興奮度、気分が良い悪い等の心地良さ、リラックス度をも含む様々な面から客観的に示していると解することができる。
【0033】
また、心拍変動に関連して、今回の試験に使用したアルコール飲料には、その種別によって図11に示すような特徴が認められた。清酒純米酒は米焼酎と大きく異なる傾向を示し、米焼酎はワインに近い傾向であった。清酒普通酒はビールに近い傾向を示し、日本酒の特徴である血圧低下効果の点は別として、米焼酎とも近い傾向を示した。
【0034】
最後に、実際に被験者が感じた印象と測定値との間にどのような関係があるのかを調べるために、一連の試験終了後に各被験者に各アルコール飲料に対する印象をアンケート調査し、その結果と心電図データの測定・分析値とを比較検討した。図12は、被験者の印象に基づく酔いの強さと副交感神経活動量(HF値)の経時変化との相関関係を示している。同図において、酔いの強さ及び副交感神経活動量(HF値)の経時変化の中で、飲酒後270分の値を中心値に選択した。その結果、酔いの強さと酒に弱い被験者のHF値との間には、危険率5%で正の相関が認められた。これは、酒に弱い被験者の場合、呼気中アルコール濃度が0.1%と低い飲酒後270分後でもHF値が低く、アルコールによる緊張状態を引きずっていることで、酔いが強いと感じていたものと思われる。
【0035】
更に、図13は、被験者の印象に基づく「飲みたい」欲求と交感神経活動量(LF/HF比)の経時変化との相関関係をアルコール飲料の種別によって示している。同図に示すように、「飲みたい」欲求とLF/HF比との間には、或る相関が認められた。酒に弱い被験者では、LF/HF比と「飲みたい」欲求又は気分とが5%の危険率で正の相関を示し、酒に強い被験者では、5%の危険率で負の相関が認められた。このように、酒に強い人はLF/HF値が上昇するような酒を好み、弱い人はLF/HF値が低い酒を好むという傾向が認められた。また、同じアルコール飲料でも、日本酒や米焼酎では、「飲みたい」という欲求が酒に強い弱いの体質に拘わらず同程度の値を示したが、ワインやビールでは、その印象が全く異なっていた。
【0036】
以上より、酒に強い被験者と酒に弱い被験者とでは、同量を飲酒した場合に酔いの状態が異なると共に、心拍数の変化量やリラックス度の指標となるHF値が、次の表1に示すように明らかに異なることが判明した。
【0037】
【表1】

Figure 2004242720
【0038】
以上の分析結果をまとめると次のようになる。
・飲酒後における心拍数(HR値)の変化は、酒に弱い被験者で大きく、酒に強い被験者で小さい傾向を示す。
・飲酒後におけるHF値の変化は、酒に弱い被験者で大きくマイナスとなり、アルコールによるストレスが大きく、交感神経優位であることを示す。
・飲酒後における心拍変動、HF値変化量の大小及び変化曲線は、アルコール飲料の種別により異なり、またアルコール飲料の種別は、アルコールによるストレスや副交感神経優位の程度が異なることから、酔いの深さに影響を与えている。
【0039】
また、上記試験で用いたスペクトル成分以外のVLF、ULF等のスペクトル成分を用いて、同様に飲酒による酔いの状態との相関関係を示すことが可能であると考えられる。更に、飲酒後の血圧変化がアルコール飲料の種別により異なることと心拍数及びスペクトル解析結果とは関連していると考えられるので、飲酒時の血圧低下効果作用機序も、心電図データを解析したスペクトル成分から得られるものと考えられる。
【図面の簡単な説明】
【図1】呼気中アルコール濃度の消失曲線を被験者の酒に強い・弱い体質別に示す線図。
【図2】(A)図は、酒に弱い被験者の呼気中アルコール濃度の消失曲線をアルコール飲料の種別に平均値で示す線図、(B)図は、酒に強い被験者の呼気中アルコール濃度の消失曲線をアルコール飲料の種別に平均値で示す線図。
【図3】飲酒後の最高血圧の経時変化をアルコール飲料の種別に示す線図。
【図4】飲酒後の心拍数(HR値)の経時変化を酒に強い・弱い体質別に示す線図。
【図5】飲酒後の副交感神経活動量(HF値)の経時変化を酒に強い・弱い体質別に示す線図。
【図6】飲酒後の心拍数(HR値)の経時変化をアルコール飲料の種別に示す線図。
【図7】飲酒後の副交感神経活動量(HF値)の経時変化をアルコール飲料の種別に示す線図。
【図8】図7のデータの内、清酒純米酒・清酒普通酒・米焼酎について飲酒後の副交感神経活動量(HF値)の経時変化を酒に強い・弱い体質別に示す線図。
【図9】飲酒後の副交感神経活動量(HF値)の経時変化を日本酒の種別に示す線図。
【図10】交感神経活動量(LF/HF比)の経時変化をアルコール飲料の種別に示す線図。
【図11】アルコール飲料の種別による心拍変動の特徴を示す図。
【図12】被験者の印象に基づく酔いの強さと副交感神経活動量(HF値)の経時変化との相関関係を示す図。
【図13】被験者の印象に基づく「飲みたい」欲求と交感神経活動量(LF/HF比)の経時変化との相関関係をアルコール飲料の種別に示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a technique for objectively evaluating the state of sickness due to drinking from various aspects.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in order to determine a drinking state of a driver of a vehicle, a method of measuring an alcohol concentration in breath of the driver using an alcohol sensor and making a determination based on the measured value has been widely adopted. Such drinking state detection devices are described in, for example, Patent Documents 1 and 2 below.
[0003]
Patent Document 3 discloses an apparatus that clearly notifies a state of sickness according to the amount and type of drinking. The device of the document, the pulse or heart rate of the subject, the blood alcohol concentration calculated from the alcohol concentration in the breath, or the amount of alcohol drunk, based on the blood alcohol concentration calculated from the passage of time, based on the drunk state, It is displayed in several stages.
[0004]
[Patent Document 1] JP-A-6-50918 [Patent Document 2] JP-A-9-292354 [Patent Document 1] JP-A-9-168516 [0005]
[Problems to be solved by the invention]
It is empirically known that the state and degree of drunkness due to drinking generally depend not only on the amount of drinking but also on the type of drinking and the constitution of drinkers who are described as “strong” or “weak” in so-called drinking. Have been. It is also said that, depending on the type of sake, for example, sake and shochu or beer differ in how to get drunk. However, the above-mentioned conventional apparatuses are all for simply judging the depth of sickness on a fixed basis, and are not for judging / evaluating different sickness methods depending on the constitution of the drinker and the type of drink. Absent.
[0006]
Therefore, the present invention has been made in view of the above-described conventional problems, the purpose is not only the state of the drunkenness of the drinker, not only the depth of the drunkenness, the elation different depending on the constitution and the type of alcohol, It is an object of the present invention to provide a method for objectively evaluating various aspects including a degree of excitement, comfort such as a bad mood, and a degree of relaxation.
[0007]
[Means for Solving the Problems]
According to the present invention, in order to achieve the above object, there is provided a drunkness evaluation method characterized by measuring an electrocardiogram of a drunk subject and evaluating a state of sickness using the electrocardiogram data.
[0008]
Further, a spectrum analysis of the electrocardiogram data is performed, and the state of sickness can be evaluated using the analysis result.
[0009]
In one embodiment, among the spectral components obtained from the electrocardiogram spectral analysis, a high-frequency spectrum value (HF value) as an index of the amount of parasympathetic nerve activity and an LF / HF ratio (LF value: an index of the amount of sympathetic nerve activity: The evaluation is performed by comparing the low-frequency spectrum values before and after drinking. Furthermore, changes in the heart rate (heart rate variance = HR value) obtained from the electrocardiogram differ depending on the type of alcohol and the constitution of the drinker, who is strong or weak in alcohol, and the state of sickness is evaluated using this. be able to.
[0010]
In particular, since the HF value also serves as an index of the degree of relaxation, the comfort of sickness can be determined based on the magnitude of the change after drinking. Since the LF / HF ratio is an index of excitement, elation, or diplomatic symptoms (during cheerfulness or depression) at the time of drinking, by comparing the degree of change of the LF / HF ratio before and after drinking. It is an index for determining a pleasant mood when drinking. Further, other spectral components (VLF, ULF, etc.) are also considered to be components having a correlation with the drinking state, and it is possible to evaluate using these components.
[0011]
As described below, according to the test results performed by the inventors of the present application, when comparing the state of sickness due to various alcoholic beverages, the result of investigating the impression degree of sickness felt by each subject after the test and the HF value, Since a correlation is recognized between the LF / HF ratio, the state of sickness can be objectively evaluated by evaluating these values. In addition, the difference between the constitutions generally called “weak to alcohol” and “strength to alcohol” could not be clearly distinguished from the measurement result of the alcohol concentration in breath, but the HF value and LF / It was confirmed that the HF ratio and the heart rate variability (HR value) tended to be clearly different between both constitutions.
[0012]
Therefore, by using the evaluation method of the present invention, differences in the weak or strong constitution of alcohol and the difference in the state of sickness thereby become apparent, and different alcoholic beverages are developed according to the constitution of the drinker, or Makes it possible to search for liquor qualities that are more enjoyable for the elderly.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors applied a total of 12 subjects of male and female subjects to a total of 8 subjects of sake junmai sake, raw material alcohol, rice shochu (distilled liquor), beer, wine, sake liquor, sake ginjoshu, and sake nigori (honjozo). The state of sickness was tested as follows using various types of alcoholic beverages as test liquors.
Test method:
The subject drank each test liquor of 300 ml (per 60 kg body weight) in terms of alcohol 13.5% within about 15 minutes after about 1.5 hours had passed after lunch. Electrocardiograms were recorded from about 30 minutes before drinking to before dinner. Five minutes after the end of drinking, the breath alcohol concentration was measured. All measurements were completed approximately 4-5 hours after the start of drinking.
Measurement and analysis method:
(1) Breath alcohol concentration: Measured about every 5 minutes using a commercially available alcohol concentration measuring device.
(2) Heart rate measurement: using a Holter-type electrocardiograph and an electrocardiogram analyzer “DSC-3100” (manufactured by Nihon Kohden Corporation).
(3) Analysis of heart rate: Spectrum analysis software "MemCalc" (manufactured by GMS) was used.
(4) Questionnaire Survey: Each subject's consciousness and mood during the test were divided into (1) 30 minutes after drinking, (2) 1 hour after drinking, (3) 2 hours after drinking, and (4) 3 hours after drinking. Questionnaire.
[0014]
Hereinafter, the test results will be described in detail with reference to the attached part. Prior to the test, each subject was subjected to a patch test to check for the presence or absence (high or low activity) of alcohol metabolite, acetaldehyde-degrading enzyme. It was classified as "weak" constitution (patch test "+").
[0015]
FIG. 1 shows the disappearance of breath alcohol concentration in a test subject after drinking.
The tendency of the subjects to lose their breath alcohol concentration was divided into three types. In the figure, the subjects with the strong constitution of alcohol shown by the thick solid line disappear quickly within 4 hours, and the subjects with the constitution weak to alcohol shown by the thick two-dot chain line disappear very slowly, more than 5 hours after drinking. Alcohol was also detected during exhalation. The third type shown by a thin solid line was the tendency observed in the subjects of the patch test “−” with a low drinking frequency and the subjects of the patch test “+” with a heavy drinking habit.
[0016]
FIG. 2A shows the average of the progress of alcohol concentration in breath after drinking in a test subject weak to alcohol in the patch test (+) for each type of alcoholic beverage. There was a difference in the tendency of the alcohol in the breath to disappear up to about 2 hours after drinking, depending on the type of alcoholic beverage. However, thereafter, the disappearance rate was almost the same in all the alcoholic beverages, and it tended to take about 4 to 5 hours to reach the detection limit of 0.05 μg / ml or less.
[0017]
FIG. 2 (B) shows the average of the progress of alcohol concentration in breath after drinking in a test subject who is strong in alcohol in the patch test (-) for each type of alcoholic beverage. Unlike the test subject weak in alcohol shown in FIG. 2 (A), the tendency of disappearing alcohol during breathing did not differ depending on the type of alcoholic beverage, and almost reached the detection limit 4 hours after drinking. As described above, when the same amount of alcohol is consumed in terms of pure alcohol, it is understood that the alcohol metabolism tendency obtained from the breath alcohol concentration is not significantly affected by the type of alcoholic beverage.
[0018]
FIG. 3 shows the change over time in blood pressure according to the type of alcoholic beverage in the case of a test subject who is strong in alcohol and has no difference in alcohol disappearance tendency. In general, blood pressure tended to decrease after drinking. There was a difference in the degree of decrease in blood pressure depending on the type of alcoholic beverage, and after 2 hours of drinking, sake dropped about 2.5 times as much as rice shochu, which had not decreased the least. Among Japanese sake, Junmaishu and ordinary sake in particular declined significantly. Although not shown, although the diastolic blood pressure was smaller than that of the systolic blood pressure, a difference was observed in the degree of blood pressure decrease depending on the type of alcoholic beverage. Also in that case, Junmaishu and ordinary sake tended to significantly lower blood pressure. However, for any of the alcoholic beverages, no significant correlation was observed between the systolic or diastolic blood pressure and the breath alcohol concentration.
[0019]
Here, the relationship between alcohol intake and blood pressure change will be considered as follows.
Alcohol taken into the body is metabolized to acetaldehyde in the liver, but those who are vulnerable to the patch test (+) have no or little acetaldehyde-degrading enzyme, so the blood acetaldehyde concentration increases and the patch test (- Even people who are strong in alcohol can accumulate in the blood if the decomposition of acetaldehyde cannot keep up with alcohol intake. When the amount of acetaldehyde in the blood increases, the blood works to promote the secretion of catecholamine, another substance that causes hangover. Acetaldehyde is said to be highly toxic and a cause of a hangover.On the other hand, as reported by Professor Okuda of Kumamoto Prefectural University, its metabolite has a vasodilator effect, and acetaldehyde is found in the cardiac sympathetic nervous system. Has a sympathetic-like effect, and the present inventors speculated that it might affect blood pressure changes. Further, since the blood pressure change and the heart rate variability are related, the inventors of the present application thought that the degree of the sickness can be verified and evaluated by using a numerical value related to the heart rate variability.
[0020]
Further, the sympathetic nerve and the parasympathetic nerve will be described. In the cardiac autonomic nervous system, the sympathetic nerve and the parasympathetic nerve have opposing actions. In general, when awake during the day, the sympathetic nerves work actively and the parasympathetic nerves are suppressed, while on the other hand, when sleeping at night, the parasympathetic nerves become active and the sympathetic nerves are suppressed. In addition, it has been reported that the parasympathetic nerve increases when listening to music or smells good scent, and is an index indicating the degree of relaxation.
[0021]
Alcohol drinking causes the sympathetic nervous system to be affected by acetaldehyde, leading to the main symptoms of intoxication: flushing the face, tachycardia, sweating, slimy mouth, and dazzling. In contrast, the parasympathetic nervous system is affected by alcohol and feels relaxed due to symptoms such as pale face, pupillary constriction, bradycardia, and cerebral palsy caused by the anesthetic effect of alcohol. Then, it is considered that which one of these two nervous systems is stronger determines whether the person is drunk or not.
[0022]
As described above, since the blood pressure significantly changes (decreases) after alcohol drinking, acetaldehyde is involved in the fluctuation of blood pressure, and alcohol and acetaldehyde are involved in the parasympathetic nervous system. It has been decided that it is possible to use heart rate variability as a means for objectively considering the state and degree of sickness from various aspects such as sickness. This will be discussed in more detail below.
[0023]
The following electrocardiogram data can be obtained by performing a spectrum analysis of the heart rate variability from an electrocardiogram measured from a subject using a Holter-type electrocardiograph.
Heart rate variability spectrum analysis value:
HR (b / min): heart rate per minute.
HF (ms · ms): High frequency range (0.15 to 0.40 Hz). It indicates the amount of parasympathetic activity corresponding to the respiratory cycle. If this value is high, it is understood that the subject is in a relaxed state.
LF (ms · ms): low frequency range (0.04 to 0.15 Hz). It mainly relates to body temperature regulation and blood pressure fluctuation, and indicates the amount of sympathetic nerve activity, but also includes the amount of parasympathetic nerve activity.
LF / HF ratio: indicates the amount of sympathetic nerve activity in which the influence of the parasympathetic nerve is minimized from the LF value. When this value is high, it indicates a state of conscious excitement (elevation).
[0024]
First, the heart rate variability (HR) of the test subjects weak in the patch test (+) and the test subjects in the patch test (-) was measured when the same amount of alcohol was consumed.
FIG. 4 shows a change in heart rate after drinking the same amount of sake Junmai sake. In subjects vulnerable to alcohol, the heart rate increased after drinking and it took more than 3 hours to return to the state before drinking, whereas in subjects strong in alcohol, the heart rate decreased a short time after drinking, Thereafter, a tendency to become substantially constant was observed.
[0025]
FIG. 5 shows the change in HF value after drinking the same amount of sake Junmai sake. The HF value serving as an index of relaxation tends to increase periodically in a person who is strong in alcohol, indicating a relaxed and good sickness state. On the other hand, in the case of a subject weak to alcohol, the HF value decreased, and became almost 0 in about 1 hour, and felt stress, but gradually increased after about 1 hour since he fell asleep. Thus, it was confirmed that the state of sickness was related to the analysis value obtained from the heart rate variability.
[0026]
Furthermore, the difference according to the type of alcoholic beverage was analyzed. Note that each of the data described below has a value of 0 at the end of drinking and is indicated by a change value from the end of drinking.
[0027]
FIG. 6 shows the change over time of the heart rate (HR value) after drinking, depending on the type of alcoholic beverage. The heart rate (HR) after drinking showed a different tendency depending on the type of alcoholic drink in the amount of change and the change over time. In the case of sake, as in normal times, there was a periodicity in which it increased immediately after drinking, then decreased, and then increased. Drinking wine and beer showed the least change, while drinking rice shochu and raw alcohol drastically decreased. The reason why the amount of alcohol that contains no amino acids or other raw materials or sake that has a low level of taste is greatly reduced by the activation of the parasympathetic nervous system by alcohol, and in sake, wine, and beer that contain many components other than alcohol, It is thought that there is a component that hinders the action of this alcohol.
[0028]
FIG. 7 shows changes over time in the amount of parasympathetic nervous activity (HF value) after drinking, by type of alcoholic beverage. Regarding the HF value, which is an index of relaxation, differences were observed in the amount of change and the change over time depending on the type of alcoholic beverage. It is understood that the change amount of the HF value is the smallest when drinking rice shochu, and the change with time is the closest to normal when drinking sake, and it is understood that stress during drinking is easily eliminated. In addition, in the case of raw material alcohol, it changes to the most negative side after drinking, and it is considered that stress is large.
[0029]
FIG. 8 shows the results of comparing these changes in the HF value according to the constitution of the subject.
When the same alcoholic beverage is ingested, it can be understood that the subject of the type that is clearly weak in alcohol has a large change in the HF value on the negative side, and feels more stress.
In addition, in the case of rice shochu, it can be seen that the difference in the amount of change between a subject who is strong in sake and a weak subject is smaller than that in the case of sake. Therefore, it is understood that the state of sickness can be objectively evaluated from the viewpoint of the stress indicated by the HF value.
[0030]
FIG. 9 shows changes over time in the amount of parasympathetic nervous activity (HF value) after drinking, depending on the type of sake. From the change of HF value when four kinds of sake were used, Junmaishu, Ginjoshu, ordinary sake, and Honjozo, it was recognized that the HF value related to the degree of relaxation had a difference depending on the type of the same sake.
[0031]
FIG. 10 shows the change over time in the amount of sympathetic nerve activity (LF / HF ratio) depending on the type of alcoholic beverage. The LF / HF ratio, which indicates the amount of sympathetic activity, increased after drinking, and the amount of change tended to differ depending on the type of alcoholic beverage. In particular, in the case of pure rice sake, it was higher than usual after drinking, indicating that the person became excited. On the other hand, beer and regular sake have the least change, and it seems that there is almost no excitement due to sickness. In addition, the LF / HF ratio showed a tendency to decrease after 200 minutes from the start of measurement when the breath alcohol concentration was lowered to its detection limit.
[0032]
From the above analysis results, changes in heart rate, changes in HF value and LF / HF ratio after drinking indicate the state of sickness, not only the depth of sickness, but also a feeling of elation and excitement that differ depending on the constitution and type of alcohol. It can be understood that the object is objectively shown from various aspects including comfort such as feeling bad and relaxation, and a degree of relaxation.
[0033]
In addition, in relation to heart rate variability, the alcoholic beverages used in this test had the characteristics shown in FIG. 11 depending on the type. Sake Junmaishu showed a tendency that was significantly different from rice shochu, and rice shochu tended to be close to wine. Sake ordinary sake showed a tendency close to that of beer, and apart from the effect of lowering blood pressure, which is a characteristic of sake, also showed a tendency close to rice shochu.
[0034]
Finally, in order to investigate the relationship between the impression that the subject actually felt and the measured value, after a series of tests, each subject was questionnaire surveyed about the impression of each alcoholic beverage, and the results and The measured and analyzed values of electrocardiogram data were compared and examined. FIG. 12 shows the correlation between the intensity of sickness based on the subject's impression and the change over time in the amount of parasympathetic nerve activity (HF value). In the figure, the value of 270 minutes after drinking was selected as the central value in the time course of the intensity of sickness and the amount of parasympathetic nerve activity (HF value). As a result, a positive correlation was found between the strength of the sickness and the HF value of the test subject who was vulnerable to alcohol at a risk rate of 5%. This was because, in the case of subjects weak to alcohol, the alcohol concentration in the breath was as low as 0.1%. Even after 270 minutes after drinking, the HF value was low, and the nervous state due to alcohol was dragged. It seems to be.
[0035]
Further, FIG. 13 shows the correlation between the desire to “drink” based on the subject's impression and the change over time in the amount of sympathetic nervous activity (LF / HF ratio) according to the type of alcoholic beverage. As shown in the figure, a certain correlation was observed between the desire to “drink” and the LF / HF ratio. In subjects weak to alcohol, the LF / HF ratio and the desire or mood to “drink” showed a positive correlation at a risk rate of 5%, and in subjects strong to alcohol, a negative correlation was observed at a risk rate of 5%. Was. Thus, there was a tendency that those who are strong in alcohol prefer alcoholic beverages having an increased LF / HF value, and those who are weak in alcoholic beverages prefer alcoholic beverages having a low LF / HF value. In the same alcoholic beverages, sake and rice shochu showed the same level of desire to drink, regardless of their strong or weak constitution, but the impressions of wine and beer were completely different .
[0036]
From the above, the subjects who are strong in alcohol and those who are weak in alcohol have different sickness states when drinking the same amount, and the HF value as an index of the amount of change in heart rate and the degree of relaxation is shown in Table 1 below. It turned out to be clearly different as shown.
[0037]
[Table 1]
Figure 2004242720
[0038]
The above analysis results are summarized as follows.
The change in heart rate (HR value) after drinking tends to be large in subjects weak to alcohol and small in subjects strong to drinking.
-The change in the HF value after drinking was significantly negative in subjects weak to drinking, indicating that stress due to alcohol was large and the sympathetic nerve was dominant.
・ The heart rate variability, the magnitude of the change in HF value, and the change curve after alcohol drinking differ depending on the type of alcoholic beverage, and the alcoholic beverages differ in the degree of stress and parasympathetic superiority due to alcohol. Is affecting.
[0039]
In addition, it is considered that it is possible to similarly show a correlation with the state of sickness due to drinking using spectral components such as VLF and ULF other than the spectral components used in the above test. Furthermore, since it is considered that the change in blood pressure after drinking differs depending on the type of alcoholic beverage and the results of heart rate and spectrum analysis, the mechanism of the blood pressure lowering effect during drinking is also determined by analyzing the electrocardiogram data. It is believed to be obtained from the components.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing disappearance curves of exhaled alcohol concentration according to a subject's strong and weak constitutions for alcohol.
FIG. 2 (A) is a diagram showing an average of the disappearance curve of the alcohol concentration in breath of a subject who is vulnerable to alcohol, and FIG. 2 (B) is a diagram showing the alcohol concentration in breath of a subject who is vulnerable to alcohol. FIG. 3 is a diagram showing the disappearance curve of the average of the types of alcoholic beverages.
FIG. 3 is a diagram showing the change over time in systolic blood pressure after drinking, according to the type of alcoholic beverage.
FIG. 4 is a diagram showing changes over time in heart rate (HR value) after drinking for each of the strong and weak constitutions of alcohol.
FIG. 5 is a graph showing changes over time in the amount of parasympathetic nervous activity (HF value) after drinking, according to the strong and weak constitutions of drinking.
FIG. 6 is a diagram showing a temporal change of a heart rate (HR value) after drinking, for each type of alcoholic beverage.
FIG. 7 is a diagram showing changes over time in the amount of parasympathetic nervous activity (HF value) after drinking, for each type of alcoholic beverage.
8 is a diagram showing, with respect to the data of FIG. 7, changes over time in the amount of parasympathetic nervous activity (HF value) of sake junmai sake, sake ordinary sake, and rice shochu after drinking, for each of strong and weak constitutions.
FIG. 9 is a diagram showing the time course of parasympathetic nervous activity (HF value) after drinking for each type of sake.
FIG. 10 is a diagram showing changes over time in the amount of sympathetic nerve activity (LF / HF ratio) for each type of alcoholic beverage.
FIG. 11 is a diagram showing characteristics of heart rate variability according to types of alcoholic beverages.
FIG. 12 is a diagram showing a correlation between the strength of sickness based on the subject's impression and the change over time in the amount of parasympathetic nerve activity (HF value).
FIG. 13 is a diagram showing the correlation between the desire to “drink” based on the impression of the subject and the change over time in the amount of sympathetic nerve activity (LF / HF ratio) for each type of alcoholic beverage.

Claims (2)

飲酒した被験者の心電図を測定し、該心電図データを用いて酔いの状態を評価することを特徴とする酔態評価方法。A drunkenness evaluation method, comprising: measuring an electrocardiogram of a drunk subject, and evaluating a state of sickness using the electrocardiogram data. 前記心電図データのスペクトル解析を行い、その解析結果を用いて酔いの状態を評価することを特徴とする請求項1に記載の酔態評価方法。The method of evaluating a motion sickness according to claim 1, wherein a spectrum analysis of the electrocardiogram data is performed, and a state of motion sickness is evaluated using the analysis result.
JP2003032998A 2003-02-10 2003-02-10 Drunken behavior evaluation method Pending JP2004242720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003032998A JP2004242720A (en) 2003-02-10 2003-02-10 Drunken behavior evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003032998A JP2004242720A (en) 2003-02-10 2003-02-10 Drunken behavior evaluation method

Publications (1)

Publication Number Publication Date
JP2004242720A true JP2004242720A (en) 2004-09-02

Family

ID=33019119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003032998A Pending JP2004242720A (en) 2003-02-10 2003-02-10 Drunken behavior evaluation method

Country Status (1)

Country Link
JP (1) JP2004242720A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008253538A (en) * 2007-04-05 2008-10-23 Tokyo Metropolitan Univ Noncontact mental stress diagnostic system
CN102163362A (en) * 2010-02-22 2011-08-24 谢国华 An anti-drunk driving and safe-health driving method
WO2017081790A1 (en) * 2015-11-12 2017-05-18 富士通株式会社 Information processing device, information processing method, and information processing program
CN107908924A (en) * 2017-11-19 2018-04-13 中国食品发酵工业研究院 A kind of method for evaluating excitement degree after drinks is drunk
CN111904376A (en) * 2019-05-09 2020-11-10 钜怡智慧股份有限公司 Image type drunk driving judging system and related method
JP2022061625A (en) * 2020-10-07 2022-04-19 国立大学法人宇都宮大学 Drug effect evaluation system for dyskinesia

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008253538A (en) * 2007-04-05 2008-10-23 Tokyo Metropolitan Univ Noncontact mental stress diagnostic system
CN102163362A (en) * 2010-02-22 2011-08-24 谢国华 An anti-drunk driving and safe-health driving method
CN102163362B (en) * 2010-02-22 2013-03-20 谢国华 An anti-drunk driving and safe-health driving method
WO2017081790A1 (en) * 2015-11-12 2017-05-18 富士通株式会社 Information processing device, information processing method, and information processing program
JPWO2017081790A1 (en) * 2015-11-12 2018-08-30 富士通株式会社 Information processing apparatus, information processing method, and information processing program
CN107908924A (en) * 2017-11-19 2018-04-13 中国食品发酵工业研究院 A kind of method for evaluating excitement degree after drinks is drunk
CN111904376A (en) * 2019-05-09 2020-11-10 钜怡智慧股份有限公司 Image type drunk driving judging system and related method
JP2022061625A (en) * 2020-10-07 2022-04-19 国立大学法人宇都宮大学 Drug effect evaluation system for dyskinesia

Similar Documents

Publication Publication Date Title
EP2783631B1 (en) Biological status estimation device and computer program
Green et al. The effects of caffeine on ambulatory blood pressure, heart rate, and mood in coffee drinkers
Holmes et al. Correlation between heart rate and the severity of motion sickness caused by optokinetic stimulation.
Martinmäki et al. Time-frequency analysis of heart rate variability during immediate recovery from low and high intensity exercise
Sun et al. Prevalence and risk factors of the rural adult people prehypertension status in Liaoning Province of China
Hastings et al. Symptom burden of sleep-disordered breathing in mild-to-moderate congestive heart failure patients
Guédon-Moreau et al. Temporal analysis of heart rate variability as a predictor of post traumatic stress disorder in road traffic accidents survivors
Cho et al. Differences in self-rated, perceived, and acoustic voice qualities between high-and low-fatigue groups
Yuksel et al. Autonomic cardiac activity in patients with smoking and alcohol addiction by heart rate variability analysis
PERKINS Combined effects of nicotine and alcohol on subjective, behavioral and physiological responses in humans
De Geus et al. Genetic correlation of exercise with heart rate and respiratory sinus arrhythmia
Wu et al. Impaired baroreflex sensitivity in subjects with impaired glucose tolerance, but not isolated impaired fasting glucose
JP2004242720A (en) Drunken behavior evaluation method
Javorka et al. Heart rate variability and cardiovascular tests in young patients with diabetes mellitus type 1
Garcia-Rio et al. Inspiratory neural drive response to hypoxia adequately estimates peripheral chemosensitivity in OSAHS patients
Sullivan et al. Disturbed sensory physiology underlies poor balance and disrupts activities of daily living in alcohol use disorder
King et al. Drinking history is related to persistent blood pressure dysregulation in postwithdrawal alcoholics
Karson et al. An inverse correlation between spontaneous eye-blink rate and platelet monoamine oxidase activity
Héraud et al. Does correction of exercise-induced desaturation by O2 always improve exercise tolerance in COPD? A preliminary study
Koyama Lifestyle change improves individual health and lowers healthcare costs
Delilbasi et al. Evaluation of some factors affecting taste perception in elderly people
Ververs et al. Breathing pattern awake and asleep in myotonic dystrophy
BELL et al. The relationship of weight gain and caloric intake in infants with organic and nonorganic failure to thrive syndrome
Andrade et al. Oxygen supplementation increases the total work and muscle damage markers but reduces the inflammatory response in COPD patients
Izumi et al. Effect of moderate alcohol intake on nocturnal sleep respiratory parameters in healthy middle-aged men

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310